TY - THES A1 - Yarali, Ayse T1 - Aspects of predictive learning in the fruit fly T1 - Aspekte des assoziatives Lernens bei Taufliegen N2 - Past experience contributes to behavioural organization mainly via learning: Animals learn otherwise ordinary cues as predictors for biologically significant events. This thesis studies such predictive, associative learning, using the fruit fly Drosophila melanogaster. I ask two main questions, which complement each other: One deals with the processing of those cues that are to be learned as predictors for an important event; the other one deals with the processing of the important event itself, which is to be predicted. Do fruit flies learn about combinations of olfactory and visual cues? I probe larval as well as adult fruit flies for the learning about combinations of olfactory and visual cues, using a so called ‘biconditional discrimination’ task: During training, one odour is paired with reinforcement only in light, but not in darkness; the other odour in turn is reinforced only in darkness, but not in light. Thus, neither the odours nor the visual conditions alone predict reinforcement, only combinations of both do. I find no evidence that either larval or adult fruit flies were to solve such task, speaking against a cross-talk between olfactory and visual modalities. Previous studies however suggest such cross-talk. To reconcile these results, I suggest classifying different kinds of interaction between sensory modalities, according to their site along the sensory-motor continuum: I consider an interaction ‘truly’ cross-modal, if it is between the specific features of the stimuli. I consider an interaction ’amodal’ if it instead engages the behavioural tendencies or ‘values’ elicited by each stimulus. Such reasoning brings me to conclude that different behavioural tasks require different kinds of interaction between sensory modalities; whether a given kind of interaction will be found depends on the neuronal infrastructure, which is a function of the species and the developmental stage. Predictive learning of pain-relief in fruit flies Fruit flies build two opposing kinds of memory, based on an experience with electric shock: Those odours that precede shock during training are learned as predictors for punishment and are subsequently avoided; those odours that follow shock during training on the other hand are learned as signals for relief and are subsequently approached. I focus on such relief learning. I start with a detailed parametric analysis of relief learning, testing for reproducibility as well as effects of gender, repetition of training, odour identity, odour concentration and shock intensity. I also characterize how relief memories, once formed, decay. In addition, concerning the psychological mechanisms of relief learning, first, I show that relief learning establishes genuinely associative conditioned approach behaviour and second, I report that it is most likely not mediated by context associations. These results enable the following neurobiological analysis of relief learning; further, they will form in the future the basis for a mathematical model; finally, they will guide the researchers aiming at uncovering relief learning in other experimental systems. Next, I embark upon neurogenetic analysis of relief learning. First, I report that fruit flies mutant for the so called white gene build overall more ‘negative’ memories about an experience with electric shock. That is, in the white mutants, learning about the painful onset of shock is enhanced, whereas learning about the relieving offset of shock is diminished. As they are coherently affected, these two kinds of learning should be in a balance. The molecular mechanism of the effect of white on this balance remains unresolved. Finally, as a first step towards a neuronal circuit analysis of relief learning, I compare it to reward learning and punishment learning. I find that relief learning is distinct from both in terms of the requirement for biogenic amine signaling: Reward and punishment are respectively signalled by octopamine and dopamine, for relief learning, either of these seem dispensible. Further, I find no evidence for roles for two other biogenic amines, tyramine and serotonin in relief learning. Based on these findings I give directions for further research. N2 - Vergangene Ereignisse beeinflussen die Organisation des Verhaltens hauptsächlich durch das Lernen: Tiere lernen natürlich vorkommende neutrale Reize als Signal für biologisch relevante Ereignisse zu nutzen. Diese Dissertation befasst sich mit derartigen assoziativen Lernvorgängen bei der Taufliege Drosophila melanogaster. Ich stelle zwei, sich ergänzende, grundlegende Fragen: Die eine Frage beschäftigt sich mit der Verarbeitung von Reizen, die als Signal für ein wichtiges Ereignis erlernt werden. Die andere Frage behandelt die Verarbeitung des Ereignisses selbst. Lernen Taufliegen etwas über Kombinationen von olfaktorischen und visuellen Reizen? Sowohl bei larvalen, als auch bei adulten Taufliegen wird das Lernen von Kombinationen aus olfaktorischen und visuellen Stimuli untersucht. Ich verwende einen sogenannten „bikonditionalen Diskriminierungs-Versuchsaufbau“: Während des Trainings wird ein Duft nur im Licht und nicht im Dunkeln mit Reinforcement kombiniert, während ein anderer Duft nur im Dunkeln und nicht im Licht mit Reinforcement kombiniert wird. Somit signalisieren weder die Düfte, noch die visuellen Bedingungen allein das Reinforcement, sondern nur eine Kombination aus Beiden. Ich finde keine Beweise dafür, dass larvale oder adulte Taufliegen eine solche Aufgabe lösen können. Dies spricht gegen eine Interaktion zwischen olfaktorischen und visuellen Modalitäten. Allerdings weisen frühere Studien auf derartige Interaktionen hin. Um meine Ergebnisse mit den bekannten Studien in Einklang zu bringen, ordne ich die unterschiedlichen Interaktionen zwischen den sensorischen Modalitäten nach ihrer Lage entlang des sensorisch-motorischen Kontinuums: Ich bezeichnen eine Interaktion für „echt“ cross-modal, wenn sie zwischen den spezifischen Eigenschaften der beiden Reize stattfindet. Ich halte eine Interaktion für „amodal“, wenn sie zwischen den von den Reizen induzierten Verhaltenstendenzen und „Werten“ stattfindet. Aufgrund dieser Argumentation komme ich zu der Schlussfolgerung, dass unterschiedliche Verhaltensaufgaben unterschiedliche Interaktionen zwischen den sensorischen Modalitäten erfordern. Ob eine Art von Interaktion gefunden wird oder nicht hängt von der neuronalen Vernetzung ab, welche