TY - JOUR A1 - Seitz, Nicola A1 - vanEngelsdorp, Dennis A1 - Leonhardt, Sara D. T1 - Are native and non‐native pollinator friendly plants equally valuable for native wild bee communities? JF - Ecology and Evolution N2 - Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non‐native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non‐native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non‐native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non‐native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non‐natives. Native plants hosted more specialized plant–bee visitation networks than non‐native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non‐native plants. Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non‐native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee–plant network structures. KW - bee conservation KW - common garden experiment KW - exotic plants KW - non‐native plants KW - plant–bee visitation networks KW - pollinator friendly plants KW - wild bees Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218439 VL - 10 IS - 23 ER - TY - THES A1 - Seitz, Nicola T1 - Bee demise and bee rise: From honey bee colony losses to finding measures for advancing entire bee communities T1 - Bienenschwund und Bienenaufschwung: Von Honigbienen-Kolonieverlusten zur Förderung von gesamten Bienengemeinschaften N2 - My dissertation comprises three studies: (1) an assessment of honey bee colony losses in the USA between 2014 and 2015, (2) an exploration of the potential of reclaimed sand mines as bee habitat, and (3) an evaluation of native and non-native pollinator friendly plants in regard to their attraction to bees. While the first study focuses on honey bees, the latter two studies primarily take wild bees or entire bee communities in focus. The study on honey bee colony losses was conducted within the framework of the Bee Informed Partnership (BIP, beeinformed.org) and aligns with the annual colony loss surveys which have been conducted in the USA since the winter of 2006/2007. It was the fourth year for which summer and annual losses were calculated in addition to winter losses. Among participants, backyard beekeepers were the largest group (n = 5690), although sideline (n = 169) and commercial (n = 78) beekeepers managed the majority (91.7 %) of the 414 267 surveyed colonies. Overall, 15.1 % of the estimated 2.74 million managed colonies in the USA were included in the study. Total honey bee colony losses (based on the entirety of included colonies) were higher in summer (25.3 %) than in winter (22.3 %) and amounted to 40.6 % for the entire 2014/2015 beekeeping year. Average colony losses per beekeeper or operation were higher in winter (43.7 %) than in summer (14.7 %) and amounted to 49 % for the entire 2014/2015 beekeeping year. Due to the dominance of backyard beekeepers among participants, average losses per operation (or unweighted loss) stronger reflected this smaller type of beekeeper. Backyard beekeepers mainly named colony management issues (e.g., starvation, weak colony in the fall) as causes for mortality, while sideline and commercial beekeepers stronger emphasized parasites or factors outside their control (e.g., varroa, nosema, queen failure). The second study took place at reclaimed sand mines. Sand mines represent anthropogenically impacted habitats found worldwide, which bear potential for bee conservation. Although floral resources can be limited at these habitats, vegetation free patches of open sandy soils and embankments may offer good nesting possibilities for sand restricted and other bees. We compared bee communities as found in three reclaimed sand mines and at adjacent roadside meadows in Maryland, USA, over two years. Both sand mines and roadsides hosted diverse bee communities with 111 and 88 bee species, respectively. Bee abundances as well as richness and Shannon diversity of bee species