TY - THES A1 - da Cruz Güerisoli, Irene Maria T1 - Investigating the murine meiotic telomere complex TERB1-TERB2-MAJIN: spatial organization and evolutionary history T1 - Untersuchung des murinen meiotischen Telomer-Komplex TERB1-TERB2-MAJIN: spatiale Organisation und Evolutionsgeschichte N2 - Einess der faszinierenden Merkmale der meiotischen Prophase I sind die hochkonservierten kräftigen Bewegungen homologer Chromosomen. Diese Bewegungen sind entscheidend für den Erfolg von Schlüsselereignissen wie die Ausrichtung, Paarung und Rekombination der homologen Chromosomen. Mehrere bisher untersuchte Organismen, darunter Säugetiere, Würmer, Hefen und Pflanzen, erreichen diese Bewegungen, indem sie die Chromosomenenden an spezialisierten Stellen in der Kernhülle verankern. Diese Verankerung erfordert Telomer-Adapterproteine, die bisher in der Spalthefe und der Maus identifiziert wurden. Die meiosespezifischen Telomer-Adapterproteine der Maus, TERB1, TERB2 und MAJIN, sind an der Verankerung des ubiquitären Telomer-Shelterin-protein an den LINC-Komplex beteiligt, mit einem analogen Mechanismus, wie er die Spalthefe beschrieben wird. Obgleich die meiose-spezifischen TelomerAdapterproteine eine wesentliche Rolle spielen, ist der genaue Mechanismus der Verankerung der Telomere an die Kernhülle sowie ihre evolutionäre Geschichte bisher noch wenig verstanden. Das Hauptziel dieser Arbeit ist daher die Untersuchung der Organisation des meiosespezifischen TelomerAdapterkomplexes TERB1-TERB2-MAJIN der Maus und dessen Evolutionsgeschichte. Im ersten Teil dieser Arbeit wurde die Organisation des TERB1-TERB2-MAJIN Komplexes mittels hochauflösender Mikroskopie (SIM), an Mausspermatozyten untersucht, sowie die Lokalisation in Bezug auf TRF1 des Telomer-ShelterinKomplexes und die telomerische DNA analysiert. In den Stadien Zygotän und Pachytän zeigten die Fluoreszenzsignale eine starke Überlappung der Verteilung der meiotischen Telomer-Komplex-Proteine, wobei die Organisation von TERB2 an den Chromosomenenden heterogener war als die von TERB1 und MAJIN. Außerdem konnte die TRF1-Lokalisation an den Enden der Lateralelemente (LEs) mit einer griffartigen Anordnung um die TERB1- und MAJIN-Signale im Zygotän- und Pachytän-Stadium gezeigt werden. Interessanterweise erwies sich die telomerische DNA als lateral verteilt und teilweise überlappend mit der zentralen Verteilung der meiotischen Telomer-Komplex-Proteine an den Enden der LEs. Die Kombination dieser Ergebnisse erlaubte die Beschreibung eines alternativen Modells der Verankerung der Telomer an die Kernhülle während der meiotischen Prophase I. Der zweite Teil dieser Arbeit analysiert die Evolutionsgeschichte der Mausproteine von TERB1, TERB2 und MAJIN. Die fehlende Übereinstimmung zwischen den Meiose-spezifische Telomer-Adapteproteinen der Maus und der Spalthefe hat die Frage nach dem evolutionsbedingten Ursprung dieses spezifischen Komplexes aufgeworfen. Um vermeintliche Orthologen der Mausproteinevon TERB1, TERB2 und MAJIN über Metazoen hinweg zu identifizieren, wurden computergestützte Verfahren und phylogenetische Analysen durchgeführt. Darüber hinaus wurden Expressionsstudien implementiert, um ihre potenzielle Funktion während der Meiose zu testen. Die Analysen haben ergeben, dass der Meiose-spezifische Telomer-Komplex der Maus sehr alt ist, da er bereits in den Eumetazoen entstand, was auf einen einzigen Ursprung hindeutet. Das Fehlen jeglicher Homologen des meiosespezifischen Telomerkomplexes in Nematoden und die einigen wenigen in Arthropoden nachgewiesenen Kandidaten, deuten darauf hin, dass die Telomer-Adapterproteine in diesen Abstammungslinien verloren/ersetzt oder stark diversifiziert worden sind. Bemerkenswerterweise zeigten Proteindomänen von TERB1, TERB2 und MAJIN, die an der Bildung des Komplexes sowie an der Interaktion mit dem Telomer-Shelterin-Protein und den LINC-Komplexen beteiligt sind, eine hohe Sequenzähnlichkeit über alle Kladen hinweg. Abschließend lieferte die Genexpression im Nesseltier Hydra vulgaris den Beweis, dass der TERB1-TERB2-MAJIN-Komplex selektiv in der Keimbahn exprimiert wird, was auf die Konservierung meiotischer Funktionen über die gesamte Metazoen-Evolution hinweg hindeutet. Zusammenfassend bietet diese Arbeit bedeutende neue Erkenntnisse hinsichtlich des Meiose-spezifischen Telomer-Adapterkomplex, seines Mechanismus zur Verankerung der Telomer an die Kernhülle und die Entschlüsselung seines Ursprungs in den Metazoen. N2 - One of the fascinating features of meiotic prophase I, is the highly conserved vigorous movements of homologous chromosomes. These movements are critical for the success of essential events as homologs alignment, synapsis and recombination. Several organisms studied so far, including mammals, worms, yeast and plants achieve these movements by anchoring the chromosome ends to specialized sites in the nuclear envelope (NE). This attachment requires telomere adaptor proteins which have to date been identified in fission yeast and mice. The mouse meiosis-specific telomere adaptor proteins TERB1, TERB2, and MAJIN are involved in the attachment of ubiquitous shelterin telomere to the LINC complex, in an analogous mechanism as those described in fission yeast. Despite the essential role of meiosis-specific telomere adaptor proteins, the precise mechanism of anchorage of telomeres to the nuclear envelope, as well as their evolutionary history, are still not well understood. Therefore, the main aim of this thesis is to investigate the organization of the mouse meiosis-specific telomere adaptor complex TERB1-TERB2-MAJIN and its evolutionary history. In the first part of this thesis high-resolution Structured Illumination Microscopy (SIM), indirect immunofluorescence and Telo-FISH on mouse spermatocytes were used to determine precisely how the telomere complex proteins are localized with relation to the shelterin telomeric TRF1 protein and telomeric DNA. During zygotene and pachytene stages staining patterns revealed extensively overlapping