charakteristisch für Art und Entwicklungsstadium ist. Assoziatives Lernen von Schmerz-Erleichterung bei Taufliegen Taufliegen entwickeln zwei unterschiedliche Arten von Gedächtnissen basierend auf Erfahrung mit Elektro-Schock: Düfte, die während des Trainings dem Schock vorausgehen, werden als Bestrafungssignale gelernt und deshalb vermieden. Düfte, die während des Trainings auf den Schock folgen, werden als Erleichterungssignale gelernt und deshalb bevorzugt. Ich beschäftige mich mit der zweiten Art dieses assoziativen Lernens, das ich als „Erleichterungslernen“ bezeichne. Ich beginne mit einer detaillierten parametrischen Analyse des Erleichterungslernens. Die Reproduzierbarkeit, sowie die Einflüsse des Geschlechts, der Anzahl an Trainingswiederholungen, der Duftintensität, der Duftkonzentration und der Schockintensität werden geprüft. Ich teste, wie das Erleichterungsgedächtnis, nachdem es gebildet wurde, wieder gelöscht wird. Des Weiteren gehe ich zwei wichtigen Fragen zu den psychologischen Mechanismen des Erleichterungslernen nach: Zum einen zeige ich, dass das Erleichterungslernen echtes assoziativ konditioniertes Annäherungsverhalten etabliert. Zum anderen zeige ich, dass vorausgegangenes Kontext-Schock Training das folgende Erleichterungslernen nicht beeinflusst. Das Erleichterungslernen wird also nicht durch Kontextassoziation vermittelt. Diese Ergebnisse erlauben die folgende neurobiologische Analyse des Erleichterungslernens. Außerdem werden sie in Zukunft als Grundlage für ein mathematisches Modell des Erleichterungslernens dienen. Schließlich werden die Forscher/innen, die das Erleichterungslernen in anderen experimentellen Systemen untersuchen, von diesen parametrischen Erkenntnissen profitieren. In einer neurobiologischen Analyse des Erleichterungslernens zeige ich, dass der Verlust der Funktion des sogenannten white Gens die beiden unterschiedlichen Arten von Schock-Induziertem Lernen zusammenhängend beeinflusst: Das Bestrafungslernen wird verstärkt und das Erleichterungslernen wird abgeschwächt. Auf Grund dieses Ergebnisses schlagen ich vor, dass sich diese zwei Arten von Lernen in einem Gleichgewicht befinden sollen, welches vom white Gen beeinflusst wird. Die zugrunde liegenden molekularen Mechanismen eines solchen Gleichgewichts sind noch nicht bekannt. Schließlich vergleiche ich das Erleichterungslernen mit dem Belohnungslernen und dem Bestrafungslernen. Ich zeige, dass das Erleichterungslernen anders ist als beide: Bestrafung und Belohnung werden entsprechend von Dopamin und Octopamin vermittelt. Für das Erleichterungslernen sind beide diese biogenen Aminen unnötig. Ebenso finde ich beim Erleichterungslernen keinen Beleg für die Rolle von zwei weiteren Aminen: Tyramin und Serotonin. Aufgrund dieser Ergebnisse schlage ich vor weitere Forschungsrichtungen. KW - Lernen KW - Drosophila KW - Neurogenetik KW - Lernverhalten KW - olfaktorik KW - sehen KW - erleichterungslernen KW - associative learning KW - drosophila KW - neurogenetic analyses KW - behavioural analyses KW - relief Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28741 ER - TY - JOUR A1 - Widmann, Annekathrin A1 - Artinger, Marc A1 - Biesinger, Lukas A1 - Boepple, Kathrin A1 - Peters, Christina A1 - Schlechter, Jana A1 - Selcho, Mareike A1 - Thum, Andreas S. T1 - Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae JF - PLoS Genetics N2 - Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. KW - genetic dissection KW - Drosophila KW - memory formation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166672 VL - 12 IS - 10 ER - TY - THES A1 - Völler, Thomas T1 - Visualisierung und Manipulation neuronaler Aktivitäten im Gehirn von Drosophila melanogaster T1 - Visualization and manipulation of neuronal activity in the brain of Drosophila melanogaster N2 - In dieser Arbeit wurden zwei Techniken zur Analyse der Funktion diverser Neuronen in Drosophila melanogaster angewendet. Im ersten Teil wurde mittels in-vivo Calcium Imaging Technik unter Verwendung des Calciumsensors Cameleon neuronale Aktivität entlang des olfaktorischen Signalweges registriert. Hierbei wurde die neuronale Repräsentation der Duftidentität und der Duftintensität untersucht. In Bezug auf diese Fragestellung wurde die Datenverarbeitung und Datenanalyse weiterentwickelt und standardisiert. Die Experimente führten zu dem Ergebnis, dass duftspezifische Aktivitätsmuster auf der Ebene des Antennallobus sehr gut unterscheidbar sind. Manche Aktivitätsmuster der präsentierten Düfte zeigten interessanterweise einen hohen Ähnlichkeitsgrad, wohingegen andere unähnlich waren. In höheren Gehirnzentren wie den Orten der terminalen Aborisationen der Projektionsneurone oder den Pilzkörper Kenyonzellen liegt eine starke Variabilität der duftevozierten Aktivitätsmuster vor, was generelle Interpretationen unmöglich macht und höchstens Vergleiche innerhalb eines Individuums zulässt. Des Weiteren konnte gezeigt werden, dass die Calciumsignale in den Rezeptorneuronen sowie prä- und postsynaptisch in den Projektionsneuronen bei Erhöhung der Konzentration der verschiedenen präsentierten Düfte über einen Bereich von mindestens drei Größenordnungen ansteigen. In den Kenyonzellen des Pilzkörper-Calyx und der Pilzkörper-Loben ist diese Konzentrationsabhängigkeit weniger deutlich ausgeprägt und im Falle der Loben nur für bestimmte Düfte detektierbar. Eine Bestätigung des postulierten „sparsed code“ der Duftpräsentation in den Pilzkörpern konnte in dieser Arbeit nicht erbracht werden, was möglicherweise daran liegt, dass eine Einzelzellauflösung mit der verwendeten Technik nicht erreicht werden kann. Im zweiten Teil dieser Arbeit sollte durch die Nutzung des lichtabhängigen Kationenkanals Channelrhodopsin-2 der Frage nachgegangen werden, ob bestimmte modulatorische Neurone die verstärkenden Eigenschaften eines bestrafenden oder belohnenden Stimulus vermitteln. Die lichtinduzierte Aktivierung von Channelrhodopsin-2 exprimierenden dopaminergen Neuronen als Ersatz für einen aversiven Reiz führte bei einer olfaktorischen Konditionierung bei Larven zur Bildung eines aversiven assoziativen Gedächtnisses. Im Gegensatz dazu induzierte die Aktivierung von Channelrhodopsin-2 in oktopaminergen/tyraminergen Neuronen als Ersatz für einen appetitiven Reiz ein appetitives assoziatives Gedächtnis. Diese Ergebnisse zeigen, dass dopaminerge Neurone bei Larven aversives Duftlernen, oktopaminerge/tyraminerge Neurone dagegen appetitives Duftlernen induzieren. N2 - In this work two different techniques were used to determine the functions of various neurons in the brain