were higher in sand mines than at roadsides and negatively correlated with the percentage of vegetational ground cover. Species composition also differed significantly between habitats. Sand mines hosted a higher proportion of ground nesters, more uncommon and more ‘sand loving’ bees similar to natural sandy areas of Maryland. Despite the destruction of the original pre-mining habitat, sand mines thus appear to represent a unique habitat for wild bees, particularly when natural vegetation and open sand spots are encouraged. Considering habitat loss, the lack of natural disturbance regimes, and ongoing declines of wild bees, sand mines could add promising opportunities for bee conservation which has hitherto mainly focused on agricultural and urban habitats. The third study was an experimental field study on pollinator friendly plants. Bees rely on the pollen and nectar of plants as their food source. Therefore, pollinator friendly plantings are often used for habitat enhancements in bee conservation. Non-native pollinator friendly plants may aid in bee conservation efforts, but have not been tested and compared with native pollinator friendly plants in a common garden experiment. In this study, we seeded mixes of 20 native and 20 non-native pollinator friendly plants in two separate plots at three sites in Maryland, USA. For two years, we recorded flower visitors to the plants throughout the blooming period and additionally sampled bees with pan traps. A total of 3744 bees (120 species) were sampled in the study. Of these, 1708 bees (72 species) were hand netted directly from flowers for comparisons between native and non-native plants. Depending on the season, bee abundance and species richness was either similar or lower (early season and for richness also late season) at native plots compared to non-native plots. Additionally, the overall bee community composition differed significantly between native and non-native plots. Furthermore, native plants were associated with more specialized plant-bee visitation networks compared to non-native plants. In general, visitation networks were more specialized in the early season than the later seasons. Four species (Bombus impatiens, Halictus poeyi/ligatus, Lasioglossum pilosum, and Xylocopa virginica) out of the five most abundant bee species (also including Apis mellifera) foraged more specialized on native than non-native plants. Our study showed that non-native plants were well accepted by a diverse bee community and had a similar to higher attraction for bees compared to native plants. However, we also demonstrated alterations in foraging behavior, bee community assemblage, and visitation networks. As long as used with caution, non-native plants can be a useful addition to native pollinator friendly plantings. This study gives a first example of a direct comparison between native and non-native pollinator friendly plants. N2 - Meine Dissertation umfasst drei Studien: (1) eine Erfassung von Honigbienen-Kolonieverlusten in den USA zwischen 2014 und 2015, (2) die Erforschung des Potenzials renaturierter Sandminen als Habitat für Bienen und (3) eine Evaluierung nativer sowie standortfremder bestäuberfreundlicher Pflanzen hinsichtlich ihrer Attraktivität für Bienen. Während die erste Studie Honigbienen im Fokus hat, verschiebt sich der Fokus der zwei weiteren Studien hin zu Wildbienen bzw. gesamten Bienengemeinschaften. Die Studie zu Honigbienenkolonieverlusten wurde im Rahmen des Bee Informed Partnerships (BIP, beeinformed.org) durchgeführt und reiht sich ein in die seit dem Winter 2006/2007 jährlich durchgeführten Untersuchungen in den USA. Es ist das vierte Jahr in dem Sommer- und Jahresverluste zusätzlich zu den Winterverlusten kalkuliert wurden. Unter den Teilnehmern bildete die Gruppe der Hobby-Imker den größten Anteil (n = 5690), obwohl nebenberufliche (n = 169) und kommerzielle (n = 78) Imker den