TY - JOUR A1 - Zoephel, Judith A1 - Reiher, Wencke A1 - Rexer, Karl-Heinz A1 - Kahnt, Jörg A1 - Wegener, Christian T1 - Peptidomics of the Agriculturally Damaging Larval Stage of the Cabbage Root Fly Delia radicum (Diptera: Anthomyiidae) JF - PLoS One N2 - The larvae of the cabbage root fly induce serious damage to cultivated crops of the family Brassicaceae. We here report the biochemical characterisation of neuropeptides from the central nervous system and neurohemal organs, as well as regulatory peptides from enteroendocrine midgut cells of the cabbage maggot. By LC-MALDI-TOF/TOF and chemical labelling with 4-sulfophenyl isothiocyanate, 38 peptides could be identified, representing major insect peptide families: allatostatin A, allatostatin C, FMRFamide-like peptides, kinin, CAPA peptides, pyrokinins, sNPF, myosuppressin, corazonin, SIFamide, sulfakinins, tachykinins, NPLP1-peptides, adipokinetic hormone and CCHamide 1. We also report a new peptide (Yamide) which appears to be homolog to an amidated eclosion hormone-associated peptide in several Drosophila species. Immunocytochemical characterisation of the distribution of several classes of peptide-immunoreactive neurons and enteroendocrine cells shows a very similar but not identical peptide distribution to Drosophila. Since peptides regulate many vital physiological and behavioural processes such as moulting or feeding, our data may initiate the pharmacological testing and development of new specific peptide-based protection methods against the cabbage root fly and its larva. KW - adult drosophila KW - central-nervous-system KW - blowfly calliphora-vomitoria KW - drosophila melanogaster KW - mass spectometry KW - feeding behavior KW - fruit fly KW - functional characterization KW - immunoreactive neurons KW - neobellieria bullata Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131727 VL - 7 IS - 7 ER - TY - JOUR A1 - Buchner, Erich A1 - Blanco Redondo, Beatriz A1 - Bunz, Melanie A1 - Halder, Partho A1 - Sadanandappa, Madhumala K. A1 - Mühlbauer, Barbara A1 - Erwin, Felix A1 - Hofbauer, Alois A1 - Rodrigues, Veronica A1 - VijayRaghavan, K. A1 - Ramaswami, Mani A1 - Rieger, Dirk A1 - Wegener, Christian A1 - Förster, Charlotte T1 - Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the Würzburg Hybridoma Library JF - PLoS ONE N2 - Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the Würzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the Würzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed. KW - cell staining KW - drosophila melanogaster KW - gene expression KW - hybridomas KW - immune serum KW - library screening KW - monoclonal antibodies KW - neurons Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97109 ER -