of Drosophila melanogaster. First, by using in vivo calcium imaging and the calcium indicator cameleon odor-evoked neuronal activity was monitored along the olfactory pathway. How are odor identity and odor intensity represented in the fruit fly brain? To investigate this question we improved and standardized the data processing and data analysis. The experiments reveal that calcium activity patterns elicited by different odors are distinguishable in the antennal lobe. Interestingly, the patterns evoked by some odors show a high degree of similarity whereas those of other odors show less similarity in this analyzed neuropile. In higher brain centers like the region of the terminal aborizations of the projection neurons and the mushroom body Kenyon cells the odor evoked activity patterns are highly variable allowing no general interpretations but only comparison of patterns within fruit flies. Furthermore this work demonstrates an odor concentration dependent activity in the olfactory receptor neurons as well as pre- and postsynaptically in the projection neurons. In the Kenyon cells of the mushroom body calyx this concentration dependency is less clear and in the mushroom body lobes it seems that there is a concentration dependency only for specific odors. So far we have no evidence for the postulated so called “sparsed code” of odor representation in the mushroom body which might be due to limited resolution of the technique used in this work. In the second part of my work we used the light-dependent cation channel channelrhodopsin-2 and asked the question whether specific modulatory neurons mediate the reinforcing properties of a rewarding or punishing stimulus. Light-induced activation of dopaminergic neurons expressing channelrhodopsin-2 caused aversive associative memory formation in an aversiv olfactory conditioning paradigm for Drosophila larvae. Conversely, the artificial activation of octopaminergic/tyraminergic neurons by channelrhodopsin-2 induced appetitive associative memory. The conclusion is that dopaminergic neurons trigger aversive odor learning whereas octopaminergic/tyraminergic neurons trigger appetitive odor learning. KW - Taufliege KW - Calcium KW - Calciumkonzentration KW - Calcium-bindende Proteine KW - Klassische Konditionierung KW - Drosophila KW - in-vivo Calcium-Imaging KW - Cameleon KW - Channelrhodopsin KW - Light-activation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35589 ER - TY - JOUR A1 - Vaze, Koustubh M. A1 - Helfrich-Förster, Charlotte T1 - Drosophila ezoana uses an hour-glass or highly damped circadian clock for measuring night length and inducing diapause JF - Physiological Entomology N2 - Insects inhabiting the temperate zones measure seasonal changes in day or night length to enter the overwintering diapause. Diapause induction occurs after the duration of the night exceeds a critical night length (CNL). Our understanding of the time measurement mechanisms is continuously evolving subsequent to Bünning’s proposal that circadian systems play the clock role in photoperiodic time measurement (Bünning, 1936). Initially, the photoperiodic clocks were considered to be either based on circadian oscillators or on simple hour-glasses, depending on ‘positive’ or ‘negative’ responses in Nanda–Hamner and Bünsow experiments (Nanda & Hammer, 1958; Bünsow, 1960). However, there are also species whose responses can be regarded as neither ‘positive’, nor as ‘negative’, such as the Northern Drosophila species Drosophila ezoana, which is investigated in the present study. In addition, modelling efforts show that the ‘positive’ and ‘negative’ Nanda–Hamner responses can also be provoked by circadian oscillators that are damped to different degrees: animals with highly sustained circadian clocks will respond ‘positive’ and those with heavily damped circadian clocks will respond ‘negative’. In the present study, an experimental assay is proposed that characterizes the photoperiodic oscillators by determining the effects of non-24-h light/dark cycles (T-cycles) on critical night length. It is predicted that there is (i) a change in the critical night length as a function of T-cycle period in sustained-oscillator-based clocks and (ii) a fxed night-length measurement (i.e. no change in critical night length) in damped-oscillator-based clocks. Drosophila ezoana flies show a critical night length of approximately 7 h irrespective of T-cycle period, suggesting a damped-oscillator-based photoperiodic clock. The conclusion is strengthened by activity recordings revealing that the activity rhythm of D. ezoana flies also dampens in constant darkness. KW - photoperiodic time mesurement KW - wyeomyia smithii KW - protophormia terraenovae KW - immunoreactive neurons KW - geographical variation KW - reproductive diapause KW - rhythmic components KW - locomotor activity KW - circadian clock KW - damped-oscillator-model of photoperiodic clock KW - diapause KW - Drosophila KW - hour-glass KW - pitcher-plant mosquito KW - bug riptortus-pedestris KW - Nanda-Hamner KW - photoperiodism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204278 VL - 41 IS - 4 ER - TY - THES A1 - Tschäpe, Jakob-Andreas T1 - Molekulare und funktionelle Analyse der Drosophila-Mutante löchrig T1 - Molecular and Functional Analysis of the Drosophila mutant löchrig N2 - Neurodegenerative Erkrankungen des Menschen sind eines der Hauptfelder molekularer neurobiologischer Grundlagenforschung. Um generell molekulare, komplizierte Vorgänge in vivo untersuchen zu können, nutzt man seit geraumer Zeit Modellorganismen wie Caenorhabditis elegans oder Drosophila melanogaster. In der vorliegenden Arbeit wird die Drosophila-Neurodegenerationsmutante loe (löchrig) beschrieben, die als Modell für die Rolle des Cholesterinhaushalts im Bezug auf Neurodegeneration herangezogen werden kann. Die Fliegen dieser Mutante zeigen stark progressive, altersabhängige Degeneration von Neuronen, dabei unterlaufen diese Nervenzellen einen nekrotischenZelltod. Verantwortlich für diese Mutation ist die Insertion eines P-Elementes in einem Intron des Drosophila-g-5'-AMP-aktivierten Proteinkinase- (AMPK)-Gens. Die verschiedenen Spleißprodukte des loe Gens kodieren für die regulatorische g-Untereinheit des AMPK-Komplexes, der , aktiviert durch 5'AMP, energieintensive Prozesse negativ reguliert. Die Spleißform loeI ist durch die P-Element-Insertion betroffen, Anteile des P-Elementes werden in das loeI-Transkript hineingespleißt. Eine neuronale Expression von loeI im loe-Hintergrund führt zur Revertierung des loe-Phänotypes. Mit