of meiotic telomere complex proteins distributions in which TERB2 organization is more heterogeneous than TERB1 and MAJIN at the chromosome ends. Further, TRF1 localization was shown at the side of lateral elements (LEs) ends with grasp-like distribution surrounding the TERB1 and MAJIN signals in zygotene and pachytene stages. Interestingly, telomeric DNA was shown to be laterally distributed and partially overlapping with the more central distribution displayed by meiotic telomere complex proteins of LEs ends. The combination of these results allowed to describe an alternative model of the telomere attachment to the NE during meiotic prophase I. The second part of this thesis, analyses mouse TERB1, TERB2, and MAJIN evolutionary history. The lack of similarity between mouse and fission yeast meiotic-specific telomere adaptor proteins has raised the question about the origin of this specific complex through evolution. To identify mouse TERB1, TERB2, and MAJIN putative orthologues, computational approaches and phylogenetic analyses were performed. Besides, to test their potential function during meiosis, expression studies were conducted. From these analyses, it was revealed that mouse meiosis-specific telomere complex is ancient, as it originated as early as eumetazoans pointing to a single origin. The absence of any homologs in Nematoda and only a few candidates detected in Arthropoda for meiosis-specific telomere complex, seemed, that these proteins have been lost/replaced or highly diversified in these lineages. Remarkably, TERB1, TERB2, and MAJIN protein domains involved in the formation of the complex as well as those required for the interaction with the telomere shelterin protein and the LINC complexes revealed high sequence similarity across all clades. Finally, gene expression in the cnidarian Hydra Vulgaris provided evidence that the TERB1-TERB2-MAJIN complex is selectively expressed in the germline suggesting conservation of meiotic functions across metazoan evolution. In summary, this thesis provides significant insights into the meiosis-specific telomere complex mechanism to engage telomeres to the nuclear envelope and the elucidation of its origin in metazoans. KW - meiosis KW - chromosomes telomere-led movement KW - TERB1-TERB2-MAJIN KW - SIM KW - Evolution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210562 ER - TY - THES A1 - Fraune, Johanna T1 - The evolutionary history of the mammalian synaptonemal complex T1 - Die Evolutionsgeschichte des Synaptonemalkomplexes der Maus N2 - Der Synaptonemalkomplex (SC) ist eine hochkonservierte Proteinstruktur. Er weist eine dreiteili-ge, leiterähnliche Organisation auf und ist für die stabile Paarung der homologen Chromosomen während der Prophase der ersten meiotischen Teilung verantwortlich, die auch als Synpase be-zeichnet wird. Fehler während der Synpase führen zu Aneuploidie oder Apoptose der sich entwi-ckelnden Keimzellen. Seit 1956 ist der SC Gegenstand intensiver Forschung. Seine Existenz wurde in zahlreichen Orga-nismen von der Hefe bis zum Menschen beschrieben. Seine Struktur aus zwei parallel verlaufen-den Lateralelementen (LE), die durch eine Vielzahl von sogenannten Transversalfilamenten (TF) verbunden werden und dem Zentralen Element (CE) in der Mitte des SC ist dabei offensichtlich über die Millionen von Jahren der Evolution erhalten geblieben. Einzelne Proteinkomponenten des SC wurden jedoch nur in wenigen Modelorganismen charakterisiert, darunter Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Ceanorhabditis elegans und Mus mus-culus. Unerwarteter Weise gelang es bei dieser Charakterisierung nicht, eine evolutionäre Ver-wandtschaft, d.h. eine Homologie zwischen den Proteinsequenzen der verschiedenen SCs nach-zuweisen. Diese Tatsache sprach gegen die grundsätzliche Annahme, dass der SC in der Evolution nur einmal entstanden sei. Diese Arbeit hat sich nun der Aufgabe gewidmet, die Diskrepanz zwischen der hochkonservierten Struktur des SC und seiner augenscheinlich nicht-homologen Proteinzusammensetzung zu lösen. Dabei beschränkt sie sich auf die Analyse des Tierreichs. Es ist die erste Studie zur Evolution des SC in Metazoa und demonstriert die Monophylie der Säuger SC Proteinkomponenten im Tierreich. Die Arbeit zeigt, dass mindestens vier von sieben SC Proteinen der Maus spätestens im letzten gemeinsamen Vorfahren der Gewebetiere (Eumetazoa) enstanden sind und auch damals Teil ei-nes ursprünglichen SC waren, wie er heute in dem Nesseltier Hydra zu finden ist. Dieser SC weist die typische Struktur auf und besitzt bereits alle notwendigen Komponenten, um die drei Domä-nen – LE, TF und CE – zu assemblieren. Darüber hinaus ergaben die einzelnen Phylogenien der verschiedenen SC Proteine der Maus, dass der SC eine sehr dynamische Evolutionsgeschichte durchlaufen hat. Zusätzliche Proteine wurden während der Entstehung der Bilateria und der Wir-beltiere in den SC integriert, während andere ursprüngliche Komponenten möglicherweise Gen-Duplikationen erfuhren bzw. besonders in der Linie der Häutungstiere verloren gingen oder sich stark veränderten. Es wird die These aufgestellt, dass die auf den ersten Blick nicht-homologen SC Proteine der Fruchtfliege und des Fadenwurms tatsächlich doch von den ursprünglichen Prote-inenkomponenten abstammen, sich aber aufgrund der rasanten Evolution der Arthropoden und der Nematoden bis zu deren Unkenntlichkeit diversifizierten. Zusätzlich stellt die Arbeit Hydra als alternatives wirbelloses Modellsystem für die Meiose- und SC-Forschung zu den üblichen Modellen D. melanogaster und C. elegans vor. Die kürzlich gewon-nenen Erkenntnisse über den Hydra SC sowie der Einsatz der Standard-Methoden in diesem Orga-nismus werden in dem abschließenden Kapitel zusammengefasst und diskutiert. N2 - The synaptonemal complex (SC) is a highly conserved structure in sexually reproducing organism. It has a tripartite, ladder-like organization and mediates the stable pairing, called synapsis, of the homologous chromosomes during