TY - JOUR A1 - Schuster, Sarah A1 - Krüger, Timothy A1 - Subota, Ines A1 - Thusek, Sina A1 - Rotureau, Brice A1 - Beilhack, Andreas A1 - Engstler, Markus T1 - Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system JF - eLife N2 - The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment. KW - none KW - tsetse fly KW - Trypanosoma KW - biophysics KW - microswimmer KW - sleeping sickness KW - structural biology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158662 VL - 6 ER - TY - JOUR A1 - Schuster, Sarah A1 - Lisack, Jaime A1 - Subota, Ines A1 - Zimmermann, Henriette A1 - Reuter, Christian A1 - Mueller, Tobias A1 - Morriswood, Brooke A1 - Engstler, Markus T1 - Unexpected plasiticty in the life cycle of Trypanosoma brucei JF - eLife N2 - African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host’s circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia. KW - trypanosoma KW - sleeping sickness KW - tsetse fly KW - transmission KW - life cycle KW - development Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261744 VL - 10 ER -