der Expression anderer Spleißformen kann dieser Effekt nicht erzielt werden. Das LOE I-Protein birgt in seinem N-Terminus eine Reihe möglicher Interaktionstellen mit anderen Proteinen, die den AMPK-Komplex in einen Kontext mit den Proteinen der APP (Amyloid Precursor Proteins) ?Familie stellen oder z. B. Interaktionen mit dem Cytoskelett herstellen können. Eine molekulare Interaktion mit NiPSNAP, einem Protein, dass vermutlich eine Rolle im Vesikelverkehr spielt, konnte nachgewiesen werden. Ein direktes humanes Homolog von LOE I ist nicht bekannt, wohlgleich es im Menschen drei AMPK-g-Untereinheiten gibt, von denen zwei ähnliche Funktionen übernehmen könnten wie LOE I. Die loe-Mutante interagiert genetisch mit der Mutante clb ? columbus, die einen Defekt im Gen der HMG-CoA-Reduktase trägt. Dieses Emzym ist das Schlüsselenzym der Cholesterinbiosynthese. Die Art der Interaktion belegt eine negative Regulierung der HMG-CoA-Reduktase durch die AMPK. So schwächt die clb-Mutation den neurodegenerativen loe-Phänotyp ab, eine Überexpression von clb verstärkt diesen. Eine Verminderung der Neurodegeneration kann auch mit Medikamenten erreicht werden: Statine, potente Hemmer der HMG-COA-Reduktase, reprimieren deutlich den loe-Phänotyp. In loe ist der Cholesterinester-Spiegel auf 40% abgesenkt. Eine weitere genetische Interaktion von loe konnte nachgewiesen werden: Die Mutante für das Drosophila-Homolog von APP (Appl) verstärkt den neurodegenerativen Phänotyp in loe stark, wogegen die Appl-Mutante selbst keine neurodegenerativen Defekte aufweist. Darüberhinaus zeigt die Doppelmutante Defekte, die keine der Einzelmutanten aufweist: Sterilität oder eine extrem kurze Lebensdauer von nur 3-4 Tagen. Diese Interaktion ließ sich auf molekularer Ebene charakterisieren. Die proteolytische Prozessierung von APPL durch Sekretasen ist in loe alteriert. In der vorliegenden Arbeit konnte gezeigt werden, dass durch die loe-Mutation die b-Sekretase aus Vertebraten (BACE) und eine bisher noch nicht beschriebene endogene Sekretase aus Drosophila negativ beeiflusst werden. Ein AMPK-Komplex mit LOE I als g-Untereinheit scheint über den Cholesterinester-Spiegel die Aktivität einer speziellen Untergruppe der Sekretasen zu beeinflussen. Die Missfunktion dieser Sekretasen ist ein kritischer Punkt in der Pathogenese der Alzheimer-Krankheit. Die loe-Mutation wirft neues Licht auf die bekannten Verbindungen zwischen Cholesterin-Stoffwechsel, Vesikelverkehr und Prozessierung von APP(L). Mit den großen Möglichkeiten, die die Drosophila-Genetik bietet, stellt diese neue Mutante ein weiteres Werkzeug zur Charakterisierung von Therapie-Ansätzen für die Alzheimer-Kankheit dar. Die vorliegende Arbeit belegt um ein weiteres Mal, dass Drosophila ein potentes Modellsystem zur Untersuchung humaner, neurodegenerativer Erkrankungen wie Chorea Huntington, Parkinson oder der Alzheimer Krankheit ist. N2 - Human neurodegenerative diseases are the main topic of molecular neurobiological basic research. To investigate detailed mechanisms in vivo one uses the tool of genetic model organisms like Caenorhabditis elegans or Drosophila melanogaster for quite a long while. This thesis describes the Drosophila neurodegenration mutant löchrig (loe), which can be used as a model for cholesterol metabolism in respect to neurodegeneration. Mutant loe flies show strong and progressive age-dependent degenration of neurons undergoing necrotic cell death. The P-element inserted in an intron of the gene coding for the Drosophila 5'-AMP activated protein kinase (AMPK) complex gamma subunit is responsible for the mutation in loe. The various splice forms of the loe gene code for different regulatory gamma subunits of this complex consisiting of three subunits. The splice form loeI is affected by the P-element insertion, parts of the P-element are spliced into the loeI transkript in the loe mutant. The neuronal expression of one copy of loeI in the mutant background revertes the neurodegenerative phenotype which can not be achieved by expression of one of the other splice forms. The LOE I protein contains in its N-terminus several putative interaction motifs and domaines. These could get a LOE I-containing AMPK complex in context with the APP (amyloid precursor protein) or the cytoskeletton. An interaction with NiPSNAP ? a protein with a putative function in the vesicular transport ? has been proved molecularly. A human homolog of LOE I is not yet known, although there are three different isoforms of a AMPK gamma subunit described in humans. The loe mutant interacts genetically with the columbus (clb) mutant, wich is affected in the gene of the HMG-CoA reductase, the key enzyme in cholesterol biosynthesis. This shown interaction verifies a negative regulation of the HMG-CoA reductase by the AMPK complex in Drosophila. Thus the clb mutation supresses the loe phenotype, an overexpression of clb enhances the neurodegeneration. A supression of the neurodegenerative phenotype can be also achieved by a statin treatment of loe flies. Statins are potent inhibitors of the HMG-CoA reductase. Another genetic interaction exists between loe and the Appl mutant. Appl d, the null mutant of the Drosophila APP homolog, enhances strongly the neurogenerative phenotype of loe, whereas the Appl mutant itself shows no neuronal defects. In addition the double mutant shows defects which none of the single mutants show: sterility of females and a dramatic shortened lifespan of only 3-4 days. This interaction could be characterized on the molecular level: The proteelytic processing of APPL by sectretases is altered in the loe mutant. Both the BACE sectretase from vertebrates and an so far uncharakterized endogenous sectretase in Drosophila are negatively influenced by the loe mutation. An AMPK complex containing LOE I as the gamma subunit seems to regulate the activity of a subgroup of the sectretases via the cholesterolester level. The misfunction of secretases is a crutial point in the pathogenesis of Alzheimer's disease. The loe mutation gives new insights in the already known links between cholesterol homeostasis, vesicular transport, and processing of APP(L). Together with the exstensive tools of Drosophila genetics this new mutant will supply new possibilities to characterize putative therapies to cure Alzheimer's disease. This thesis at another time presents Drosophila as an potent model system for the research on human neurodegenerative diseases like Huntington's disease, Parkinson or Alzheimer's disease. KW - Taufliege KW - Mutante KW - Cholesterin KW - Nervenzelle