prophase of meiosis I. Failure in homolog synapsis result in aneuploidy and/or apoptosis of the developing germ cells. Since 1956, the SC is subject of intense research and its presence was described in various species from yeast to human. Its structure was maintained during millions of years of evolution consist-ing of two parallel lateral elements (LEs), joined by numerous transverse filaments (TFs) which run perpendicular to the LEs and an electron dense central element (CE) in the middle of the SC. Individual protein components, however, were characterized only in few available model organ-isms, as for example Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Ceanorhabditis elegans and Mus musculus. Rather unexpectedly, these characterizations failed to detect an evolutionary homology between the protein components of the different SCs. This fact challenged the general idea of a single origin of the SC in the evolution of meiosis and sexual reproduction. This thesis now addressed itself to the task to unravel the discrepancy between the high conser-vation of the SC structure and its diverse and apparently non-homologous protein composition, focusing on the animal kingdom. It is the first study dealing with the evolution of the SC in Meta-zoa and demonstrates the monophyly of the mammalian SC components in metazoan species. The thesis demonstrates that at least four out of seven murine SC proteins emerged in Eumeta-zoa at the latest and have been likewise part of an ancient SC as it can be found in the present-day cnidarian species Hydra. This SC displays the common organization and already possesses the minimal protein kit corresponding to the three different structural domains: LEs, TFs and the CE. Additionally, the individual phylogenies of the murine SC proteins revealed the dynamic evolu-tionary history of the ancient SC. Further components were added during the diversification of Bilateria and vertebrates while ancestral proteins likely duplicated in the vertebrate lineage and diversified or got lost in the branch leading to ecdysozoan species. It is hypothesized that the apparently non-homologous SC proteins in D. melanogaster and C. elegans actually do derive from the ancient SC proteins but diversified beyond recognition during the fast evolution of Ar-thropoda and Nematoda. The study proposes Hydra as an alternative invertebrate model system for meiosis and SC re-search to the standard organisms D. melanogaster and C. elegans. Recent results about the cni-darian SC as well as the possible application of standard methods is discussed and summarized in the concluding section. KW - Synaptinemal-Komplex KW - Maus KW - Hydra KW - Evolution KW - Meiose Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100043 ER - TY - THES A1 - Streinzer, Martin T1 - Sexual dimorphism of the sensory systems in bees (Hymenoptera, Apoidea) and the evolution of sex-specific adaptations in the context of mating behavior T1 - Sensorischer Geschlechtsdimorphismus bei Bienen (Hymenoptera, Apoidea) und die Evolution geschlechtsspezifischer Anpassungen im Kontext des Paarungsverhaltens N2 - Bees have had an intimate relationship with humans for millennia, as pollinators of fruit, vegetable and other crops and suppliers of honey, wax and other products. This relationship has led to an extensive understanding of their ecology and behavior. One of the most comprehensively understood species is the Western honeybee, Apis mellifera. Our understanding of sex-specific investment in other bees, however, has remained superficial. Signals and cues employed in bee foraging and mating behavior are reasonably well understood in only a handful of species and functional adaptations are described in some species. I explored the variety of sensory adaptations in three model systems within the bees. Females share a similar ecology and similar functional morphologies are to be expected. Males, engage mainly in mating behavior. A variety of male mating strategies has been described which differ in their spatiotemporal features and in the signals and cues involved, and thus selection pressures. As a consequence, males’ sensory systems are more diverse than those of females. In the first part I studied adaptations of the visual system in honeybees. I compared sex and caste-specific eye morphology among 5 species (Apis andreniformis, A. cerana, A. dorsata, A. florea, A. mellifera). I found a strong correlation between body size and eye size in both female castes. Queens have a relatively reduced visual system which is in line with the reduced role of visual perception in their life history. Workers differed in eye size and functional morphology, which corresponds to known foraging differences among species. In males, the eyes are conspicuously enlarged in all species, but a disproportionate enlargement was found in two species (A. dorsata, A. florea). I further demonstrate a correlation between male visual parameters and mating flight time, and propose that light intensities play an important role in the species-specific timing of mating flights. In the second study I investigated eye morphology differences among two phenotypes of drones in the Western honeybee. Besides normal-sized drones, smaller drones are reared in the colony, and suffer from reduced reproductive success. My results suggest that the smaller phenotype does not differ in spatial resolution of its visual system, but suffers from reduced light and contrast sensitivity which may exacerbate the reduction in reproductive success caused by other factors. In the third study I investigated the morphology of the visual system in bumblebees. I explored the association between male eye size and mating behavior and investigated the diversity of compound eye morphology among workers, queens and males in 11 species. I identified adaptations of workers that correlate with distinct foraging differences among species. Bumblebee queens must, in contrast to honeybees, fulfill similar tasks as workers in