TY - JOUR A1 - Poethke, Hans J. A1 - Pfenning, Brenda A1 - Hovestadt, Thomas T1 - The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates N2 - Questions: What are the relative contributions of kin selection and individual selection to the evolution of dispersal rates in fragmented landscapes? How do environmental parameters influence the relative contributions of both evolutionary forces? Features of the model: Individual-based simulation model of a metapopulation. Logistic local growth dynamics and density-dependent dispersal. An optional shuffling algorithm allows the continuous destruction of any genetic structure in the metapopulation. Ranges of key variables: Depending on dispersal mortality (0.05-0.4) and the strength of environmental fluctuations, mean dispersal probability varied between 0.05 and 0.5. Conclusions: For local population sizes of 100 individuals, kin selection alone could account for dispersal probabilities of up to 0.1. It may result in a ten-fold increase of optimal dispersal rates compared with those predicted on the basis of individual selection alone. Such a substantial contribution of kin selection to dispersal is restricted to cases where the overall dispersal probabilities are small (textless 0.1). In the latter case, as much as 30% of the total fitness of dispersing individuals could arise from the increased reproduction of kin left in the natal patch. KW - dispersal rate KW - dynamics KW - environmental correlation KW - evolutionary modelling KW - genetics KW - individual-based model KW - kin competition Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48225 ER -