TY - JOUR A1 - Lehmann, Julian A1 - Jørgensen, Morten E. A1 - Fratz, Stefanie A1 - Müller, Heike M. A1 - Kusch, Jana A1 - Scherzer, Sönke A1 - Navarro-Retamal, Carlos A1 - Mayer, Dominik A1 - Böhm, Jennifer A1 - Konrad, Kai R. A1 - Terpitz, Ulrich A1 - Dreyer, Ingo A1 - Mueller, Thomas D. A1 - Sauer, Markus A1 - Hedrich, Rainer A1 - Geiger, Dietmar A1 - Maierhofer, Tobias T1 - Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis JF - Current Biology N2 - Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance. KW - SLAH3 KW - S-type anion channel KW - hypoxia KW - pH KW - cytosolic acidification KW - flooding KW - PALM KW - stoichiometry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363320 VL - 31 ER - TY - JOUR A1 - Le Provost, Gaëtane A1 - Thiele, Jan A1 - Westphal, Catrin A1 - Penone, Caterina A1 - Allan, Eric A1 - Neyret, Margot A1 - van der Plas, Fons A1 - Ayasse, Manfred A1 - Bardgett, Richard D. A1 - Birkhofer, Klaus A1 - Boch, Steffen A1 - Bonkowski, Michael A1 - Buscot, Francois A1 - Feldhaar, Heike A1 - Gaulton, Rachel A1 - Goldmann, Kezia A1 - Gossner, Martin M. A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Renner, Swen A1 - Scherreiks, Pascal A1 - Sikorski, Johannes A1 - Baulechner, Dennis A1 - Blüthgen, Nico A1 - Bolliger, Ralph A1 - Börschig, Carmen A1 - Busch, Verena A1 - Chisté, Melanie A1 - Fiore-Donno, Anna Maria A1 - Fischer, Markus A1 - Arndt, Hartmut A1 - Hoelzel, Norbert A1 - John, Katharina A1 - Jung, Kirsten A1 - Lange, Markus A1 - Marzini, Carlo A1 - Overmann, Jörg A1 - Paŝalić, Esther A1 - Perović, David J. A1 - Prati, Daniel A1 - Schäfer, Deborah A1 - Schöning, Ingo A1 - Schrumpf, Marion A1 - Sonnemann, Ilja A1 - Steffan-Dewenter, Ingolf A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Vogt, Juliane A1 - Wehner, Katja A1 - Weiner, Christiane A1 - Weisser, Wolfgang A1 - Wells, Konstans A1 - Werner, Michael A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Zaitsev, Andrey S. A1 - Manning, Peter T1 - Contrasting responses of above- and belowground diversity to multiple components of land-use intensity JF - Nature Communications N2 - Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity. KW - biodiversity KW - community ecology KW - grassland ecology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-371552 VL - 12 ER - TY - JOUR A1 - Larrieu, Laurent A1 - Cabanettes, Alain A1 - Courbaud, Benoit A1 - Goulard, Michel A1 - Heintz, Wilfried A1 - Kozák, Daniel A1 - Kraus, Daniel A1 - Lachat, Thibault A1 - Ladet, Sylvie A1 - Müller, Jörg A1 - Paillet, Yoan A1 - Schuck, Andreas A1 - Stillhard, Jonas A1 - Svoboda, Miroslav T1 - Co-occurrence patterns of tree-related microhabitats: A method to simplify routine monitoring JF - Ecological Indicators N2 - A Tree-related Microhabitat (TreM) is a distinct, well-delineated morphological singularity occurring on living or standing dead trees, which constitutes a crucial substrate or life site for various species. TreMs are widely recognized as key features for biodiversity. Current TreM typology identifies 47 TreM types according to their morphology and their associated taxa. In order to provide a range of resolutions and make the typology more user-friendly, these 47 TreM types have been pooled into 15 groups and seven forms. Depending on the accuracy required and the time available, a user can now choose to describe TreMs at resolution levels corresponding to type, group or form. Another way to more easily record TreMs during routine management work would be to use co-occurrence patterns to reduce the number of observed TreMs required. Based on a large international TreM database (2052 plots; 70,958 individual trees; 78 tree species), we evaluated both the significance and the magnitude of TreM co-occurrence on living trees