the first part of their life, and correspondingly visual parameters are similar among both female castes. Enlarged male eyes are found in several subgenera and have evolved several times independently within the genus, which I demonstrate using phylogenetic informed statistics. Males of these species engage in visually guided mating behavior. I find similarities in the functional eye morphology among large-eyed males in four subgenera, suggesting convergent evolution as adaptation to similar visual tasks. In the remaining species, males do not differ significantly from workers in their eye morphology. In the fourth study I investigated the sexual dimorphism of the visual system in a solitary bee species. Males of Eucera berlandi patrol nesting sites and compete for first access to virgin females. Males have enlarged eyes and better spatial resolution in their frontal eye region. In a behavioral study, I tested the effect of target size and speed on male mate catching success. 3-D reconstructions of the chasing flights revealed that angular target size is an important parameter in male chasing behavior. I discuss similarities to other insects that face similar problems in visual target detection. In the fifth study I examined the olfactory system of E. berlandi. Males have extremely long antennae. To investigate the anatomical grounds of this elongation I studied antennal morphology in detail in the periphery and follow the sexual dimorphism into the brain. Functional adaptations were found in males (e.g. longer antennae, a multiplication of olfactory sensilla and receptor neurons, hypertrophied macroglomeruli, a numerical reduction of glomeruli in males and sexually dimorphic investment in higher order processing regions in the brain), which were similar to those observed in honeybee drones. The similarities and differences are discussed in the context of solitary vs. eusocial lifestyle and the corresponding consequences for selection acting on males. N2 - Bienen und Menschen verbindet eine lange andauernde und enge Beziehung. Diese enge Beziehung hat zu einem ausgeprägten Wissen über die Ökologie und das Verhalten geführt. Die am besten untersuchte Bienenart ist die westliche Honigbiene, Apis mellifera. Der ausgeprägte Kasten- und Sexualdimorphismus hat das Studium der Geschlechterunterschiede vereinfacht und vorangetrieben. Unser Wissen über geschlechtsspezifische Investitionen bei Bienen ist jedoch in vielerlei Hinsicht lückenhaft geblieben. Die Signale und Achtungssignale die im Paarungsverhalten eine Rolle spielen sind nur bei einer Handvoll Arten hinreichend bekannt und funktionelle Anpassungen an diese sind in wenigen Arten beschrieben. In dieser Arbeit habe ich sensorische Anpassungen an geschlechtsspezifische Verhaltensweisen in drei Bienengruppen genauer untersucht. Weibchen und Arbeiterinnen haben generell eine ähnliche Lebensweise. Männchen beschäftigen sich fast ausschließlich mit der Partnersuche. Infolgedessen, zeigt die Sensorik der Männchen eine größere Vielfalt an morphologischen und funktionellen Anpassungen als die der Weibchen. Im ersten Abschnitt dieser Arbeit habe ich Anpassungen des visuellen Systems von 5 Honigbienenarten (Apis andreniformis, A. cerana, A. dorsata, A. florea, A. mellifera) untersucht. Ich finde eine deutliche Korrelation zwischen Körper- und Augengröße bei beiden weiblichen Kasten. Königinnen haben relativ kleinere Augen als Arbeiterinnen, was der verringerten Rolle visueller Wahrnehmung im Lebenszyklus dieser Kaste entspricht. Die Arbeiterinnen unterschieden sich sowohl in ihrer Augengröße als auch in der funktionellen Morphologie. Die Unterschiede passen jeweils zu der artspezifischen Ökologie. Drohnen aller Arten haben auffällig vergrößerte Augen, jedoch sind sie in zwei Arten (A. dorsata, A. florea) überproportional vergrößert. Zusätzlich zeige ich, dass bestimmte Augenparameter mit dem artspezifischen Paarungszeitpunkt korrelieren, und schlage vor, dass die Lichtintensität eine Rolle bei der Feststellung des richtigen Paarungszeitpunktes spielen könnte. In der zweiten Untersuchung habe ich die Augen von zwei Drohnenphänotypen von A. mellifera untersucht. Neben normalen Drohen werden in der Kolonie auch kleinere Drohnen aufgezogen, die unter einem geringeren Fortpflanzungserfolg leiden. Meine Ergebnisse zeigen, dass sich die Phänotypen vermutlich nicht in der räumlichen Auflösungsfähigkeit, jedoch in der Lichtempfindlichkeit der Augen von normalen Drohnen unterscheiden. In der dritten Untersuchung habe ich die Augenmorphologie bei 11 Hummelarten untersucht. Ich beschreibe in dieser Studie Anpassungen der Arbeiterinnen, die vermutlich mit der Habitatwahl im Zusammenhang stehen. Hummelköniginnen sind, im Gegensatz zu Königinnen der Honigbiene, in der ersten Zeit nach der Koloniegründung auf sich allein gestellt und müssen alle Aufgaben, die später von den Arbeiterinnen übernommen werden, selbst ausführen. Dementsprechend sind die Augen beider Weibchenkasten ähnlich in ihrer relativen Größe und funktionellen Morphologie. Vergrößerte Augen der Männchen können in Arten verschiedener Untergattungen gefunden werden und der Phänotyp ist im Laufe der Evolution mehrfach unabhängig entstanden, was ich mit phylogenetisch vergleichenden Methoden zeige. Die Augenmorphologie der vier untersuchten großäugigen Arten ist sehr ähnlich, was auf konvergente Evolution hinweist. Die Augenmorphologie der restlichen Arten unterscheidet sich hingegen nicht deutlich von jener der Weibchen. In der vierten Untersuchung habe ich mich dem Sexualdimorphismus der Solitärbienenart Eucera berlandi gewidmet. Männchen haben größere Augen und sowohl größere Facetten als auch eine höhere räumliche Auflösung im frontalen Gesichtsfeld als Weibchen. In einem Verhaltensversuch habe ich die Auswirkungen der Größe von Weibchendummies auf die Detektion getestet. In 3-D Rekonstruktionen der Weibchenverfolgung zeigte sich dass die Winkelgröße des Objektes, eine von der Distanz unabhängige Größe, eine wichtige Rolle