TY - JOUR A1 - Mildner, Stephanie A1 - Roces, Flavio T1 - Plasticity of Daily Behavioral Rhythms in Foragers and Nurses of the Ant Camponotus rufipes: Influence of Social Context and Feeding Times JF - PLoS One N2 - Daily activities within an ant colony need precise temporal organization, and an endogenous clock appears to be essential for such timing processes. A clock drives locomotor rhythms in isolated workers in a number of ant species, but its involvement in activities displayed in the social context is unknown. We compared locomotor rhythms in isolated individuals and behavioral rhythms in the social context of workers of the ant Camponotus rufipes. Both forager and nurse workers exhibited circadian rhythms in locomotor activity under constant conditions, indicating the involvement of an endogenous clock. Activity was mostly nocturnal and synchronized with the 12:12h light-dark-cycle. To evaluate whether rhythmicity was maintained in the social context and could be synchronized with non-photic zeitgebers such as feeding times, daily behavioral activities of single workers inside and outside the nest were quantified continuously over 24 hours in 1656 hours of video recordings. Food availability was limited to a short time window either at day or at night, thus mimicking natural conditions of temporally restricted food access. Most foragers showed circadian foraging behavior synchronized with food availability, either at day or nighttime. When isolated thereafter in single locomotor activity monitors, foragers mainly displayed arrhythmicity. Here, high mortality suggested potential stressful effects of the former restriction of food availability. In contrast, nurse workers showed high overall activity levels in the social context and performed their tasks all around the clock with no circadian pattern, likely to meet the needs of the brood. In isolation, the same individuals exhibited in turn strong rhythmic activity and nocturnality. Thus, endogenous activity rhythms were inhibited in the social context, and timing of daily behaviors was flexibly adapted to cope with task demands. As a similar socially-mediated plasticity in circadian rhythms was already shown in honey bees, the temporal organization in C. rufipes and honey bees appear to share similar basic features. KW - honey bees KW - biological locomotion KW - foraging KW - circadian rhythms KW - chronobiology KW - insects KW - nurses KW - ants Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148010 VL - 12 IS - 1 ER - TY - JOUR A1 - Chen, Jiangtian A1 - Reiher, Wencke A1 - Hermann-Luibl, Christiane A1 - Sellami, Azza A1 - Cognigni, Paola A1 - Kondo, Shu A1 - Helfrich-Förster, Charlotte A1 - Veenstra, Jan A. A1 - Wegener, Christian T1 - Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF JF - PLoS Genetics N2 - Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF. KW - neurons KW - neuroimaging KW - circadian rhythms KW - food consumption KW - sleep KW - biological locomotion KW - Drosophila melanogaster KW - signal peptides Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178170 VL - 12 IS - 9 ER - TY - JOUR A1 - Fischer, Robin A1 - Helfrich-Förster, Charlotte A1 - Peschel, Nicolai T1 - GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila JF - PLoS ONE N2 - Cryptochrome (CRY) is the primary photoreceptor of Drosophila’s circadian clock. It resets the circadian clock by promoting light-induced degradation of the clock protein Timeless (TIM) in the proteasome. Under constant light, the clock stops because TIM is absent, and the flies become arrhythmic. In addition to TIM degradation, light also induces CRY degradation. This depends on the interaction of CRY with several proteins such as the E3 ubiquitin ligases Jetlag (JET) and Ramshackle (BRWD3). However, CRY can seemingly also be stabilized by interaction with the kinase Shaggy (SGG), the GSK-3 beta fly orthologue. Consequently, flies with SGG overexpression in certain dorsal clock neurons are reported to remain rhythmic under constant light. We were interested in the interaction between CRY, Ramshackle and SGG and started to perform protein interaction studies in S2 cells. To our surprise, we were not able to replicate the results, that SGG overexpression does stabilize CRY, neither in S2 cells nor in the relevant clock neurons. SGG rather does the contrary. Furthermore, flies with SGG overexpression in the dorsal clock neurons became arrhythmic as did wild-type flies. Nevertheless, we could reproduce the published interaction of SGG with TIM, since flies with SGG overexpression in the lateral clock neurons shortened their free-running period. We conclude that SGG does not directly interact with CRY but rather with TIM. Furthermore we could demonstrate, that an unspecific antibody explains the observed stabilization effects on CRY. KW - neurons KW - RNA interference KW - hyperexpression techniques KW - circadian rhythms KW - Drosophila melanogaster KW - animal behavior KW - phosphorylation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180370 VL - 11 IS - 1 ER -