Großteil (91,7 %) der 414 267 begutachteten Bienenvölkern bzw. Kolonien hielten. Insgesamt enthielt die Studie 15,1 % der auf 2,74 Mio. geschätzten Gesamtzahl an gehaltenen Bienenvölkern in den USA. Die Gesamtverluste an Honigbienenvölkern (basierend auf der Gesamtheit der erfassten Völker) waren im Sommer mit 25,3 % höher als im Winter mit 22,3 % und bezifferten sich auf 40,6 % für das gesamte Imkerjahr in 2014/2015. Durchschnittliche Kolonieverluste pro Imkerbetrieb waren höher im Winter (43,7 %) als im Sommer (14,7 %) und betrugen 49 % für das gesamte Imkerjahr in 2014/2015. Aufgrund der hohen Anzahl an Hobby-Imkern unter den Teilnehmern reflektieren die durchschnittlichen Kolonieverluste pro Imkerbetrieb (oder ungewichtete Verluste) v.a. die Situation dieser kleineren Imkerbetriebe. Hobby-Imker nannten als Gründe für die Honigbienenmortalität hauptsächlich Probleme des Koloniemanagements (z.B. Verhungerung, schwache Völker im Herbst), während nebenberufliche und kommerzielle Imker stärker Faktoren betonten, die außerhalb ihrer Kontrolle lagen (z.B. Varroamilben, Nosemasporen, Versagen der Königin). Die zweite Studie fand in renaturierten Sandminen statt. Sandminen sind weltweit zu findende anthropogen veränderte Landschaften, die ein Potenzial für Bienenschutz haben. Obwohl florale Ressourcen in diesen Habitaten limitiert sein können, könnten die vegetationsfreien Flecken auf offenen Sandböden und Böschungen gute Nistplätze für auf Sand spezialisierte und andere Bienen bieten. Wir haben Bienengemeinschaften aus drei renaturierten Sandminen sowie jeweils nahe gelegenen bepflanzten Straßenrändern in Maryland, USA verglichen. Sowohl die Sandminen als auch die Straßenränder enthielten vielfältige Bienengemeinschaften mit 111 (Sandminen) und 88 (Straßenränder) Bienenarten. Bienenabundanz, Artenreichtum und Shannon Diversität waren höher in den Sandminen als an den Straßenrändern und korrelierten negativ mit dem Anteil an vorhandener Bodenvegetation. Darüber hinaus unterschied sich die Artzusammensetzung signifikant zwischen den beiden Habitattypen. Sandminen enthielten einen größeren Anteil an Bodennistern, mehr seltene Arten und mehr sandliebende Arten, ähnlich natürlicher sandiger Gebiete in Maryland. Trotz der Zerstörung des ursprünglichen prä-Minen Habitats, scheinen Sandminen daher ein einzigartiges Bienenhabitat für Wildbienen darzustellen, besonders wenn die natürliche Besiedlung von Vegetation und offene Sandflächen gefördert werden. Im Hinblick auf Habitatverluste, auf das Fehlen von natürlichen Landschaftsstörungen und auf den weiterschreitenden Rückgang an Wildbienen, könnten Sandminen eine vielversprechende Möglichkeit für Bienenschutz darstellen, der sich bisher stark auf landwirtschaftliche und urbane Habitate konzentrierte. Bei der dritten Studie handelt es sich um eine experimentelle Feldstudie zu bestäuberfreundlichen Pflanzen. Bienen sind auf Pollen und Nektar von Pflanzen als Nahrungsquelle angewiesen. Aus diesem Grund werden bestäuberfreundliche Pflanzen oft für Habitatverbesserungen im Rahmen von Bienenschutzmaßnahmen gepflanzt. Standortfremde bestäuberfreundliche Pflanzen können dabei die Bienenschutzmaßnahmen unterstützen, wurden aber bisher nicht in einem Common Garden Experiment zusammen mit nativen bestäuberfreundlichen Pflanzen getestet bzw. verglichen. In dieser Studie haben wir Saatgutmischungen mit jeweils 20 nativen und 20 standortfremden Pflanzen in zwei separaten Plots in drei Gebieten in Maryland, USA ausgesät. Zwei Jahre lang protokollierten wir über die gesamten Blühzeiträume hinweg Pflanzenbesucher und sammelten Bienen mit Farbschalen. Insgesamt erfassten wir 3744 Bienen (120 Arten), von denen 1708 Individuen (72 Arten) per Hand direkt von den Blüten gesammelt wurden für die Vergleiche zwischen nativen und standortfremden Pflanzen. Abhängig von der Saison waren Bienenabundanz und Artenreichtum entweder ähnlich oder