TY - JOUR A1 - Schneider, Eberhard A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - El Hajj, Nady A1 - Haaf, Thomas T1 - CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development JF - Gene N2 - Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny. KW - Autism spectrum disorders KW - DNA methylation KW - Genome KW - Autism KW - Frontal cortex KW - Human prefrontal cortex KW - Gene-expression KW - Schizophrenia KW - Patterns KW - Transcription KW - Epigenetics KW - Environment KW - Fetal brain development KW - DNA methylation dynamics KW - Methylome Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186936 VL - 592 IS - 1 ER - TY - JOUR A1 - Pfeiffer, Susanne A1 - Krüger, Jacqueline A1 - Maierhofer, Anna A1 - Böttcher, Yvonne A1 - Klöting, Nora A1 - El Hajj, Nady A1 - Schleinitz, Dorit A1 - Schön, Michael R. A1 - Dietrich, Arne A1 - Fasshauer, Mathias A1 - Lohmann, Tobias A1 - Dreßler, Miriam A1 - Stumvoll, Michael A1 - Haaf, Thomas A1 - Blüher, Matthias A1 - Kovacs, Peter T1 - Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction JF - Scientific Reports N2 - Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity. KW - gene expression KW - adipose KW - hypoxia-inducible factor 3A KW - adipose tissue dysfunction KW - obesity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167662 VL - 6 IS - 27969 ER - TY - JOUR A1 - Nanda, Indrajit A1 - Schories, Susanne A1 - Simeonov, Ivan A1 - Adolfi, Mateus Contar A1 - Du, Kang A1 - Steinlein, Claus A1 - Alsheimer, Manfred A1 - Haaf, Thomas A1 - Schartl, Manfred T1 - Evolution of the degenerated Y-chromosome of the swamp guppy, Micropoecilia picta JF - Cells N2 - The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler’s and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel. KW - sex chromosomes KW - heterochromatin KW - Y chromosome degeneration KW - meiosis KW - synaptonemal complex KW - recombination KW - 5-methylcytosine KW - testosterone KW - sexual antagonistic genes KW - sex linked pigmentation pattern Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267242 SN - 2073-4409 VL - 11 IS - 7 ER - TY - JOUR A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Oshima, Junko A1 - Martin, George M. A1 - Poot, Martin A1 - Nanda, Indrajit A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Haaf, Thomas T1 - Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes JF - Aging Cell N2 - Werner Syndrome (WS) is an adult‐onset segmental progeroid syndrome. Bisulfite pyrosequencing of repetitive DNA families revealed comparable blood DNA methylation levels between classical (18 WRN‐mutant) or atypical WS (3 LMNA‐mutant and 3 POLD1‐mutant) patients and age‐ and sex‐matched controls. WS was not associated with either age‐related accelerated global losses of ALU, LINE1, and α‐satellite DNA methylations or gains of rDNA methylation. Single CpG methylation was analyzed with Infinium MethylationEPIC arrays. In a correspondence analysis, atypical WS samples clustered together with the controls and were clearly separated from classical WS, consistent with distinct epigenetic pathologies. In classical WS, we identified 659 differentially methylated regions (DMRs) comprising 3,656 CpG sites and 613 RefSeq genes. The top DMR was located in the HOXA4 promoter. Additional DMR genes included LMNA, POLD1, and 132 genes which have been reported to be differentially expressed in WRN‐mutant/depleted cells. DMRs were enriched in genes with molecular functions linked to transcription factor activity and sequence‐specific DNA binding to promoters transcribed by RNA polymerase II. We propose that transcriptional misregulation of downstream genes by the absence of WRN protein contributes to the variable premature aging phenotypes of WS. There were no CpG sites showing significant differences in DNA methylation changes with age between WS patients and controls. Genes with both WS‐ and age‐related methylation changes exhibited a constant offset of methylation between WRN‐mutant patients and controls across the entire analyzed age range. WS‐specific epigenetic signatures occur early in life and do not simply reflect an acceleration of normal epigenetic aging processes. KW - (classical and atypical) Werner syndrome KW - bisulfite pyrosequencing KW - methylation array KW - premature aging KW - segmental progeria KW - transcription deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202733 VL - 18 ER - TY - JOUR A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schindler, Detlev A1 - Nanda, Indrajit A1 - Haaf, Thomas T1 - Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation JF - PLoS ONE N2 - Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response. KW - DNA methylation KW - fibroblasts KW - methylation KW - alu elements KW - DNA damage KW - epigenetics KW - cancer treatment Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170895 VL - 12 IS - 5 ER - TY - JOUR A1 - Hofrichter, Michaela A. H. A1 - Mojarad, Majid A1 - Doll, Julia A1 - Grimm, Clemens A1 - Eslahi, Atiye A1 - Hosseini, Neda Sadat A1 - Rajati, Mohsen A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - Maroofian, Reza A1 - Haaf, Thomas A1 - Vona, Barbara T1 - The conserved p.Arg108 residue in S1PR2 (DFNB68) is fundamental for proper hearing: evidence from a consanguineous Iranian family JF - BMC Medical Genetics N2 - Background: Genetic heterogeneity and consanguineous marriages make recessive inherited hearing loss in Iran the second most common genetic disorder. Only two reported pathogenic variants (c.323G>C, p.Arg108Pro and c.419A>G, p.Tyr140Cys) in the S1PR2 gene have previously been linked to autosomal recessive hearing loss (DFNB68) in two Pakistani families. We describe a segregating novel homozygous c.323G>A, p.Arg108Gln pathogenic variant in S1PR2 that was identified in four affected individuals from a consanguineous five generation Iranian family. Methods: Whole exome sequencing and bioinformatics analysis of 116 hearing loss-associated genes was performed in an affected individual from a five generation Iranian family. Segregation analysis and 3D protein modeling of the p.Arg108 exchange was performed. Results: The two Pakistani families previously identified with S1PR2 pathogenic variants presented profound hearing loss that is also observed in the affected Iranian individuals described in the current study. Interestingly, we confirmed mixed hearing loss in one affected individual. 