spielt. Im Zusammenhang mit den gefundenen Daten diskutiere ich die Parallelen zu anderen Insektenarten. In der fünften Studie untersuche ich das olfaktorische System von E. berlandi. Männchen haben extreme lange Antennen. Um die anatomischen Grundlagen der geschlechtsspezifischen Antennenmorphologie zu untersuchen habe ich die Antennen beider Geschlechter im Detail studiert. Zusätzlich bin ich dem Dimorphismus entlang der olfaktorischen Bahn bis ins Gehirn gefolgt. Männchen zeige funktionelle Anpassungen (z.B. längere Antennen, eine höhere Anzahl an olfaktorischen Sensillen und Rezeptorneuronen, stark vergrößerte Glomeruli im Antennallobus, eine zahlenmäßige Reduktion der Glomeruli und geschlecherspezifische Investition in höhere Integrationszentren im Gehirn) an die Weibchendetektion. KW - Biene KW - Sinne KW - Verhalten KW - Neurobiologie KW - Geschlechtsunterschied KW - Biene KW - Hummel KW - Sinnesphysiologie KW - Evolution KW - bees KW - sensory ecology KW - evolution KW - visual system Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78689 ER - TY - THES A1 - Chaianunporn, Thotsapol T1 - Evolution of dispersal and specialization in systems of interacting species T1 - Evolution von Ausbreitung und Spezialisierung von interagierenden Arten N2 - A metacommunity approach will be a useful framework to assess and predict changes in biodiversity in spatially structured landscapes and changing environments. However, the relationship between two core elements of metacommunity dynamics, dispersal and species interaction are not well understood. Most theoretical studies on dispersal evolution assume that target species are in isolation and do not interact with other species although the species interactions and community structure should have strong interdependence with dispersal. On the one hand, a species interaction can change the cost and benefit structure of dispersing in relation to non-dispersing individuals. On the other hand, with dispersal, an individual can follow respectively avoid species partners. Moreover, it is also important to explore the interdependence between dispersal and species interaction with spatial and temporal heterogeneity of environment because it would allow us to gain more understanding about responses of community to disturbances such as habitat destruction or global climate change, and this aspect is up to now not well-studied. In this thesis, I focus on the interactive and evolutionary feedback effects between dispersal and various types of interspecific interactions in different environmental settings. More specifically, I contrast dispersal evolution in scenarios with different types of interactions (chapter 2), explore the concurrent evolution of dispersal and habitat niche width (specialization) in spatial heterogeneous landscape (chapter 3) and consider (potential) multidimensional evolutionary responses under climate change (chapter 4). Moreover, I investigate consequences of different dispersal probability and group tolerance on group formation respectively group composition and the coexistence of ‘marker types’ (chapter 5). For all studies, I utilize individual-based models of single or multiple species within spatially explicit (grid-based) landscapes. In chapter 5, I also use an analytical model in addition to an individual-based model to predict phenomenon in group recognition and group formation. ... N2 - Ein „Multi-Arten“ Ansatz („metacommunity approach“; im Weiteren als Meta-Gemeinschaften bezeichnet) ist eine immer noch neue und wichtige Methode zur Einschätzung und Vorhersage von Änderungen der Biodiversität in räumlich strukturierten Habitaten. Dabei werden denkbare Reaktionen von Arten nicht isoliert betrachtet, sondern auch im Kontext von Interaktionen mit anderen Arten. Bisher wurde dabei die Beziehung zwischen zwei essentiellen Mechanismen, die in Meta-Gemeinschaften eine große Rolle spielen – Ausbreitung („dispersal“) und interspezifische Interaktion – wenig untersucht. Die meisten theoretischen Untersuchungen zur Ausbreitung erfolgen mit der Annahme, dass Arten in keinen Interaktionen mit anderen Arten stehen – in natürlichen Systemen interagieren die meisten Arten jedoch mit anderen. Interspezifische Interaktionen können außerdem die Kosten-Nutzen-Bilanz von Ausbreitenden im Vergleich zu Nicht-Ausbreitenden ändern. Andererseits kann ein Individuum durch Ausbreitung Interaktionspartnern folgen beziehungsweise sie vermeiden. Es ist deshalb zu erwarten, dass die interspezifischen Interaktionen und Ausbreitung stark interagieren. Weiter ist es wichtig, die gegenseitige Abhängigkeit der interspezifischen Interaktionen und Ausbreitung unter unterschiedlicher räumlicher und zeitlicher Heterogenität der Umwelt zu untersuchen, damit wir die Antwort einer Lebensgemeinschaft auf Umweltstörung, z.B. Habitatzerstörung und Klimawandel, besser verstehen können. ... KW - Tiergesellschaft KW - Ausbreitung KW - Spezialisierung KW - Evolution KW - interaktive Arten KW - dispersal KW - specialization KW - interacting species Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76779 ER - TY - THES A1 - Kubisch, Alexander T1 - Range border formation in the light of dispersal evolution T1 - Die Ausbildung von Verbreitungsgrenzen unter Berücksichtigung der Evolution des Ausbreitungsverhaltens N2 - Understanding the emergence of species' ranges is one of the most fundamental challenges in ecology. Early on, geographical barriers were identified as obvious natural constraints to the spread of species. However, many range borders occur along gradually changing landscapes, where no sharp barriers are obvious. Mechanistic explanations for this seeming contradiction incorporate environmental gradients that either affect the spatio-temporal variability of conditions or the increasing fragmentation of habitat. Additionally, biological mechanisms like Allee effects (i.e. decreased growth rates at low population sizes or densities), condition-dependent dispersal, and biological interactions with