TY - THES A1 - Scheller, Katharina T1 - Charakterisierung und Anwendung von humanen, primären mikrovaskulären Endothelzellen mit erweiterter Proliferationsfähigkeit T1 - Characterization and application of human primary microvascular endothelial cells with extended proliferation capacity N2 - Das Arbeitsgebiet Tissue Engineering befasst sich mit der Klärung der Mechanismen, die der Funktionen verschiedener Gewebearten zu Grunde liegen sowie mit der Entwicklung alternativer Strategien zur Behandlung von Organversagen bzw. Organverlusten. Einer der kritischsten Punkte im Tissue Engineering ist die ausreichende Versorgung der Zellen mit Nährstoffen und Sauerstoff. Bioartifizielle Gewebe mit einer Dicke von bis zu 200 µm können mittels Diffusion ausreichend versorgt werden. Für dickere Transplantate ist die Versorgung der Zellen alleine durch Diffusion jedoch nicht gegeben. Hierfür müssen Mechanismen und Strategien zur Prävaskularisierung der artifiziellen Gewebekonstrukte entwickelt werden, damit die Nährstoff- und Sauerstoffversorgung aller Zellen, auch im Inneren des Transplantates, von Anfang an gewährleistet ist. Eine wichtige Rolle bei der Prävaskularisierung spielt die Angiogenese. Dabei ist die Wahl einer geeigneten Zellquelle entscheidend, da die Zellen die Basis für die Angiogenese darstellen. Mikrovaskuläre Endothelzellen (mvEZ) sind maßgeblich an der Angiogenese beteiligt. Das Problem bei der Verwendung von humanen primären mvEZ ist ihre geringe Verfügbarkeit, ihre limitierte Proliferationskapazität und der schnelle Verlust ihrer typischen Endothelzellmarker in-vitro. Der Aufbau standardisierter in-vitro Testsysteme ist durch die geringe Zellausbeute auch nicht möglich. Die upcyte® Technologie bietet hierfür einen Lösungsansatz. In der vorliegenden Arbeit konnten upcyte® mvEZ als Alternative zu primären mvEZ generiert werden. Es konnte gezeigt werden, dass die Zellen eine erweiterte Proliferationsfähigkeit aufweisen und im Vergleich zu primären mvEZ durchschnittlich 15 zusätzliche Populationsverdopplungen leisten können. Dadurch ist es möglich 3x104-fach mehr upcyte® mvEZ eines Spenders zu generieren verglichen mit den korrespondierenden Primärzellen. Die gute und ausreichende Verfügbarkeit der Zellen macht sie interessant für die Standardisierung von in-vitro Testsystemen, ebenso können die Zellen zur Prävaskularisierung von Transplantaten eingesetzt werden. Upcyte® mvEZ zeigen zahlreiche Primärzellmerkmale, die in der Literatur beschrieben sind. Im konfluenten Zustand zeigen sie die für primäre mvEZ spezifische pflastersteinartige Morphologie. Darüber hinaus exprimieren upcyte® mvEZ typische Endothelzellmarker wie CD31, vWF, eNOS, CD105, CD146 und VEGFR-2 vergleichbar zu primären mvEZ. Eine weitere endothelzellspezifische Eigenschaft ist die Bindung von Ulex europaeus agglutinin I Lektin an die alpha-L-Fucose enthaltene Kohlenhydratstrukturen von mvEZs. Auch hier wurden upcyte® Zellen mit primären mvEZ verglichen und zeigten die hierfür charkteristischen Strukturen. Zusätzlich zu Morphologie, Proliferationskapazität und endothelzellspezifischen Markern, zeigen upcyte® mvEZ auch mehrere funktionelle Eigenschaften, welche in primären mvEZ beobachtet werden können, wie beispielsweise die Aufnahme von Dil-markiertem acetyliertem Low Density Lipoprotein (Dil-Ac-LDL) oder die Fähigkeit den Prozess der Angiognese zu unterstützen. Zusätzlich bilden Sphäroide aus upcyte® mvEZ dreidimensionale luminäre Zellformationen in einer Kollagenmatrix aus. Diese Charakteristika zeigen den quasi-primären Phänotyp der upcyte® mvEZs. Upcyte® mvEZ stellen darüber hinaus eine neuartige mögliche Zellquelle für die Generierung prävaskularisierter Trägermaterialien im Tissue Engineering dar. In der vorliegenden Arbeit konnte die Wiederbesiedlung der biologisch vaskularisierte Matrix (BioVaSc) mit upcyte® mvEZ vergleichbar zu primären mvEZ gezeigt werden. Der Einsatz von upcyte® mvEZ in der BioVaSc stellt einen neuen, vielversprechenden Ansatz zur Herstellung eines vaskularisierten Modells für Gewebekonstrukte dar, wie beispielsweise einem Leberkonstrukt. Zusammenfassend konnte in der vorliegenden Arbeit gezeigt werden, dass upcyte® mvEZ vergleichbar zu primären mvEZs sind und somit eine geeignete Alternative für die Generierung prävaskulierter Trägermaterialien und Aufbau von in-vitro Testsystemen darstellen. Darüber hinaus wurde ein neues, innovatives System für die Generierung einer perfundierten, mit Endothelzellen wiederbesiedelten Matrix für künstliches Gewebe in-vitro entwickelt. N2 - The scope of tissue engineering includes researching mechanisms underlying the function of different types of tissue, as well as the