KW - Degeneration KW - Alzheimer-Krankheit KW - Neurodegeneration KW - Drosophila KW - APP KW - Cholesterin KW - Alzheimer Krankheit KW - AMPK KW - Neurodegeneration KW - Drosophila KW - APP KW - Cholesterol KW - Alzheimer's Disease KW - AMPK Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2963 ER - TY - THES A1 - Triphan, Tilman T1 - The Central Control of Gap Climbing Behaviour in Drosophila melanogaster T1 - Die zentrale Kontrolle des Kletterverhaltens bei Drosophila melanogaster N2 - In this work, a behavioural analysis of different mutants of the fruit fly Drosophila melanogaster has been carried out. Primarily, the gap climbing behaviour (Pick & Strauss, 2005) has been assayed as it lends itself for the investigation of decision making processes and the neuronal basis of adaptive behaviour. Furthermore it shows how basic motor actions can be combined into a complex motor behaviour. Thanks to the neurogenetic methods, Drosophila melanogaster has become an ideal study object for neurobiological questions. Two different modules of climbing control have been examined in detail. For the decision making, the mutant climbing sisyphus was analysed. While wild-type flies adapt the initiation of climbing behaviour to the width of the gap and the probability for a successful transition. climbing sisyphus flies initiate climbing behaviour even at clearly insurmountable gap widths. The climbing success itself is not improved in comparison to the wild-type siblings. The mutant climbing sisyphus is a rare example of a hyperactive mutant besides many mutants that show a reduced activity. Basic capabilities in vision have been tested in an optomotor and a distance-estimation paradigm. Since they are not affected, a defect in decision making is most probably the cause of this behavioural aberration. A second module of climbing control is keeping up orientation towards the opposite side of the gap during the execution of climbing behaviour. Mutants with a structural defect in the protocerebral bridge show abnormal climbing behaviour. During the climbing attempt, the longitudinal body axis does not necessarily point into the direction of the opposite side. Instead, many climbing events are initiated at the side edge of the walking block into the void and have no chance to ever succeed. The analysed mutants are not blind. In one of the mutants, tay bridge1 (tay1) a partial rescue attempt used to map the function in the brain succeeded such that the state of the bridge was restored. That way, a visual targeting mechanism has been activated, allowing the flies to target the opposite side. When the visibility of the opposing side was reduced, the rescued flies went back to a tay1 level of directional scatter. The results are in accord with the idea that the bridge is a central constituent of the visual targeting mechanism. The tay1 mutant was also analysed in other behavioural paradigms. A reduction in walking speed and walking activity in this mutant could be rescued by the expression of UAS-tay under the control of the 007Y-GAL4 driver line, which concomitantly restores the structure of the protocerebral bridge. The separation of bridge functions from functions of other parts of the brain of tay1 was accomplished by rescuing the reduced optomotor compensation in tay1 by the mb247-GAL4>UAS-tay driver. While still having a tay1-like protocerebral bridge, mb247-GAL4 rescue flies are able to compensate at wild-type levels. An intact compensation is not depended on the tay expression in the mushroom bodies, as mushroom body ablated flies with a tay1 background and expression of UAS-tay under the control of mb247-GAL4 show wild-type behaviour as well. The most likely substrate for the function are currently unidentified neurons in the fan-shaped body, that can be stained with 007Y-GAL4 and mb247-GAL4 as well. N2 - In der vorliegenden Arbeit wurde eine Verhaltensanalyse verschiedener Mutanten der Fruchtfliege Drosophila melanogaster durchgeführt. Dazu wurde primär das Lücken-überwindungsparadigma (Pick & Strauss, 2005) herangezogen, das sich auf besondere Weise zur Erforschung von Entscheidungsfindung und adaptivem Verhalten anbietet. Weiterhin zeigt sich hier, wie einfache motorische Aktionen zu einem komplexen motorischen Verhalten zusammengefügt werden können. Dank der Möglichkeiten der Gentechnik bietet sich Drosophila hier als Studienobjekt an. Zwei Module der Kletterkontrolle wurden genauer untersucht. Im Bezug auf die Entscheidungsfindung wurde die Mutante climbing sisyphus getestet. Während der Wildtyp sein Kletterverhalten sehr genau an die Lückenbreite und die Wahrscheinlichkeit einer erfolgreichen Überquerung anpasst (Pick & Strauss, 2005), werden bei climbing sisyphus auch bei einer unmöglich zu überquerenden Lücke noch Kletteraktionen initiiert. Der Klettererfolg selbst ist im Vergleich zum Wildtyp nicht verbessert. Die Mutante climbing sisyphus ist ein seltenes Beispiel einer hyperaktiven Mutante neben vielen Mutanten die eine reduzierte Aktivität zeigen. Grundlegende Fähigkeiten im visuellen Bereich wurden in der Optomotorik und im Entfernungsschätzen getestet und sind in climbing sisyphus nicht beeinträchtigt, ein Defekt in der Entscheidungsfindung ist wahrscheinlich Ursache des gestörten Verhaltens. Ein zweites Modul der Kletterkontrolle betrifft die Aufrechterhaltung der Orientierung hin zur gegenüberliegenden Seite der Lücke. Mutanten mit einem Strukturdefekt in der Protozerebralbrücke des Zentralkomplexes zeigen ein abnormes Kletterverhalten. Die Körperlängsachse zeigt während des Klettervorgangs nicht in die Richtung der gegenüberliegenden Seite. Stattdessen werden oft Klettervorgänge am seitlichen Rand des Klettersteges initiiert, die keinerlei Aussicht auf Erfolg haben. Die untersuchten mutanten Fliegen sind nicht blind. In einem der Stämme, tay bridge1 (tay1), gelang zur funktionellen Kartierung eine partielle Rettung dieses Verhaltens durch die Expression des wildtypischen Gens in einem kleinen Teil des Nervensystems. Das Wiederherstellen der wildtypischen Brückenstruktur in tay1 aktiviert einen visuellen Zielmechanismus, der eine Ausrichtung der Fliegen auf die gegenüberliegende Seite ermöglicht. Wenn die Sichtbarkeit der gegenüberliegenden Seite reduziert wird, geht dieser Rettungseffekt verloren. Die Brücke ist nach diesen Befunden ein zentraler Bestandteil der visuell gesteuerten Zielmotorik. Die tay1 Mutante wurde auch in weiteren Verhaltensexperimenten untersucht. So konnte eine in dieser Mutante vorliegende Reduktion der Laufgeschwindigkeit und Laufaktivität