other species have been shown to severely affect the location of range margins. The role of dispersal has been in the focus of many studies dealing with range border formation. Dispersal is known to be highly plastic and evolvable, even over short ecological time-scales. However, only few studies concentrated on the impact of evolving dispersal on range dynamics. This thesis aims at filling this gap. I study the influence of evolving dispersal rates on the persistence of spatially structured populations in environmental gradients and its consequences for the establishment of range borders. More specially I investigate scenarios of range formation in equilibrium, periods of range expansion, and range shifts under global climate change ... N2 - Die Frage nach den Ursachen für die Ausbildung von Verbreitungsgrenzen ist ein zentrales Thema ökologischer Forschung. Dabei wurde die Bedeutung geographischer Barrieren als natürliche Grenzen der Ausbreitung von Populationen früh erkannt. Jedoch findet man oft auch in sich graduell ändernden Landschaften, in denen keine Barrieren zu finden sind, sehr scharfe Verbreitungsgrenzen. Mechanistische Erklärungen hierfür unterscheiden zwischen solchen Umweltgradienten, welche entweder die Variabilität der biotischen und abiotischen Umgebung in Raum und Zeit oder die Fragmentierung von Habitat beeinflussen. Dabei wird die spezifische Lage der Verbreitungsgrenze von weiteren Mechanismen beeinflusst, wie Allee-Effekten (d.h. verringerte Wachstumsraten bei kleiner Populationsgröße oder -dichte), zustands- bzw. kontextabhängigem Dispersal und biologischen Interaktionen. Dispersal, das heißt Ausbreitung im Raum mit potentiellen Konsequenzen für den Genaustausch zwischen Populationen, stand im Fokus vieler Studien, die sich mit der Ausbildung von Verbreitungsgrenzen beschäftigt haben. Es ist bekannt, dass das Ausbreitungsverhalten von Populationen sehr variabel ist und selbst innerhalb kurzer Zeit evolvieren kann. Trotzdem haben sich erst wenige Studien mit den Folgen der Evolution des Ausbreitungsverhaltens für biogeographische Muster befasst. Die vorliegende Dissertation verfolgt das Ziel, diese Lücke zu füllen. Ich untersuche den Einfluss evolvierender Emigrationsraten auf das Überleben von räumlich strukturierten Populationen, sowie dessen Konsequenzen für die Etablierung und Dynamik von Verbreitungsgebieten. Dafür ziehe ich verschiedene Szenarien heran. Diese bilden die Verbreitung von Arten im Gleichgewicht, während Phasen der Expansion des Verbreitungsgebietes, sowie im Kontext des globalen Klimawandels ab ... KW - Areal KW - Verhalten KW - Evolution KW - Simulation KW - Verbreitungsgrenzen KW - Ausbreitung KW - Invasion KW - range formation KW - dispersal KW - evolution KW - individual-based simulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70639 ER - TY - THES A1 - Drescher, Jochen T1 - The Ecology and Population structure of the invasive Yelllow Crazy Ant Anoplolepis gracilipes T1 - Die Ökologie und Populationsstruktur der invasiven Ameisenart Anoplolepis gracilipes N2 - The invasive Yellow Crazy Ant Anoplolepis gracilipes is a widespread tropical ant species which is particularly common in anthropogenically disturbed habitats in South-East Asia and the Indopacific region. Its native range is unknown, and there is little information concerning its social structure as a potential mechanism facilitating invasion as well as its ecology in one of the putative native ranges, South-East Asia. Using mitochondrial DNA sequences, I demonstrated that the majority of the current Indopacific colonies were likely introduced from South-East Asian populations, which in turn may have been introduced much earlier from a yet unidentified native range. By conducting behavioral, genetic and chemical analyses, I found that A. gracilipes supercolonies contain closely related individuals, thus resembling enlarged versions of monogynous, polydomous colonies of other ant species. Furthermore, mutually aggressive A. gracilipes supercolonies were highly differentiated both genetically and chemically, suggesting limited or even absent gene flow between supercolonies. Intranidal mating and colony-budding are most likely the predominant, if not the exclusive mode of reproduction and dispersal strategy of A. gracilipes. Consequently, a positive feedback between genetic, chemical and behavioral traits may further enhance supercolony differentiation though genetic drift and neutral evolution. This potential scenario led to the hypothesis that absent gene flow between different A. gracilipes supercolonies may drive them towards different evolutionary pathways, possibly including speciation. Thus, I examined one potential way by which gene flow between supercolonies of an ant species without nuptial flights may be maintained, i.e. the immigration of sexuals into foreign supercolonies. The results suggest that this option of maintaining gene flow between different supercolonies is likely impaired by severe aggression of workers towards allocolonial sexuals. Moreover, breeding experiments involving males and queens from different supercolonies suggest that A. gracilipes supercolonies may already be on the verge of reproductive isolation, which might lead to the diversification of A. gracilipes into different species. Regarding the ecological consequences of its potential introduction to NE-Borneo, I could show that A. gracilipes supercolonies may affect the local ant fauna. The ant community within supercolonies was less diverse and differed in species composition from areas outside supercolonies. My data suggest that the ecological dominance of A. gracilipes within local ant communities was facilitated by monopolization of food sources within its supercolony territory, achieved by a combination of rapid recruitment, numerical dominance and pronounced interspecific aggression. A. gracilipes’ distribution is almost exclusively limited to anthropogenically altered habitat, such as residential and agricultural