development of alternative strategies for the treatment of organ failure or organ loss. One of the critical aspects of tissue engineering is the adequate supply of cells with nutrition and oxygen. Bioartificial tissue up to a thickness of 200µm can be supplied sufficiently via diffusion. For thicker transplants, the supply of cells, only via diffusion is not sufficient. For this purpose, mechanisms and strategies for pre-vascularization of artificial tissue constructs need to be developed in order to ensure the supply of nutrition and oxygen to the inside of a transplant from the beginning. An important part of pre-vascularization is angiogenesis. Thereby, the selection of a suitable cell source is crucial, as these cells form the basis of angiogenesis. Microvascular endothelial cells (mvEC) are an important part of angiogenesis. Using human primary mvEC is critical due to the quick loss of their endothelial cell marker in-vitro but their limited availability and capacity of proliferation presents a problem. Additionally, the number of cells is also not sufficient for setup a standardized in-vitro test system. Upcyte® technology provides an approach to solving this problem. This work focused on the generation of upcyte® mvEC as alternative to primary mvEC. It was shown that cells treated with upcyte® technology have an enhanced capability of proliferation, resulting in 15 additional population doublings, compared to primary mvEC. Thus, it is possible to generate 3x104-fold more upcyte® mvEC from one donor compared to corresponding primary cells. The sufficient cell availability is important for the standardization of in-vitro test systems, as well as the usage for pre-vascularization of transplants. Upcyte® mvEC show many primary cell-like characteristics, which are described in literature. In the confluent state, upcyte® mvEC show a primary cell-specific cobblestone-like morphology. Furthermore, upcyte® mvEC express typical endothelial cell markers, such as CD31, vWF, eNOS, CD105, CD146 and VEGFR-2, at a similar level to primary mvEZ. An additional endothelial cell-specific attribute is the linkage of Ulex europaeus agglutinin I lectin to carbohydrate-structures of mvEC, which contain alpha-L-fucose. These data showed that there was a good comparison between the characteristics of upcyte® and primary mvEC. In addition to morphology, proliferation capacity and endothelial cell-specific markers, upcyte® mvEC showed functional characteristics, which are also observed in primary mvEC. Examples include the uptake of Dil-marked acetylated low density lipoprotein (Dil-Ac-LDL) and the ability to support the process of angiogenesis. In addition, spheroids formed from upcyte® mvEC formed three dimensional luminal cell formations in a collagen matrix. These characteristics show the quasi-phenotype of upcyte® mvEC. Upcyte® mvEC also represents a new promising cell source for the generation of pre-vascularized scaffolds in the tissue engineering context. The use of upcyte® mvEC in BioVaSc represents a promising new approach for producing a model for vascularized tissue constructs, such as a liver constructs. In summary, this work focussed on the development of upcyte® mvEC which were shown to be comparable to primary mvEC and therefore represent a sufficient and reliable alternative cell source for the generation of pre-vascularized scaffolds and the construction of in-vitro test systems. Moreover, a new and innovative system for the generation of a perfusable, endothelialized matrix for artificial tissue in-vitro has been developed. KW - Tissue Engineering KW - Angiogenese KW - Endothelzellen KW - Tissue Engineering KW - Angiogenese KW - Endothelial cells KW - tissue engineering KW - angiogenesis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76577 ER - TY - THES A1 - Krones, David T1 - The Role of Acid Sphingomyelinase in \(Staphylococcus\) \(aureus\) Infection of Endothelial Cells T1 - Die Rolle der sauren Sphingomyelinase bei \(Staphylococcus\) \(aureus\) Infektionen von Endothelzellen N2 - Staphylococcus aureus is a human bacterial pathogen responsible for a variety of diseases including bacterial pneumonia and sepsis. Recent studies provided an explanation, how S. aureus and its exotoxins contribute to the degradation of endothelial junction proteins and damage lung tissue [4]. Previous findings were indicating an involvement of acid sphingomyelinase (ASM) activity in cell barrier degradation [5]. In the presented study the impact of singular virulence factors, such as staphylococcal α-toxin, on in vitro cell barrier integrity as well as their ability to elicit an activation of ASM were investigated. Experiments