TY - JOUR A1 - Sanz-Moreno, Adrian A1 - Fuhrmann, David A1 - Wolf, Elmar A1 - von Eyss, Björn A1 - Eilers, Martin A1 - Elsässer, Hans-Peter T1 - Miz1 Deficiency in the Mammary Gland Causes a Lactation Defect by Attenuated Stat5 Expression and Phosphorylation JF - PLOS ONE N2 - Miz1 is a zinc finger transcription factor with an N-terminal POZ domain. Complexes with Myc, Bcl-6 or Gfi-1 repress expression of genes like Cdkn2b (p15(Ink4)) or Cd-kn1a (p21(Cip1)). The role of Miz1 in normal mammary gland development has not been addressed so far. Conditional knockout of the Miz1 POZ domain in luminal cells during pregnancy caused a lactation defect with a transient reduction of glandular tissue, reduced proliferation and attenuated differentiation. This was recapitulated in vitro using mouse mammary gland derived HC11 cells. Further analysis revealed decreased Stat5 activity in Miz1 Delta POZ mammary glands and an attenuated expression of Stat5 targets. Gene expression of the Prolactin receptor (PrlR) and ErbB4, both critical for Stat5 phosphorylation (pStat5) or pStat5 nuclear translocation, was decreased in Miz1 Delta POZ females. Microarray, ChIP-Seq and gene set enrichment analysis revealed a down-regulation of Miz1 target genes being involved in vesicular transport processes. Our data suggest that deranged intracellular transport and localization of PrlR and ErbB4 disrupt the Stat5 signalling pathway in mutant glands and cause the observed lactation phenotype. KW - C-MYC KW - transcription factor MIZ-1 KW - breast-cancer cells KW - gene expression KW - epithelial cells KW - prolactin KW - transgenic mice KW - growth KW - differentiation KW - proliferation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117286 VL - 9 IS - 2 ER - TY - THES A1 - Engelhardt, Stefan T1 - Transgene Mausmodelle zur Charakterisierung der Funktion kardialer beta-adrenerger Rezeptoren T1 - Characterization of cardiac beta-adrenergic receptors through the use of transgenic mouse models N2 - In der vorliegenden Arbeit wurde die Funktion kardialer beta-adrenerger Rezeptoren mit Hilfe einer Kombination aus transgenen Mausmodellen und physiologischen und molekularbiologischen Methoden untersucht. Durch gezielte Überexpression des humanen beta1-adrenergen Rezeptors im Herzen transgener Mäuse konnte gezeigt werden, daß die chronische Aktivierung dieses Rezeptors eine trophische Wirkung auf die Herzmuskelzellen hat. Über einen Zeitraum von mehreren Monaten führte dies zur Entwicklung einer Herzinsuffizienz. In der menschlichen Herzinsuffizienz kommt es zu einem ähnlichen Phänomen: Durch deutlich erhöhte Freisetzung von endogenen Katecholaminen kommt es zu einer chronischen Dauerstimulation kardialer beta1-adrenerger Rezeptoren. Daß diese schädlich ist belegen das hier beschriebene Mausmodell und zudem einige neuere klinische Studien, die zeigen daß eine pharmakologische Blockade beta-adrenerger Rezeptoren zu einer Verminderung der Herzinsuffizienzmortalität führt. Dieses Mausmodell erlaubte es erstmals den beta1-adrenergen Rezeptor hinsichtlich seiner spontanen Rezeptoraktivität in einem physiologischen Modell zu untersuchen. Dabei zeigte sich, daß der humane beta1-adrenerge Rezeptor spontane Aktivität aufweist, jedoch in einem deutlich geringeren Ausmaß als der beta2-adrenerge Rezeptor. Dies könnte klinisch relevant sein, da klinisch verwendete beta-Rezeptor-Antagonisten die spontane Aktivität des beta1-adrenergen Rezeptors in unserem Modell unterschiedlich stark unterdrückten. In der vorliegenden Arbeit wurde zudem untersucht, ob sich die beiden kardial exprimierten Beta-Rezeptor-Subtypen Beta1 und Beta2 hinsichtlich ihrer Signaltransduktion unterscheiden. Ausgehend von dem Befund, daß die chronische Aktivierung der beiden Subtypen in transgenen Mausmodellen zu deutlich unterschiedlichen Phänotypen führt, wurden verschiedene intrazelluläre Signalwege auf ihre Aktivierung hin überprüft. Abweichend von publizierten, in vitro nach kurzzeitiger Rezeptorstimulation erhobenen Daten zeigte sich, daß die chronische Aktivierung der Rezeptorsubtypen zu einer unterschiedlichen Aktivierung der kardialen MAP-kinasen (ERK) führt. Die beta1-spezifische Aktivierung dieser Kinasen könnte die beobachtete unterschiedliche Hypertrophieentwicklung in diesen beiden Mausmodellen erklären. Einen weiteren Schwerpunkt bei der Aufklärung des Mechanismus beta-adrenerg induzierter Hypertrophie bildete die Untersuchung der zellulären Calcium-homöostase. Als früheste funktionelle Veränderung in der Entwicklung einer beta-adrenerg induzierten Herzhypertrophie und -insuffizienz trat dabei eine Störung des intrazellulären Calciumtransienten auf. Als möglicher Mechanismus für die Störung des Calciumhaushalts konnte eine zeitgleich auftretende veränderte Expression des Calcium-regulierenden Proteins Junctin beschrieben werden. Einen neuen therapeutischen Ansatz für die Therapie der Herzinsuffizienz könnten schließlich vielleicht die Untersuchungen zum kardialen Na/H-austauscher ergeben: Es konnte erstmals gezeigt werden, daß der kardiale Na/H-Austauscher maßgeblich an der beta-adrenerg induzierten Herzhypertrophie- und Fibrose-entstehung beteiligt ist und daß die pharmakologische Inhibition dieses Proteins sowohl Hypertrophie als auch die Fibrose wirksam unterdrücken kann. KW - Beta-Rezeptor KW - Maus KW - Transgene Tiere KW - Herzinsuffizienz KW - Transgene Mäuse KW - beta-adrenerge Rezeptoren KW - Hypertrophie KW - Fibrose KW - Na/H-Austauscher KW - Herzinsuffizienz KW - transgenic mice KW - cardiac hypertrophy KW - fibrosis KW - Na/H-exchanger KW - heart failure Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1181950 ER -