areas. The rate at which habitat conversion takes place in NE-Borneo will provide A. gracilipes with a rapidly increasing abundance of suitable habitats, thus potentially entailing significant population growth. An potentially increasing population size and ecological dominance, however, are not features that are limited to invasive alien species, but may also occur in native species that become ‘pests’ in an increasing abundance of anthropogenically altered habitat. Lastly, I detected several ant guests in supercolonies of A. gracilipes. I subsequently describe the relationship between one of them (the cricket Myrmecophilus pallidithorax) and its ant host. By conducting behavioral bioassays and analyses of cuticular hydrocarbon (CHC) profiles, I revealed that although M. pallidithorax is attacked and consumed by A. gracilipes whenever possible, it may evade aggression from its host by a combination of supreme agility and, possibly, chemical deception. This thesis adds to our general understanding of biological invasions by contributing species-specific data on a previously understudied invasive organism, the Yellow Crazy Ant Anoplolepis gracilipes. Introductions which may have occurred a long time ago may make it difficult to determine whether a given species is an introduced invader or a native pest species, as both may have pronounced ecological effects in native species communities. Furthermore, this thesis suggests that supercolonialism in invasive ants may not be an evolutionary dead end, but that it may possibly give rise to new species due to reproductive boundaries between supercolonies evoked by peculiar mating and dispersal strategies. N2 - Anoplolepis gracilipes ist eine in den Tropen weit verbreitete invasive Ameisenart, die in gestörten Habitaten Südostasiens und des indopazifischen Raumes häufig vorzufinden ist. Während detaillierte Informationen bezüglich ihres derzeitigen Verbreitungsgebietes vorliegen, ist ihre geographische Herkunft immer noch unbekannt. Weiterhin ist unklar, in welchem Maße die Sozialstruktur von A. gracilipes zu ihrer ökologischen Dominanz beiträgt und wie sich diese wiederum in einem potentiellen Herkunftsgebiet (Südostasien) darstellt. Mitochondriale DNA-Sequenzen legen nahe, dass die Mehrheit der im indopazifischen Raum vorkommenden Kolonien von südostasiatischen Populationen eingeführt wurde. Die südostasiatischen Kolonien entstammen möglicherweise einem bislang unbekannten Ursprungsgebiet. Verhaltenstests und genetische Analysen ergaben, dass Superkolonien von A. gracilipes aus sehr nah verwandten Individuen bestehen, womit sie monogynen, polydomen Kolonien anderer Ameisenarten ähneln. Ausserdem wiesen sowohl genetische Daten sowie Profile epikutikulärer Kohlenwasserstoffe auf eine erhebliche Differenzierung zwischen verschiedenen Superkolonien hin. Das Ausmaß der genetischen und chemischen Differenzierung deutet darauf hin, dass Genfluss zwischen Superkolonien stark reduziert oder sogar unterbrochen ist. Da die Paarung bei A. gracilipes wahrscheinlich nur im eigenen Nest stattfindet (Hochzeitsflüge wurden noch nicht beobachtet), könnte eine positive Rückkopplung zwischen Aggression, Verwandtschaftsgrad und epikutikulärer Chemie dazu führen, dass die Differenzierung zwischen Superkolonien durch eine Kombination aus genetischer Drift und neutraler Evolution weiter verstärkt wird. Superkolonien, die nicht durch Genfluss miteinander im Austausch stehen, könnten sich also konsequenterweise in unterschiedliche evolutive Richtungen entwickeln. Eine der Möglichkeiten, durch die Genfluss zwischen verschiedenen Superkolonien aufrecht erhalten werden könnte, wäre deshalb die Einwanderung reproduktiver Individuen in fremde Superkolonien. Meine Untersuchungen ergaben, dass die Migration von Männchen und Königinnen zwischen verschiedenen Superkolonien jedoch durch die Arbeiterinnen unterbunden wird, welche in erhöhtem Maße aggressiv gegenüber Geschlechtstieren anderer Superkolonien waren. Weiterhin deuteten Kreuzungsexperimente zwischen koloniefremden Männchen und Königinnen darauf hin, dass Superkolonien von A. gracilipes unter Umständen schon reproduktiv isoliert sind, welches konsequenterweise zur Diversifizierung von A. gracilipes in verschiedene Arten führen sollte. Bezüglich ihrer ökologischen Dominanz in Nordost-Borneo konnte gezeigt werden, dass A. gracilipes die lokale Ameisenfauna erheblich beeinflusst. Innerhalb der Superkolonien von A. gracilipes fanden sich sowohl weniger Ameisenarten als auch eine andere Artzusammensetzung als außerhalb. Die Ergebnisse deuteten darauf hin, dass die ökologische Dominanz von A. gracilipes maßgeblich auf der Monopolisierung von Nahrungsquellen beruht. Diese wird ermöglicht durch eine Kombination aus schneller Rekrutierung von Nestgenossinnen, zahlenmäßiger Überlegenheit und ausgeprägter interspezifischer Aggression. A. gracilipes kommt fast ausschließlich in anthropogen gestörten Habitaten wie Wohngebieten oder landwirtschaftlich genutzten Flächen vor. Die zunehmende Habitatkonversion in Nordost-Borneo führt zu einem enormen Anstieg der von A. gracilipes besiedelbaren Habitate, so dass mit einem signifikanten Populationswachstum von A. gracilipes zu rechnen sein wird. Ein schnelles Populationswachstum sowie ökologische Dominanz sind jedoch nicht allein auf invasive Arten geprägte Charakteristika, sondern können auch bei nativen Arten zu beobachten sein, welche durch zunehmende Verfügbarkeit anthropogen veränderten Habitats zu Schädlingen werden können. Abschließend wurden mehrere Arten potentieller Sozialparasiten in Nestern von A. gracilipes aufgefunden (mehrheitlich neue, unbeschriebene Arten), von denen die Grille Myrmecophilus pallidithorax eingehender untersucht wurde. Verhaltenstests und die Analyse kutikulärer Kohlenwasserstoffe zeigten, dass M. pallidithorax von ihrem Wirt angegriffen und sogar verzehrt wird. Jedoch kann sie den Aggressionen ihres Wirtes weitestgehend ausweichen dank schneller Fluchtreflexe sowie, möglicherweise, chemischer