for 11 TreM groups. We highlighted 33 significant co-occurrences for broadleaves and nine for conifers. Bark loss, rot hole, crack and polypore had the highest number of positive co-occurrences (N = 8) with other TreMs on broadleaves; bark loss (N = 4) had the highest number for conifers. We found mutually exclusive occurrences only for conifers: Exposed Heartwood excluded both dendrotelm and sap run. Among the four variables we tested for their positive contribution to significant co-occurrences, tree diameter at breast height was the most consistent. Based on our results and practical considerations, we selected three TreM groups for broadleaves, and nine for conifers, and formed useful short lists to reduce the number of TreM groups to assess during routine forest management work in the field. In addition, detecting potential similarities or associations between TreMs has potential theoretical value, e.g. it may help researchers identify common factors favouring TreM formation or help managers select trees with multiple TreMs as candidates for retention. KW - TreM monitoring KW - biodiversity-friendly forest management Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363158 VL - 127 ER - TY - JOUR A1 - Kuhl, Heiner A1 - Guiguen, Yann A1 - Höhne, Christin A1 - Kreuz, Eva A1 - Du, Kang A1 - Klopp, Christophe A1 - Lopez-Roques,, Céline A1 - Yebra-Pimentel, Elena Santidrian A1 - Ciorpac, Mitica A1 - Gessner, Jörn A1 - Holostenco, Daniela A1 - Kleiner, Wibke A1 - Kohlmann, Klaus A1 - Lamatsch, Dunja K. A1 - Prokopov, Dmitry A1 - Bestin, Anastasia A1 - Bonpunt, Emmanuel A1 - Debeuf, Bastien A1 - Haffray, Pierrick A1 - Morvezen, Romain A1 - Patrice, Pierre A1 - Suciu, Radu A1 - Dirks, Ron A1 - Wuertz, Sven A1 - Kloas, Werner A1 - Schartl, Manfred A1 - Stöck, Matthias T1 - A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes JF - Philosophical Transactions of the Royal Society B N2 - Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet (Acipenser ruthenus). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages (A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species (A. gueldenstaedtii, A. baerii). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’. KW - acipenseridae KW - sturgeon KW - sex chromosomes KW - female-specific KW - polyploidy KW - evolution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363050 VL - 376 ER - TY - JOUR A1 - Thomas, H. J. D. A1 - Myers‐Smith, I. H. A1 - Bjorkman, A. D. A1 - Elmendorf, S. C. A1 - Blok, D. A1 - Cornelissen, J. H. C. A1 - Forbes, B. C. A1 - Hollister, R. D. A1 - Normand, S. A1 - Prevéy, J. S. A1 - Rixen, C. A1 - Schaepman‐Strub, G. A1 - Wilmking, M. A1 - Wipf, S. A1 - Cornwell, W. K. A1 - Kattge, J. A1 - Goetz, S. J. A1 - Guay, K. C. A1 - Alatalo, J. M. A1 - Anadon‐Rosell, A. A1 - Angers‐Blondin, S. A1 - Berner, L. T. A1 - Björk, R. G. A1 - Buchwal, A. A1 - Buras, A. A1 - Carbognani, M. A1 - Christie, K. A1 - Siegwart Collier, L. A1 - Cooper, E. J. A1 - Eskelinen, A. A1 - Frei, E. R. A1 - Grau, O. A1 - Grogan, P. A1 - Hallinger, M. A1 - Heijmans, M. M. P. D. A1 - Hermanutz, L. A1 - Hudson, J. M. G. A1 - Hülber, K. A1 - Iturrate‐Garcia, M. A1 - Iversen, C. M. A1 - Jaroszynska, F. A1 - Johnstone, J. F. A1 - Kaarlejärvi, E. A1 - Kulonen, A. A1 - Lamarque, L. J. A1 - Lévesque, E. A1 - Little, C. J. A1 - Michelsen, A. A1 - Milbau, A. A1 - Nabe‐Nielsen, J. A1 - Nielsen, S. S. A1 - Ninot, J. M. A1 - Oberbauer, S. F. A1 - Olofsson, J. A1 - Onipchenko, V. G. A1 - Petraglia, A. A1 - Rumpf, S. B. A1 - Semenchuk, P. R. A1 - Soudzilovskaia, N. A. A1 - Spasojevic, M. J. A1 - Speed, J. D. M. A1 - Tape, K. D. A1 - te Beest, M. A1 - Tomaselli, M. A1 - Trant, A. A1 - Treier, U. A. A1 - Venn, S. A1 - Vowles, T. A1 - Weijers, S. A1 - Zamin, T. A1 - Atkin, O. K. A1 - Bahn, M. A1 - Blonder, B. A1 - Campetella, G. A1 - Cerabolini, B. E. L. A1 - Chapin III, F. S. A1 - Dainese, M. A1 - de Vries, F. T. A1 - Díaz, S. A1 - Green, W. A1 - Jackson, R. B. A1 - Manning, P. A1 - Niinemets, Ü. A1 - Ozinga, W. A. A1 - Peñuelas, J. A1 - Reich, P. B. A1 - Schamp, B. A1 - Sheremetev, S. A1 - van Bodegom, P. M. T1 - Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome JF - Global Ecology and Biogeography N2 - Aim Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location Tundra biome. Time period Data collected between 1964 and 2016. Major taxa studied 295 tundra vascular plant species. Methods We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling. KW - cluster analysis KW - community composition KW - ecosystem function KW - plant functional groups KW - plant functional types KW - plant traits KW - tundra biome KW - vegetation change Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241310 VL - 28 ER - TY - JOUR A1 - Dornelas, Maria A1 - Antão, Laura H. A1 - Moyes, Faye A1 - Bates, Amanda E. A1 - Magurran, Anne E. A1 - Adam, Dušan A1 - Akhmetzhanova, Asem A. A1 - Appeltans, Ward A1 - Arcos, José Manuel A1 - Arnold, Haley A1 - Ayyappan, Narayanan A1 - Badihi, Gal A1 - Baird, Andrew H. A1 - Barbosa, Miguel A1 - Barreto, Tiago Egydio A1 - Bässler, Claus A1 - Bellgrove, Alecia A1 - Belmaker, Jonathan A1 - Benedetti-Cecchi, Lisandro A1 - Bett, Brian J. A1 - Bjorkman, Anne D. A1 - Błażewicz, Magdalena A1 - Blowes, Shane A. A1 - Bloch, Christopher P. Bloch A1 - Bonebrake, Timothy C. A1 - Boyd, Susan A1 - Bradford, Matt A1 - Brooks, Andrew J. A1 - Brown, James H. A1 - Bruelheide, Helge A1 - Budy, Phaedra A1 - Carvalho, Fernando A1 - Castañeda-Moya, Edward A1 - Chen, Chaolun Allen A1 - Chamblee, John F. A1 - Chase, Tory J. A1 - Siegwart Collier, Laura A1 - Collinge, Sharon K. A1 - Condit, Richard A1 - Cooper, Elisabeth J. A1 - Cornelissen, J. Hans C. A1 - Cotano, Unai A1 - Crow, Shannan Kyle A1 - Damasceno, Gabriella A1 - Davies, Claire H. A1 - Davis, Robert A. A1 - Day, Frank P. A1 - Degraer, Steven A1 - Doherty, Tim S. A1 - Dunn, Timothy E. A1 - Durigan, Giselda A1 - Duffy, J. Emmett A1 - Edelist, Dor A1 - Edgar, Graham J. A1 - Elahi, Robin A1 - Elmendorf, Sarah C. A1 - Enemar, Anders A1 - Ernest, S. K. Morgan A1 - Escribano, Rubén A1 - Estiarte, Marc A1 - Evans, Brian S. A1 - Fan, Tung-Yung A1 - Turini Farah, Fabiano A1 - Loureiro Fernandes, Luiz A1 - Farneda, Fábio Z. A1 - Fidelis, Alessandra A1 - Fitt, Robert A1 - Fosaa, Anna Maria A1 - Franco, Geraldo Antonio Daher Correa A1 - Frank, Grace E. A1 - Fraser, William R. A1 - García, Hernando A1 - Cazzolla Gatti, Roberto A1 - Givan, Or A1 - Gorgone-Barbosa, Elizabeth A1 - Gould, William A. A1 - Gries, Corinna A1 - Grossman, Gary D. A1 - Gutierréz, Julio R. A1 - Hale, Stephen A1 - Harmon, Mark E. A1 - Harte, John A1 - Haskins, Gary A1 - Henshaw, Donald L. A1 - Hermanutz, Luise A1 - Hidalgo, Pamela A1 - Higuchi, Pedro A1 - Hoey, Andrew A1 - Van Hoey, Gert A1 - Hofgaard, Annika A1 - Holeck, Kristen A1 - Hollister, Robert D. A1 - Holmes, Richard A1 - Hoogenboom, Mia A1 - Hsieh, Chih-hao A1 - Hubbell, Stephen P. A1 - Huettmann, Falk A1 - Huffard, Christine L. A1 - Hurlbert, Allen H. A1 - Ivanauskas, Natália Macedo A1 - Janík, David A1 - Jandt, Ute A1 - Jażdżewska, Anna A1 - Johannessen, Tore A1 - Johnstone, Jill A1 - Jones, Julia A1 - Jones, Faith A. M. A1 - Kang, Jungwon A1 - Kartawijaya, Tasrif A1 - Keeley, Erin C. A1 - Kelt, Douglas A. A1 - Kinnear, Rebecca A1 - Klanderud, Kari A1 - Knutsen, Halvor A1 - Koenig, Christopher C. A1 - Kortz, Alessandra R. A1 - Král, Kamil A1 - Kuhnz, Linda A. A1 - Kuo, Chao-Yang A1 - Kushner, David J. A1 - Laguionie-Marchais, Claire A1 - Lancaster, Lesley T. A1 - Lee, Cheol Min A1 - Lefcheck, Jonathan S. A1 - Lévesque, Esther A1 - Lightfoot, David A1 - Lloret, Francisco A1 - Lloyd, John D. A1 - López-Baucells, Adrià A1 - Louzao, Maite A1 - Madin, Joshua S. A1 - Magnússon, Borgþór A1 - Malamud, Shahar A1 - Matthews, Iain A1 - McFarland, Kent P. A1 - McGill, Brian A1 - McKnight, Diane A1 - McLarney, William O. A1 - Meador, Jason A1 - Meserve, Peter L. A1 - Metcalfe, Daniel J. A1 - Meyer, Christoph F. J. A1 - Michelsen, Anders A1 - Milchakova, Nataliya A1 - Moens, Tom A1 - Moland, Even A1 - Moore, Jon A1 - Moreira, Carolina Mathias A1 - Müller, Jörg A1 - Murphy, Grace A1 - Myers-Smith, Isla H. A1 - Myster, Randall W. A1 - Naumov, Andrew A1 - Neat, Francis A1 - Nelson, James A. A1 - Nelson, Michael Paul A1 - Newton, Stephen F. A1 - Norden, Natalia A1 - Oliver, Jeffrey C. A1 - Olsen, Esben M. A1 - Onipchenko, Vladimir G. A1 - Pabis, Krzysztof A1 - Pabst, Robert J. A1 - Paquette, Alain A1 - Pardede, Sinta A1 - Paterson, David M. A1 - Pélissier, Raphaël A1 - Peñuelas, Josep A1 - Pérez-Matus, Alejandro A1 - Pizarro, Oscar A1 - Pomati, Francesco A1 - Post, Eric A1 - Prins, Herbert H. T. A1 - Priscu, John C. A1 - Provoost, Pieter A1 - Prudic, Kathleen L. A1 - Pulliainen, Erkki A1 - Ramesh, B. R. A1 - Ramos, Olivia Mendivil A1 - Rassweiler, Andrew A1 - Rebelo, Jose Eduardo A1 - Reed, Daniel C. A1 - Reich, Peter B. A1 - Remillard, Suzanne M. A1 - Richardson, Anthony J. A1 - Richardson, J. Paul A1 - van Rijn, Itai A1 - Rocha, Ricardo A1 - Rivera-Monroy, Victor H. A1 - Rixen, Christian A1 - Robinson, Kevin P. A1 - Rodrigues, Ricardo Ribeiro A1 - de Cerqueira Rossa-Feres, Denise A1 - Rudstam, Lars A1 - Ruhl, Henry A1 - Ruz, Catalina S. A1 - Sampaio, Erica M. A1 - Rybicki, Nancy A1 - Rypel, Andrew A1 - Sal, Sofia A1 - Salgado, Beatriz A1 - Santos, Flavio A. M. A1 - Savassi-Coutinho, Ana Paula A1 - Scanga, Sara A1 - Schmidt, Jochen A1 - Schooley, Robert A1 - Setiawan, Fakhrizal A1 - Shao, Kwang-Tsao A1 - Shaver, Gaius R. A1 - Sherman, Sally A1 - Sherry, Thomas W. A1 - Siciński, Jacek A1 - Sievers, Caya A1 - da Silva, Ana Carolina A1 - da Silva, Fernando Rodrigues A1 - Silveira, Fabio L. A1 - Slingsby, Jasper A1 - Smart, Tracey A1 - Snell, Sara J. A1 - Soudzilovskaia, Nadejda A. A1 - Souza, Gabriel B. G. A1 - Souza, Flaviana Maluf A1 - Souza, Vinícius Castro A1 - Stallings, Christopher D. A1 - Stanforth, Rowan A1 - Stanley, Emily H. A1 - Sterza, José Mauro A1 - Stevens, Maarten A1 - Stuart-Smith, Rick A1 - Suarez, Yzel Rondon A1 - Supp, Sarah A1 - Tamashiro, Jorge Yoshio A1 - Tarigan, Sukmaraharja A1 - Thiede, Gary P. A1 - Thorn, Simon A1 - Tolvanen, Anne A1 - Toniato, Maria Teresa Zugliani A1 - Totland, Ørjan A1 - Twilley, Robert R. A1 - Vaitkus, Gediminas A1 - Valdivia, Nelson A1 - Vallejo, Martha Isabel A1 - Valone, Thomas J. A1 - Van Colen, Carl A1 - Vanaverbeke, Jan A1 - Venturoli, Fabio A1 - Verheye, Hans M. A1 - Vianna, Marcelo A1 - Vieira, Rui P. A1 - Vrška, Tomáš A1 - Vu, Con Quang A1 - Vu, Lien Van A1 - Waide, Robert B. A1 - Waldock, Conor A1 - Watts, Dave A1 - Webb, Sara A1 - Wesołowski, Tomasz A1 - White, Ethan P. A1 - Widdicombe, Claire E. A1 - Wilgers, Dustin A1 - Williams, Richard A1 - Williams, Stefan B. A1 - Williamson, Mark A1 - Willig, Michael R. A1 - Willis, Trevor J. A1 - Wipf, Sonja A1 - Woods, Kerry D. A1 - Woehler, Eric J. A1 - Zawada, Kyle A1 - Zettler, Michael L. T1 - BioTIME: A database of biodiversity time series for the Anthropocene JF - Global Ecology and Biogeography N2 - Motivation The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format .csv and .SQL. KW - biodiversity KW - global KW - spatial KW - species richness KW - temporal KW - turnover Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222846 VL - 27 ER - TY - JOUR A1 - Müller, Jörg A1 - Noss, Reed F. A1 - Thorn, Simon A1 - Bässler, Claus A1 - Leverkus, Alexandro B. A1 - Lindenmayer, David T1 - Increasing disturbance demands new policies to conserve intact forest JF - Conservation Letters N2 - Ongoing controversy over logging the ancient Białowieża Forest in Poland symbolizes a global problem for policies and management of the increasing proportion of the earth's intact forest that is subject to postdisturbance logging. We review the extent of, and motivations for, postdisturbance logging in protected and unprotected forests globally. An unprecedented level of logging in protected areas and other places where green-tree harvest would not normally occur is driven by economic interests and a desire for pest control. To avoid failure of global initiatives dedicated to reducing the loss of species, five key policy reforms are necessary: (1) salvage logging must be banned from protected areas; (2) forest planning should address altered disturbance regimes for all intact forests to ensure that significant areas remain undisturbed by logging; (3) new kinds of integrated analyses are needed to assess the potential economic benefits of salvage logging against its ecological, economic, and social costs; (4) global and regional maps of natural disturbance regimes should be created to guide better spatiotemporal planning of protected areas and undisturbed forests outside reserves; and (5) improved education and communication programs are needed to correct widely held misconceptions about natural disturbances. KW - anthropogenic disturbance KW - forestry KW - FSC KW - natural disturbance KW - protected area management KW - sanitary logging Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224256 VL - 12 ER - TY - JOUR A1 - Bahram, Mohammad A1 - Anslan, Sten A1 - Hildebrand, Falk A1 - Bork, Peer A1 - Tedersoo, Leho T1 - Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment JF - Environmental Microbiology Reports N2 - High-throughput studies of microbial communities suggest that Archaea are a widespread component of microbial diversity in various ecosystems. However, proper quantification of archaeal diversity and community ecology remains limited, as sequence coverage of Archaea is usually low owing to the inability of available prokaryotic primers to efficiently amplify archaeal compared to bacterial rRNA genes. To improve identification and quantification of Archaea, we designed and validated the utility of several primer pairs to efficiently amplify archaeal 16S rRNA genes based on up-to-date reference genes. We demonstrate that several of these primer pairs amplify phylogenetically diverse Archaea with high sequencing coverage, outperforming commonly used primers. Based on comparing the resulting long 16S rRNA gene fragments with public databases from all habitats, we found several novel family- to phylum-level archaeal taxa from topsoil and surface water. Our results suggest that archaeal diversity has been largely overlooked due to the limitations of available primers, and that improved primer pairs enable to estimate archaeal diversity more accurately. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221380 VL - 11 ER - TY - JOUR A1 - Moll, Julia A1 - Kellner, Harald A1 - Leonhardt, Sabrina A1 - Stengel, Elisa A1 - Dahl, Andreas A1 - Bässler, Claus A1 - Buscot, François A1 - Hofrichter, Martin A1 - Hoppe, Björn T1 - Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood JF - Environmental Microbiology N2 - Deadwood represents an important structural component of forest ecosystems, where it provides diverse niches for saproxylic biota. Although wood-inhabiting prokaryotes are involved in its degradation, knowledge about their diversity and the drivers of community structure is scarce. To explore the effect of deadwood substrate on microbial distribution, the