durch die Expression von UAS-tay unter der Kontrolle des Treibers 007Y-GAL4 zusammen mit der Struktur der Brücke gerettet werden. Eine Rettung der reduzierten Kompensation für optomotorische Stimuli in tay1 durch den Treiber mb247-GAL4 erlaubte eine Trennung von tay1 Defekten in der Brücke von Defekten in anderen Teilen des Gehirns. Trotz einer tay1-typischen unterbrochenen Brücke sind mit mb247-GAL4>UAS-tay gerettete Fliegen in der Lage eine Stimulation mit optomotorischen Reizen auf wildtypischem Niveau zu kompensieren. Diese Kompensation hängt nicht von den Pilzkörpern ab, da auf chemischen Wege pilzkörperablatierte Fliegen mit einer Expression von UAS-tay unter der Kontrolle von mb247-GAL4 sich trotz tay1 Hintergrund ebenfalls wildtypisch verhalten. Die wahrscheinlichsten Träger für diese Rettung sind noch nicht identifizierte Neurone im Fächerförmigen Körper des Zentralkomplexes, die mit 007Y-GAL4 und mb247-GAL4 angefärbt werden können. KW - Taufliege KW - Drosophila KW - Bewegungsverhalten KW - Mutante KW - Verhaltensanalyse KW - Drosophila KW - Behaviour KW - Locomotion Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-43666 ER - TY - THES A1 - Spall, Thomas T1 - Optische Visualisierung neuronaler Aktivität : Etablierung des in-vivo Calcium-Imaging mit dem genetisch codierten Sensor Yellow Cameleon 2.1 und Untersuchung der olfaktorischen Codierung im Gehirn von Drosophila melanogaster T1 - Optical visualization of neuronal activity: Establishment of Calcium Imaging using the genetically expressed Sensor Yellow Cameleon 2.1 and Examination of olfactory Coding in the brain of Drosophila melanogaster N2 - Die Messung der räumlich aufgelösten Aktivität von neuronalen Zellverbänden ist ein wichtiges Werkzeug, um die Funktionsweise von Gehirnen zu verstehen. Für diese Arbeit diente die Fruchtfliege Drosophila melanogaster mit ihrer gut beschriebenen Genetik und Neurobiologie als Untersuchungsobjekt. Bei der vorgelegten Arbeit lag eine zweigeteilte Aufgabenstellung vor: Zum einen wurde die Technik des in – vivo Calcium – Imagings mit Hilfe des genetisch codierten Sensors Yellow Cameleon 2.1 am Lehrstuhl komplett neu etabliert, zum anderen wurde mit der neuen Technik das Zusammenspiel der funktionellen Elemente neuronaler Systeme anhand der Fliegenolfaktorik untersucht. Sowohl die Experimente zur Depolarisation durch KCl, als auch die Experimente zur olfaktorischen Codierung, wurden mit dem Calciumsensor Yellow Cameleon 2.1 durchgeführt. Es wurde ausgehend von der Vorgängerversion Yellow Cameleon 2.0 durch gezielte Mutagenese von Sören Diegelmann erstellt. Eine Photomultiplier – basierte in – vitro Funktionsanalyse des rekombinanten Sensorproteins ergab eine Zunahme der Ratio EYFP / ECFP mit steigender Calciumkonzentration. Dabei konnte auch der ratiometrische FRET – Effekt des Cameleons verdeutlicht werden: Mit steigender Calciumkonzentration verschiebt sich das Verhältnis von EYFP – Fluoreszenz zu ECFP – Fluoreszenz zu höheren Ratiowerten. Durch Zugabe des Calciumchelators EGTA konnte außerdem die reversible Arbeitsweise des Sensors nachgewiesen werden. Das in die Fliege eingebrachte Yellow Cameleon 2.1 – Konstrukt wurde mittels der GAL4 – UAS – Technik in verschiedenen olfaktorischen Gehirnzentren exprimiert. Von besonderer Relevanz für die Experimente zur olfaktorischen Codierung war dabei die GAL4 – Treiberlinie GH146. Mit ihrer Hilfe konnte das Fusionsprotein in den olfaktorischen Projektionsneuronen des Fliegengehirns exprimiert, und so die Duftrepräsentation im postsynaptischen Neuropil der Antennalloben bzw. in den präsynaptischen Neuropilen der Calyces und des lateralen Protocerbrums untersucht werden: Die Stimulation von 3 individuellen Fliegen mit den Düften Benzaldehyd, Isoamylacetat und Octanol liefert duftspezifische neuronale Aktivitätsmuster im Antenallobus. Die auf die Duftstimuli mit Calciumsignalen reagierenden Areale haben eine Größe von 10 – 30 µm, liegen also in der Größenordnung von individuellen Glomeruli. Die Duftrepräsentation in den Antennalloben zeigt außerdem einen kombinatorischen Aspekt: Jeder Duft evoziert ein charakteristisches Aktivitätsmuster bestehend aus einem oder mehreren Glomeruli. Die Aktivitätsmuster verschiedener Düfte können sich überlagern, d.h. individuelle Glomeruli können durch verschiedene Düfte aktiviert werden, das gesamte Aktivitätsmuster, d.h. die Summe der aktivierten Glomeruli eines bestimmten Duftes, ist jedoch charakteristisch. Die Duftrepräsentation in den Antennalloben von Drososophila geschieht also in Form eines glomerulären Codes, ein Prinzip der Duftverarbeitung, das auch in anderen Insekten und Vertebraten nachgewiesen werden konnte. Für den Calyx des Pilzkörpers ergaben sich innerhalb eines Individuums, bei wiederholter Stimulation mit demselben Duft, ebenfalls duftspezifische Aktivitätsmuster. Dabei waren die auf den Duftstimulus hin antwortenden neuronalen Areale diskret über den Calyx hinweg verteilt. Insgesamt zeigt das hohe Maß an Reproduzierbarkeit der Aktivitätsmuster für einen gegebenen Duft, dass im Calyx, wie in den Antennalloben, eine duftspezifische räumliche Repräsentation vorliegt. Der kombinatorische Aspekt der Codierung konnte auch hier beobachtet werden. Die einzelnen Spots der im Calyx gemessenen Aktivitätsmuster liegen in der Größenordnung von 5 +/- 2 µm und entsprechen somit in ihrer Größe den elektronenmikroskopisch beschriebenen Microglomeruli. Durch die Calcium – Imaging Experimente am lateralen Protocerebrum konnte nachgewiesen werden, dass die Erhöhung der Duftkonzentration eine räumliche Ausdehnung des aktivierten Neuropils zur Folge hat. Die EYFP –, ECFP – und Ratio – Intensitäten, die aus einer “Region of Interest“ im anterioren Bereich des lateralen Protocerebrums berechnet wurden, zeigen weiterhin, dass mit steigender Duftkonzentration auch die Stärke des Calciumsignals zunimmt. Dabei gibt es zwischen den 4 getesteten Düften statistisch signifikante Unterschiede: Methylcyclohexanol evoziert über den gesamten Verdünnungsbereich hinweg die schwächste neuronale Aktivität, Isoamylacetat evoziert in den Verdünnungsstufen 10-3 und 10-1 die stärkste neuronale Aktivität. D.h. neben der räumlichen Ausdehnung des Signals, führt die Konzentrationserhöhung auch zu einer gesteigerten Intensität des Calciumsignals, wobei sich die Signalintensitäten für verschiedene Düfte und Verdünnungsstufen unterscheiden können. Mit der verwendeten Versuchsanordnung und Datenauswertung, war es jedoch bislang nicht möglich eine räumliche Repräsentation der Düfte im lateralen Protocerebrum nachzuweisen. N2 - Measuring the spatiotemporal activity of neuronal cell populations is an important tool towards a further understanding of brain functions. This thesis investigates the brain activity of the model system Drosophila melanogaster with its well described genetics and neurobiology, thereby consisting of two major parts: On the one hand the in – vivo Calcium – Imaging technique by means of the genetically encoded sensor Yellow Cameleon 2.1, had to be newly established in our laboratory, on the other hand the interaction of functional elements within the neuronal olfactory pathway of the fruitfly was to be examined using this new technique. Both the experiments on KCl – induced depolarization and the experiments on olfactory coding were accomplished with the Yellow Cameleon 2.1 sensor. This molecular probe was generated by Sören Diegelmann by targeted in – vitro mutagenesis of the previous version Yellow Cameleon 2.0. A photomultiplier based in – vitro functional analysis of the recombinant sensor protein resulted in an increase of Calcium signals with rising Calcium ion concentrations, thereby revealing the ratiometric FRET effect of the Cameleons: With rising Calcium concentration the relationship between EYFP – fluorescence and ECFP – fluorescence shifts towards higher ratio values EYFP / ECFP. By application of the Calcium chelator EGTA the reversible function of the sensor could be demonstrated as well. By means of the GAL4 – UAS – technique, the Yellow Cameleon 2.1 construct transformed into the fly`s germline could be expressed in different olfactory brain centers. In the present work the GAL4 – strain GH146 was of special relevance for the experiments on olfactory coding. The GH146 – driven Cameleon 2.1 line expresses the sensor protein in olfactory projection neurons of the fly`s brain and therefore permits the examination of odorant coding within the postsynaptic neuropile of the antennal lobes, the presynaptic neuropiles of the calyces and the lateral protocerebrum, respectively: The stimulation of 3 individual flies with the odorants benzaldehyde, isoamylacetate and octanol revealed odorant – specific spatial activity patterns within the antennal lobes. The areas activated by the odorant stimulation were of similar size as individual glomeruli (~10 – 30 µm). The glomerular – like odor representation in the antennal lobes shows a combinatorial aspect: Each odorant induces a characteristic acitivity pattern consisiting of one or more glomeruli. Activity patterns evoked by different odorants can overlap, i.e. individual glomeruli can be activated by different odorants. In spite of from this combinatorial aspect, the activity pattern for a given odorant remains specific. Odorants are therefore represented in a glomerular code within the antennal lobes of Drosophila. The glomerular code represents an olfactory processing principle which could be demonstrated for other insects and vertebrates as well. Repeated stimulation of an individual fly with the same odorant revealed that intraindividual optical recordings from the mushroom body calyx were reproducible and generated odorant – specific activity patterns as well. The response patterns to different odorants were clearly spatially organized, with discrete areas of activity distributed over the calyx area. The reproducibility of the different patterns strongly suggest that odorant representations within the calyx are spatially specific, i. e. the spatial glomerular code of the antennal lobes could be somehow transformed into a spatial odorant – specific acitvity pattern in the calyx. Interestingly, the combinatorial aspect of olfactory encoding could be seen in the calyces as well. The spots of activity observed in the calyx are within the range of 5 +/- 2 µm and thus correspond in size to the boutons forming the presynaptic part of the so called microglomeruli described by electron microscopy. The Calcium – Imaging experiments at the level of the lateral protocerebrum showed a spatial expansion of the activated neuropiles with increasing odorant concentrations. The EYFP – , ECFP – intensities and their ratio values, which were computed from a region of interest within the anterior range of the lateral protocerbrum, reveal an increase in signal intensity with rising odorant concentrations. Within this reference the 4 odorants examined show satistically significant differences: methlycyclohexanol evoked the weakest Calcium signals over the entire dilution range, isoamylacetate evoked the strongest Calcium signals at the dilutions 10-3 and 10-1. This means that apart from the spatial expansion of the signal, the concentration increase leads to an increase in signal intensity, while the signal intensities for different odorants at a given dilution can differ. However, using the described experimental assembly and data evaluation, it was not possible to prove a spatial odorant representation within the lateral protocerebrum. KW - Terpyridinderivate <2 KW - 2':6' KW - 2"-> KW - Polymerkomplexe KW - Fluoreszenz KW - Drosophila KW - optisches Imaging KW - Yellow Cameleon 2.1 KW - olfaktorische Codierung KW - Drosophila KW - optical Imaging KW - Yellow Cameleon 2.1 KW - olfactory coding Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11575 ER - TY - JOUR A1 - Senthilan, Pingkalai R. A1 - Helfrich-Förster, Charlotte T1 - Rhodopsin 7-The unusual Rhodopsin in Drosophila JF - PeerJ N2 - Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins. KW - vision KW - Drosophila KW - Opsins KW - Rhodopsins KW - phototransduction Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177998 VL - 4 ER - TY - JOUR A1 - Selcho, Mareike A1 - Millán, Carola A1 - Palacios-Muñoz, Angelina A1 - Ruf, Franziska A1 - Ubillo, Lilian A1 - Chen, Jiangtian A1 - Bergmann, Gregor A1 - Ito, Chihiro A1 - Silva, Valeria A1 - Wegener, Christian A1 - Ewer, John T1 - Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila JF - Nature Communications N2 - Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals. KW - circadian clock KW - Drosophila KW - neuropeptide pathway KW - peripheral clocks KW - central clocks Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170831 VL - 8 IS - 15563 ER - TY - THES A1 - Schwenkert, Isabell T1 - Phenotypic characterization of hangover at the neuromuscular junction T1 - Phänotypische Charakterisierung von hangover an der neuromuskulären Synapse N2 - Ethanoltoleranz beruht vermutlich auf Veränderung in synaptischer Plastizität; da die Mechanismen, die zu dieser Anpassung der Synapsen führen, in hang-Mutanten offensichtlich defekt