niedriger (frühe Saison und für Artenreichtum auch späte Saison) in nativen Plots verglichen mit den standortfremden Plots. Zusätzlich unterschied sich die Zusammensetzung der Bienengemeinschaft signifikant zwischen nativen und standortfremnden Pflanzen. Darüber hinaus waren die Bienen-Pflanzen-Besuchs-Netzwerke nativer Pflanzen spezialisierter als die Besuchs-Netzwerke standortfremder Pflanzen. Im Allgemeinen waren die Besuchs-Netzwerke in der frühen Saison spezialisierter als in der späten Saison. Vier Arten (Bombus impatiens, Halictus poeyi/ligatus, Lasioglossum pilosum, und Xylocopa virginica) der fünf am häufigsten vorkommenden Arten (zusätzlich auch Apis mellifera) fouragierten spezialisierter auf nativen Pflanzen als auf standortfremden Pflanzen. Unsere Studie zeigte, dass standortfremde Pflanzen weitläufig von einer artenreichen Bienengemeinschaft angenommen wurden und eine ähnliche bis höhere Attraktivität für Bienen aufwiesen verglichen mit nativen Pflanzen. Allerdings demonstrierten wir auch Änderungen im Fouragierverhalten, in der Zusammensetzung der Bienengemeinschaft und in den Besuchs-Netzwerken. Insgesamt kann ein vorsichtiger Einsatz standortfremder Pflanzen eine sinnvolle Ergänzung zu nativen bestäuberfreundlichen Anpflanzungen sein. Diese Studie stellt ein erstes Beispiel eines direkten Vergleichs von nativen und standortfremden bestäuberfreundlichen Anpflanzungen dar. KW - Biene KW - Wildbienen KW - Renaturierung <Ökologie> KW - Naturschutz KW - Honigbienen KW - exotische Pflanzen KW - Sandminen KW - Pflanzen-Bienen-Netzwerke KW - bestäuberfreundliche Pflanzen KW - wild bees KW - honey bees KW - sand mine KW - pollinator friendly plants KW - plant-bee visitation networks Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184180 ER - TY - JOUR A1 - Voulgari‐Kokota, Anna A1 - Ankenbrand, Markus J. A1 - Grimmer, Gudrun A1 - Steffan‐Dewenter, Ingolf A1 - Keller, Alexander T1 - Linking pollen foraging of megachilid bees to their nest bacterial microbiota JF - Ecology and Evolution N2 - Solitary bees build their nests by modifying the interior of natural cavities, and they provision them with food by importing collected pollen. As a result, the microbiota of the solitary bee nests may be highly dependent on introduced materials. In order to investigate how the collected pollen is associated with the nest microbiota, we used metabarcoding of the ITS2 rDNA and the 16S rDNA to simultaneously characterize the pollen composition and the bacterial communities of 100 solitary bee nest chambers belonging to seven megachilid species. We found a weak correlation between bacterial and pollen alpha diversity and significant associations between the composition of pollen and that of the nest microbiota, contributing to the understanding of the link between foraging and bacteria acquisition for solitary bees. Since solitary bees cannot establish bacterial transmission routes through eusociality, this link could be essential for obtaining bacterial symbionts for this group of valuable pollinators. KW - foraging patterns KW - nest microbiota KW - plant–microbe–pollinator triangle KW - pollination network KW - solitary bees KW - wild bees Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201749 SN - 00 VL - 2019 IS - 9 ER - TY - THES A1 - Schenk [née Wolf], Mariela T1 - Timing of wild bee emergence: mechanisms and fitness consequences T1 - Zeitliche Abstimmung des Bienenschlupfes: Mechanismen und Fitnesskonsequenzen N2 - Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in Würzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately. N2 - Solitäre Bienen aus gemäßigten Breiten müssen ihre Lebenszyklen vorteilhaften Umweltbedingungen und –ressourcen angleichen. Deshalb ist ein gutes Timing ihrer saisonalen Tätigkeit von höchster Relevanz. Die meisten Arten aus gemäßigten Breiten nutzen Temperatur als Trigger um ihre saisonale Aktivität zeitlich