present study focuses on the microbial communities of deadwood logs from 13 different tree species investigated using an amplicon based deep-sequencing analysis. Sapwood and heartwood communities were analysed separately and linked to various relevant wood physico-chemical parameters. Overall, Proteobacteria, Acidobacteria and Actinobacteria represented the most dominant phyla. Microbial OTU richness and community structure differed significantly between tree species and between sapwood and heartwood. These differences were more pronounced for heartwood than for sapwood. The pH value and water content were the most important drivers in both wood compartments. Overall, investigating numerous tree species and two compartments provided a remarkably comprehensive view of microbial diversity in deadwood. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224168 VL - 20 ER - TY - JOUR A1 - Hilmers, Torben A1 - Friess, Nicolas A1 - Bässler, Claus A1 - Heurich, Marco A1 - Brandl, Roland A1 - Pretzsch, Hans A1 - Seidl, Rupert A1 - Müller, Jörg T1 - Biodiversity along temperate forest succession JF - Journal of Applied Ecology N2 - 1. The successional dynamics of forests—from canopy openings to regeneration, maturation, and decay—influence the amount and heterogeneity of resources available for forest-dwelling organisms. Conservation has largely focused only on selected stages of forest succession (e.g., late-seral stages). However, to develop comprehensive conservation strategies and to understand the impact of forest management on biodiversity, a quantitative understanding of how different trophic groups vary over the course of succession is needed. 2. We classified mixed mountain forests in Central Europe into nine successional stages using airborne LiDAR. We analysed α- and β-diversity of six trophic groups encompassing approximately 3,000 species from three kingdoms. We quantified the effect of successional stage on the number of species with and without controlling for species abundances and tested whether the data fit the more-individuals hypothesis or the habitat heterogeneity hypothesis. Furthermore, we analysed the similarity of assemblages along successional development. 3. The abundance of producers, first-order consumers, and saprotrophic species showed a U-shaped response to forest succession. The number of species of producer and consumer groups generally followed this U-shaped pattern. In contrast to our expectation, the number of saprotrophic species did not change along succession. When we controlled for the effect of abundance, the number of producer and saproxylic beetle species increased linearly with forest succession, whereas the U-shaped response of the number of consumer species persisted. The analysis of assemblages indicated a large contribution of succession-mediated β-diversity to regional γ-diversity. 4. Synthesis and applications. Depending on the species group, our data supported both the more-individuals hypothesis and the habitat heterogeneity hypothesis. Our results highlight the strong influence of forest succession on biodiversity and underline the importance of controlling for successional dynamics when assessing biodiversity change in response to external drivers such as climate change. The successional stages with highest diversity (early and late successional stages) are currently strongly underrepresented in the forests of Central Europe. We thus recommend that conservation strategies aim at a more balanced representation of all successional stages. KW - biodiversity KW - forest dynamics KW - forest succession KW - habitat heterogeneity KW - LiDAR KW - species density KW - temperate forests KW - β-diversity Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320632 VL - 55 ER -