TY - JOUR A1 - Seher, Axel A1 - Lagler, Charlotte A1 - Stühmer, Thorsten A1 - Müller-Richter, Urs Dietmar Achim A1 - Kübler, Alexander Christian A1 - Sebald, Walter A1 - Müller, Thomas Dieter A1 - Nickel, Joachim T1 - Utilizing BMP-2 muteins for treatment of multiple myeloma JF - PLoS ONE N2 - Multiple myeloma (MM) represents a haematological cancer characterized by the pathological hyper proliferation of antibody-producing B-lymphocytes. Patients typically suffer from kidney malfunction and skeletal disorders. In the context of MM, the transforming growth factor β (TGFβ) member Activin A was recently identified as a promoter of both accompanying symptoms. Because studies have shown that bone morphogenetic protein (BMP)-2-mediated activities are counteracted by Activin A, we analysed whether BMP2, which also binds to the Activin A receptors ActRII and ActRIIB but activates the alternative SMAD-1/5/8 pathway, can be used to antagonize Activin A activities, such as in the context of MM. Therefore three BMP2 derivatives were generated with modified binding activities for the type II (ActRIIB) and/or type I receptor (BMPRIA) showing either increased or decreased BMP2 activity. In the context of MM these BMP2 muteins show two functionalities since they act as a) an anti-proliferative/apoptotic agent against neoplastic B-cells, b) as a bone-formation promoting growth factor. The molecular basis of both activities was shown in two different cellular models to clearly rely on the properties of the investigated BMP2 muteins to compete for the binding of Activin A to the Activin type II receptors. The experimental outcome suggests new therapeutic strategies using BMP2 variants in the treatment of MM-related pathologies. KW - multiple myeloma KW - signaling KW - cell proliferation KW - cell binding KW - membrane receptor signaling KW - BMP KW - gene expression KW - B cell receptors KW - B cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158144 VL - 12 IS - 5 ER - TY - JOUR A1 - Morton, Charles Oliver A1 - Fliesser, Mirjam A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Bauer, Ruth A1 - Kneitz, Susanne A1 - Hope, William A1 - Rogers, Thomas Richard A1 - Einsele, Hermann A1 - Löffler, Jürgen T1 - Gene Expression Profiles of Human Dendritic Cells Interacting with Aspergillus fumigatus in a Bilayer Model of the Alveolar Epithelium/Endothelium Interface N2 - The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA. KW - aspergillus fumigatus KW - gene expression KW - immune receptors KW - immune response KW - denritic cells KW - B cell receptors KW - gene regulation KW - RNA extraction Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112893 ER -