sind, war es Ziel dieser Arbeit zu erklären, wie HANG zu synaptischer Plastizität beiträgt. In diesem Zusammenhang war es besonders wichtig herauszufinden, in welchem neuronalen Prozeß HANG eine Rolle spielt. Antikörperfarbungen gegen HANG zeigten, da das Protein in allen neuronalen Zellkernen larvaler und adulter Gehirne vorhanden ist. Gehirne der hangAE10 Mutante zeigen keine Färbung, was bestätigt, da diese Tiere Nullmutanten für HANG sind. Eine genauere Analyse der Verteilung von HANG im Zellkern ergab, daß HANG in einem punktartigen Muster an bestimmten Stellen im Kern angereichert ist; diese HANG-Aggregate sind an der Innenseite der Kernmembran lokalisiert und colokalisieren nicht mit dem Chromatin. Auf der Basis dieser Ergebnissen wurde postuliert, daß HANG vermutlich an der Stabilisierung, Prozessierung oder dem Export von mRNAs beteiligt ist. Da synaptische Plastizität gut an den einzelnen Neuronen der neuromuskulären Synapse von Drosophila-Larven studiert werden kann, wurde die Morphologie der Motorneurone dritter Larven am Muskelpaar 6/7 des Segments A4 untersucht. Diese Untersuchungen zeigten, da Boutonanzahl und Axonlänge in hangAE10-Larven um 40 % erhöht sind. Außerdem zeigen einige Boutons der hang-Mutanten eine abnormale, sanduhrförmige Form, was darauf hinweist, daß sie nach Initiation der Bouton-Teilung möglicherweise in einem halb-separierten Zustand geblieben sind. Die Zunahme an Boutons in den Mutanten ist im wesentlichen auf eine Zunahme der Anzahl der Typ Ib-Boutons zurückzuführen. Die Analyse der Verteilung verschiedener synaptischer Marker in hangover-Mutanten ergab keine Hinweise auf Abnormalitäten im Zytoskelett oder in der Ausbildung der prä-und postsynaptischen Strukturen. Des weiteren ist die Anzahl der aktiven Zonen relativ zur Boutonoberfläche nicht verändert; da hang-Mutanten aber mehr synaptische Boutons pro synaptischem Terminal besitzen, kann man insgesamt von einer Zunahme der Anzahl der aktiven Zonen ausgehen. Die präsynaptische Expression von HANG in den Mutanten rettet die erhöhte Boutonanzahl und die verlängerten Axone, was ebenfalls beweist, daß die beobachteten synaptischen Defekte auf das Fehlen von HANG und nicht auf Sekundärmutationen zurückzuführen sind. Eine postsynaptische Expression der hangover cDNA in den Mutanten dagegen rettet den Phänotyp nicht. Die Anzahl der synaptischen Boutons wird unter anderem durch cAMP-Levels bestimmt, welche somit synaptische Plastizität regeln. Da hang-Mutanten eine erhöhte Boutonanzahl aufweisen, führte dies zu der Spekulation, daß der Phänotyp dieser Mutanten möglicherweise auf veränderte cAMPlevels zurückzuführen ist. Um dies zu überprüfen, wurde die Morphologie der neuromuskulären Synapsen von hangAE10-Larven mit denen von dnc1 verglichen, welche Defekte in der cAMP-Kaskade aufweisen. Einige Aspekte des Phänotyps (z. B. die Zunahme der Boutonanzahl und das Verhaltnis von aktiven Zonen pro Boutonfläche) sind sehr ¨ahnlich; jedoch unterscheiden sich die beiden Mutanten in anderen morphologischen Aspekten. Die Expression eines UAS-dnc-Transgens in hangover-Mutanten modifizierte den hang-Phänotyp ebenfalls nicht. Auf der Basis der Ergebnisse dieser Arbeit wurde ein Modell für die Funktion von HANG erstellt, nach dem dieses Protein vermutlich am Isoform-spezifischen Spleißen bestimmter Transkripte beteiligt ist, deren Produkte für die synaptische Plastizität an der neuromuskulären Synapse benötigt werden. N2 - The development of ethanol tolerance is due to changes in synaptic plasticity. Since the mechanisms mediating synaptic plasticity are probably defective in the mutant hangAE10, it was a goal of the present study to find out how HANG contributes to synaptic plasticity. In particular, it was important to clarify in which neuronal process HANG plays a role. Antibody stainings against HANG revealed that the protein is localized in all neuronal nuclei of larval and adult brains; the staining is absent in hangAE10, thus confirming that this P-element insertion stock is a protein null for HANG. Detailed analysis of the subnuclear distribution of HANG showed that HANG immunoreactivity is enriched at distinct spots in the nucleus in a speckled pattern; these speckles are found at the inside of the nuclear membrane and do not colocalize with chromatin nor with the nucleolus; thus, HANG is probably involved in the stabilization, processing or export of RNAs. As synaptic plasticity can be studied in single neurons at the larval neuromuscular junction, the morphology of the synaptic terminals of hangAE10 mutants was analyzed at muscle 6/7, segment A4. These studies revealed that hangAE10 mutants display a 40 % increase in bouton number and axonal branch length; in addition, some boutons have an abnormal hourglass-like shape, suggesting that they are arrested in a semi-separated state following the initiation of bouton division. The increase in bouton number of hang mutants is mainly due to an increase in numbers of type Ib boutons. The analysis of the distribution of several synaptic markers in hang mutants did not show abnormalities. The presynaptic expression of HANG in hang mutants rescues the increase in bouton number and axonal branch length, thus proving that the phenotypes seen in the P-element insertion hangAE10 are attributable to the lack of HANG rather than to effects of the P-element marker rosy or to a secondary hit on the same chromsome during mutagensis. This finding is further supported by the fact that postsynaptic expression of HANG does not rescue the abnormal NMJ morphology of hangAE10. Alterations in cAMP levels regulate the number of boutons; since hang mutants display an increase in bouton number, the questions was whether this morphological abnormality was due to defects in cAMP signalling. To test this hypothesis, hangAE10 NMJs were compared to those of the hypomorphic allele dnc1 that has a defective cAMP cascade. Some aspects of the NMJ phenotype (e.g. the increase in bouton number and the unaltered ratio of active zones per bouton area) are similar in hangAE10 and dnc1, other differ. Expression of a UAS-dnc transgene in hangAE10 mutants does not modify the phenotype. In summary, the results of this study indicate that nuclear protein HANG might be involved in isoform-specific splicing of genes required for synaptic plasticity at the NMJ. KW - Taufliege KW - Kater KW - Motorische Endplatte KW - Phänotyp KW - hangover KW - Drosophila KW - neuromuskuläre Synapse KW - hangover KW - Drosophila KW - neuromuscular junction Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14977 ER -