with bacterial supernatants performed on human endothelial cells demonstrated a rapid dissociation after treatment, whereas murine endothelial cells were rather resistant against cell barrier degradation. Furthermore, amongst all tested staphylococcal toxins it was found that only α-toxin had a significant impact on endothelial junction proteins and ASM activity. Ablation of this single toxin was sufficient to protect endothelial cells from cell barrier degradation and activation of ASM was absent. In this process it was verified, that α-toxin induces a recruitment of intracellular ASM, which is accompanied by rapid and oscillating changes in cytoplasmic Ca2+ concentration and an increased exposure of Lysosomal associated membrane protein 1 (LAMP1) on the cell surface. Recruitment of lysosomal ASM is associated, among other aspects, to plasma membrane repair and was previously described to be involved with distinct pathogens as well as other pore forming toxins (PFT). However, with these findings a novel feature for α-toxin has been revealed, indicating that the staphylococcal PFT is able to elicit a similar process to previously described plasma membrane repair mechanisms. Increased exposure and intake of surface membrane markers questioned the involvement of ASM activity in S. aureus internalization by non-professional phagocytes such as endothelial cells. By modifying ASM expression pattern as well as application of inhibitors it was possible to reduce the intracellular bacterial count. Thus, a direct connection between ASM activity and S. aureus infection mechanisms was observed, therefore this study exemplifies how S. aureus is able to exploit the host cell sphingolipid metabolism as well as benefit of it for invasion into non-professional phagocytic cells N2 - Staphylococcus aureus ist ein bakterieller Erreger, der für eine Vielzahl von Erkrankungen des Menschen verantwortlich ist, darunter bakterielle Lungenentzündung und Sepsis. Neuere Studien konnten einen Ansatz dafür liefern, wie S. aureus und seine Exotoxine zur Degradation von endothelialen Verbindungsproteinen beitragen und das Lungengewebe schädigen. Weitere Befunde weisen auf eine Beteiligung der sauren Sphingomyelinase (ASM) bei der Degradation der Zellbarriere hin. In der vorliegenden Studie soll der Einfluss einzelner Virulenzfaktoren, wie z. B. Staphylokokkus α-Toxin, auf die Integrität der Zellbarriere in vitro sowie deren Fähigkeit, eine Aktivierung der ASM hervorzurufen, untersucht werden.Experimente mit bakteriellen Überständen die an humanen Endothelzellen durchgeführt wurden, zeigten eine rasche Dissoziation nach Behandlung, während murine Endothelzellen vorwiegend resistent gegen eine Degradation der Zellbarriere waren. Darüber hinaus wurde unter allen getesteten Staphylokokken-Toxinen festgestellt, dass nur α-Toxin einen signifikanten Einfluss auf endotheliale Verbindungssproteine und ASM-Aktivität hat. Die genetische Ablation des Toxins alleine reichte aus, um Endothelzellen vor einer Degradation der Zellbarriere zu schützen, und die Aktivierung von ASM blieb aus. Dabei konnte nachgewiesen werden, dass α-Toxin eine Rekrutierung von intrazellulärem ASM induziert, die mit schnellen oszillierenden Veränderungen der zytoplasmatischen Ca2+-Konzentration und einer erhöhten Exposition von Lysosome associated membrane protein 1 (LAMP1) an der Zelloberfläche einhergeht. Die Rekrutierung lysosomaler ASM ist u.a. mit der Reparatur von Plasmamembran assoziiert und wurde bereits im Zusammenhang mit verschiedenen Pathogenen sowie anderer porenbildende Toxine (PFT) beschrieben. Mit diesen Befunden konnte jedoch eine neue Eigenschaft für α-Toxin beschrieben werden, die darauf hindeutet, dass das Staphylokokken-PFT einen ähnlichen Prozess auslösen kann wie zuvor beschriebene Plasmamembran-Reparaturmechanismen. Die vermehrte Exposition und Aufnahme von Oberflächenmembranmerkmalen stellte die Beteiligung der ASM-Aktivität an der Internalisierung von S. aureus durch nicht-professionelle Phagozyten wie Endothelzellen in Frage. Durch Modifikation des ASM-Expressionsmusters sowie Applikation von Inhibitoren war es möglich, die intrazelluläre Keimzahl zu reduzieren. Somit konnte ein direkter Zusammenhang zwischen ASM-Aktivität und den Infektionsmechanismen von S. aureus beobachtet werden. Diese Studie verdeutlicht somit, wie S. aureus den Sphingolipid-Stoffwechsel der Wirtszelle ausnutzen und für die Invasion in nicht-professionelle phagozytische Zellen nutzen kann KW - Staphylococcus aureus KW - Endothelzelle KW - Endothelial cells KW - Acid Sphingomyelinase KW - Plasma membrane repair Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290492 ER -