abzustimmen. Aus diesem Grund kann der Klimawandel die mutualistischen Interaktionen zwischen Bienen- und Pflanzenarten stören, falls steigende Temperaturen das Timing der Interaktionspartner unterschiedlich verändern. Das Ziel dieser Doktorarbeit war es, die Timing-Mechanismen von Frühlingsbienenarten zu untersuchen, sowie die resultierenden Fitnessfolgen, falls zeitliche Fehlabstimmungen zu ihren Wirtspflanzen eintreten sollten. In meinen Experimenten konzentrierte ich mich auf Frühlingsbienenarten der Gattung Osmia (Mauerbienen) und dabei vor allem auf zwei spezielle Arten, nämlich O. cornuta und O. bicornis (in meiner Studie, die ich im Kapitel IV meiner Doktorarbeit präsentiere, untersuchte ich zusätzlich noch eine dritte Bienenart: O. brevicornis). Kapitel II präsentiert eine Studie, in der ich verschiedene Trigger untersuchte, die solitäre Bienen nutzen um ihren Schlupfzeitpunkt im Frühjahr festzulegen. Dazu untersuchte ich in einem Klimakammerexperiment den Zusammenhang zwischen Überwinterungstemperaturen, Körpergröße, Körpergewicht und Schlupftag. Zusätzlich entwickelte ich ein einfaches mechanistisches Modell, welches mir ermöglichte, meine verschiedenen Ergebnisse in einem einheitlichen Rahmen zusammenzufügen. In Kombination mit den empirischen Daten deutet das Modell stark darauf hin, dass Bienen einen strategischen Ansatz verfolgen und genau an dem Tag schlüpfen, der für ihre individuelle Fitnesserwartung am sinnvollsten ist. Ich konnte zeigen, dass dieser gewählte Schlupftag einerseits temperaturabhängig ist, da wärmere Temperaturen den Gewichtverlust der Bienen während der Überwinterung steigern, was wiederum den optimalen Schlupftag auf einem früheren Zeitpunkt verschiebt, andererseits konnte ich ebenfalls zeigen, dass der optimale Schlupfzeitpunkt von der individuellen Körpergröße bzw. dem Körpergewicht der Biene abhängt, da diese ihren Schlupftag danach abstimmen. Meine Daten zeigen, dass es nicht reicht alleinig Temperatureffekte auf das Timing der solitären Bienen zu untersuchen, sondern dass wir ebenfalls die Körperkonditionen der Bienen beachten sollten, um die zeitliche Abstimmung des Bienenschlupfes besser verstehen zu können. In Kapitel III präsentiere ich eine Studie, in der ich den Temperatureinfluss auf den Schlupftermin solitärer Bienen detailreicher untersuchte. Dazu habe ich verschiedene Varianten von Temperatursummen-Modellen getestet, um Temperaturzeitreihen auf Schlupftermine zu beziehen. Die grundlegende Funktionsweise solcher Temperatursummen-Modelle ist, dass der Bienenschlupf auf den Tag prognostiziert wird an dem die Bienen eine bestimmte Menge an Temperatursummen aufsummiert haben. Ich konnte zeigen, dass Bienen Temperatursummen erst ab bestimmten Temperaturen bilden (ab circa 4°C bei O. cornuta und circa 7°C bei O. bicornis) und erst nach Erreichen eines bestimmten Kalendertages (circa 10.März bei O. cornuta und circa 28.März bei O. bicornis). Solch ein bestimmter Kalendertag, vor dessen Erreichen und unabhängig von der aktuellen Temperatur keine Temperatursummen gebildet werden, wird grundsätzlich recht selten verwendet und in Phänologie-Modellen zur Vorhersage des Bienenschlupfes, bis heute auch nur zwei Mal. Zusätzlich benutzte ich mein Modell, um rückwirkend den Bienenschlupf über die letzten Jahrzehnte vorherzusagen. Dazu wandte ich das Modell auf Langzeit-Temperaturdaten an, die von der regionalen Wetterstation in Würzburg aufgezeichnet wurden. Das Modell prognostizierte rückwirkend, dass im Verlauf der letzten 63 Jahre die Bienen ungefähr 4 Tage früher schlüpfen. In Kapitel IV präsentiere ich eine Studie, in der ich untersuchte, inwieweit zeitliche Fehlabstimmungen in Bienen-Pflanzen-Interaktionen die Fitness der solitären Bienen beeinflussen. Dazu führte ich ein Experiment mit großen Flugkäfigen durch, die als Mesokosmos dienten. Innerhalb jedes dieser Mesokosmen manipulierte ich das Angebot an Blüten um