3D protein modeling suggests that the p.Arg108 position plays a key role in ligand receptor interaction, which is disturbed by the p.Arg108Gln change. Conclusion: In summary, we report the third overall mutation in S1PR2 and the first report outside the Pakistani population. Furthermore, we describe a novel variant that causes an amino acid exchange (p.Arg108Gln) in the same amino acid residue as one of the previously reported Pakistani families (p.Arg108Pro). This finding emphasizes the importance of the p.Arg108 amino acid in normal hearing and confirms and consolidates the role of S1PR2 in autosomal recessive hearing loss. KW - 3D modeling KW - autosomal recessive non-synstromic hearing loss KW - DFNB68 KW - mixed hearing loss KW - whole exome sequencing KW - S1PR2 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175755 VL - 19 IS - 81 ER - TY - JOUR A1 - Haertle, Larissa A1 - El Hajj, Nady A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Nanda, Indrajit A1 - Lehnen, Harald A1 - Haaf, Thomas T1 - Epigenetic signatures of gestational diabetes mellitus on cord blood methylation JF - Clinical Epigenetics N2 - Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord bloods (FCBs) from GDM and control pregnancies. Methods and results: Using Illumina’s 450K methylation arrays and following correction for multiple testing, 65 CpG sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic phenotype than women with dietetically treated GDM. Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal exposures. KW - fetal programming KW - insulin treatment KW - DNA methylation KW - fetal cord blood KW - gestational diabetes mellitus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159459 VL - 9 IS - 28 ER - TY - JOUR A1 - El Hajj, Nady A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Kraus, Theo F. J. A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - Schneider, Eberhard A1 - Haaf, Thomas T1 - Epigenetic dysregulation in the developing Down syndrome cortex JF - Epigenetics N2 - Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions. KW - trisomy 21 KW - DNA methylation KW - Down syndrome KW - fetal brain development KW - frontal cortex KW - protocadherin gamma cluster Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191239 VL - 11 IS - 8 ER - TY - JOUR A1 - Doll, Julia A1 - Vona, Barbara A1 - Schnapp, Linda A1 - Rüschendorf, Franz A1 - Khan, Imran A1 - Khan, Saadullah A1 - Muhammad, Noor A1 - Alam Khan, Sher A1 - Nawaz, Hamed A1 - Khan, Ajmal A1 - Ahmad, Naseer A1 - Kolb, Susanne M. A1 - Kühlewein, Laura A1 - Labonne, Jonathan D. J. A1 - Layman, Lawrence C. A1 - Hofrichter, Michaela A. H. A1 - Röder, Tabea A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Graves, Tyler D. A1 - Kong, Il-Keun A1 - Nanda, Indrajit A1 - Kim, Hyung-Goo A1 - Haaf, Thomas T1 - Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families JF - Genes N2 - The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary considerably according to the population background. Pakistan and other countries with high rates of consanguineous marriages have served as a unique resource for studying rare and novel forms of recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of 61.9%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified variants were either homozygous or compound heterozygous, with two of them not previously described in the literature (15.4%). Overall, seven missense variants (53.8%), three nonsense variants (23.1%), two frameshift variants (15.4%), and one splice-site variant (7.7%) were observed. Syndromic HL was identified in five (23.8%) of the 21 families studied. This study reflects the extreme genetic heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes. KW - genetic diagnosis KW - consanguinity KW - genome-wide linkage analysis KW - hearing loss KW - Pakistan KW - exome sequencing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219293 SN - 2073-4425 VL - 11 IS - 11 ER - TY - JOUR A1 - Doll, Julia A1 - Kolb, Susanne A1 - Schnapp, Linda A1 - Rad, Aboulfazl A1 - Rüschendorf, Franz A1 - Khan, Imran A1 - Adli, Abolfazl A1 - Hasanzadeh, Atefeh A1 - Liedtke, Daniel A1 - Knaup, Sabine A1 - Hofrichter, Michaela AH A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - Kong, Il-Keun A1 - Kim, Hyung-Goo A1 - Haaf, Thomas A1 - Vona, Barbara T1 - Novel loss-of-function variants in CDC14A are associated with recessive sensorineural hearing loss in Iranian and Pakistani patients JF - International Journal of Molecular Sciences N2 - CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss. KW - CDC14A KW - DFNB32 KW - autosomal recessive hearing loss KW - exome sequencing KW - splicing KW - frameshift KW - non-sense mediated mRNA decay Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285142 SN - 1422-0067 VL - 21 IS - 1 ER -