Bienen-Pflanzen-Interaktionen wahlweise zu synchronisieren oder zu desynchronisieren. Zusammengefasst konnte ich dabei aufzeigen, dass sogar kurze zeitliche Fehlabstimmungen von drei oder sechs Tagen bereits genügen (Bienen schlüpften zeitlich vor dem Erscheinen der Pflanzen) um bei den Bienen fatale Fitnessfolgen zu verursachen. Nichtsdestotrotz konnte ich bei den Bienen verschiedene Strategien erkennen, mit denen sie Auswirkungen auf ihre Fitness nach zeitlichen Fehlabstimmungen entgegenwirken wollten. Allerdings könnten diese Strategien zu sekundären Fitnessverlusten folgen da sie zu einem veränderten Geschlechterverhältnis oder einem stärkeren Prasitierungsgrad führen. Deshalb konnte ich zusammenfassend feststellen, dass nach zeitlichen Fehlabstimmungen zu den entsprechenden Wirtspflanzen, die Kompensationsstrategien der Bienen nicht ausreichen, um Fitnessverlusste zu minimieren. Im Falle des weiter voranschreitenden Klimawandel könnten die Fitnessverluste der Bienen nicht nur das momentane Bienensterben weiter verschärfen, sondern auch ihren Bestäubungsdienst an später blühenden Arten minimieren und dadurch Populationen von tierbestäubten Pflanzen beeinträchtigen. Zusammenfassend konnte ich zeigen, dass Frühlingsbienenarten anfällig für Klimawandel sind, da sie nach warmen Überwinterungstemperaturen früher schlüpfen und einen geringeren Fitnesszustand aufweisen. Da Frühlingsbienenarten bei der zeitlichen Abstimmung ihres Schlupftages nicht nur Überwinterungstemperaturen, sondern auch ihren individuellen Fitnesszustand beachten, könnte dies unterschiedliche Reaktionen innerhalb oder zwischen Bienenpopulationen auf den Klimawandel erklären. Dies könnte ebenfalls Folgen für Bienen-Pflanzen Interaktionen haben und das weitere Bestehen von Bienenpopulationen gefährden. Falls, durch den Klimawandel bedingt, Pflanzenarten ihre Phänologie nicht in Einklang mit der Phänologie der Bienen verschieben, dann könnten Bienen zeitliche Fehlabstimmungen mit ihren Wirtspflanzen erleben. Da Bienen keine einzige Kompensationsmaßnahme aufzeigen, die erfolgreich Fitnessverlusten entgegenwirken konnte, wären in einem solchen Fall die Folgen für Frühlingsbienenarten fatal. Darüber hinaus konnte ich feststellen, dass Frühlingsbienen einen bestimmten Starttag im Jahr beachten, vor dessen Erreichen sie keine Temperatursummen bilden, unabhängig von der aktuellen Temperatur. Ich schlage deshalb vor, dass weitere Studien ebenfalls einen solchen Starttag in Temperatursummen-Modelle einbauen sollten, um die Genauigkeit zur Berechnung des Bienenschlupfes weiter zu verbessern. Obwohl meine retrospektive Vorhersage zum verfrühten Bienenschlupf ziemlich genau den Ergebnissen von verschiedenen Studien zu den phänologischen Verschiebungen von Pflanzenarten entspricht, schlagen wir vor, dass zusätzliche Untersuchungen konzipiert werden müssen um präzisere Aussagen über die Folgen des Klimawandels auf die Synchronisation der Bienen-Pflanzen-Interaktionen liefern zu können. KW - wild bees KW - timing KW - fitness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161565 ER - TY - JOUR A1 - Bartomeus, Ignasi A1 - Potts, Simon G. A1 - Steffan-Dewenter, Ingolf A1 - Vaissiere, Bernard E. A1 - Woyciechowski, Michal A1 - Krewenka, Kristin M. A1 - Tscheulin, Thomas A1 - Roberts, Stuart P. M. A1 - Szentgyoergyi, Hajnalka A1 - Westphal, Catrin A1 - Bommarco, Riccardo T1 - Contribution of insect pollinators to crop yield and quality varies with agricultural intensification JF - PEERJ N2 - Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations. KW - biodiversity KW - pollination KW - honeybee KW - wild bees KW - agroecosystems KW - native pollinators KW - species richness KW - bee pollinators KW - wild KW - ecosystemservices KW - fruit-quality KW - oilseed rape KW - land-use KW - honey KW - patterns Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116928 SN - 2167-9843 VL - 2 IS - e328 ER -