Tarnung. Die vorliegende Dissertation zeigt, dass lang zurückliegende Invasionen die Unterscheidung zwischen eingeführten oder nativen Schädlingen erschweren, da beide tiefgreifende ökologische Einflüsse auf native Artengemeinschaften haben können. Es wurde weiterhin deutlich, dass die außergewöhnliche Sozialstruktur von invasiven Ameisen wie A. gracilipes ihre ökologische Dominanz begründet. Die Bildung von Superkolonien bei invasiven Ameisen stellt zudem nicht eine evolutive Sackgasse dar, sondern kann im Gegenzug sogar zur Artbildung führen, begünstigt durch ungewöhnliche Paarungs- und Verbreitungsstrategien. KW - Demökologie KW - Ameisen KW - Invasive Art KW - Invasionsbiologie KW - Populationsstruktur KW - Anoplolepis gracilipes KW - Yellow Crazy Ant KW - Evolution KW - Fortpflanzung KW - Ameisengäste KW - Biological Invasions KW - Population structure KW - Anoplolepis gracilipes KW - Yellow Crazy Ant Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57332 ER - TY - THES A1 - Vershenya, Stanislav T1 - Quantitative and qualitative analyses of in-paralogs N2 - In our analysis I was interested in the gene duplications, with focus on in-paralogs. In-paralogs are gene duplicates which arose after species split. Here I analysed the in-paralogs quantitatively, as well as qualitatively. For quantitative analysis genomes of 21 species were taken. Most of them have vastly different lifestyles with maximum evolutionary distance between them 1100 million years. Species included mammals, fish, insects and worm, plus some other chordates. All the species were pairwised analysed by the Inparanoid software, and in-paralogs matrix were built representing number of in-paralogs in all vs. all manner. Based on the in-paralogs matrix I tried to reconstruct the evolutionary tree using in-paralog numbers as evolutionary distance. If all 21 species were used the resulting tree was very far from real one: a lot of species were misplaced. However if the number was reduced to 12, all of the species were placed correctly with only difference being wrong insect and fish clusters switched. Then to in-paralogs matrix the neighbour-net algorithm was applied. The resulting "net" tree showed the species with fast or slow duplications rates compared to the others. We could identify species with very high or very low duplications frequencies and it correlates with known occurrences of the whole genome duplications. As the next step I built the graphs for every single species showing the correlation between their in-paralogs number and evolutionary distance. As we have 21 species, graph for every species is built using 20 points. Coordinates of the points are set using the evolutionary distance to that particular species and in-paralogs number. In mammals with increasing the distance from speciation the in-paralogs number also increased, however not in linear fashion. In fish and insects the graph close to zero is just the same in mammals' case. However, after reaching the evolutionary distances more than 800 million years the number of inparalogs is beginning to decrease. We also made a simulation of gene duplications for all 21 species and all the splits according to the fossil and molecular clock data from literature. In our simulation duplication frequency was minimal closer to the past and maximum in the near-present time. Resulting curves had the same shape the experimental data ones. In case of fish and insect for simulation the duplication rate coefficient even had to be set negative in order to repeat experimental curve shape. To the duplication rate coefficient in our simulation contribute 2 criteria: gene duplications and gene losses. As gene duplication is stochastical process it should always be a constant. So the changing in the coefficient should be solely explained by the increasing gene loss of old genes. The processes are explained by the evolution model with high gene duplication and loss ratio. The drop in number of in-paralogs is probably due to the BLAST algorithm. It is observed in comparing highly divergent species and BLAST cannot find the orthologs so precisely anymore. In the second part of my work I concentrated more on the specific function of inparalogs. Because such analysis is time-consuming it could be done on the limited number species. Here I used three insects: Drosophila melanogaster (fruit y), Anopheles gambiae (mosquito) and Apis mellifera (honeybee). After Inparnoid analyses and I listed the cluster of orthologs. Functional analyses of all listed genes were done using GO annotations and also KEGG PATHWAY database. We found, that the gene duplication pattern is unique for each species and that this uniqueness is rejected through the differences in functional classes of duplicated genes. The preferences for some classes reject the evolutionary trends of the last 350 million years and allow assumptions on the role of those genes duplications in the lifestyle of species. Furthermore, the observed gene duplications allowed me to find connections between genomic changes and their phenotypic manifestations. For example I found duplications within carbohydrate metabolism rejecting feed pattern adaptation, within photo- and olfactory-receptors indicating sensing adaptation and within troponin indicating adaptations in the development. Despite these species specific differences, found high correlations between the independently duplicated genes between the species. This might hint for a "pool" of genes preferentially duplicated. Taken together, the observed duplication patterns reject the adaptational process and provide us another link to the field of genomic zoology. N2 - In unserer Analyse untersuchten wir Genduplikationen mit besonderem Fokus auf "Inparalogen". In-paraloge sind Genduplikationen die nach Speziazion enstehen. Diese betrachteten wir hier in einer quantitativen als auch qualitativen Messreihe. Die quantitative Analyse umfasste Genome aus insgesamt 21 Spezies. Der Großteil diese hat verschiedene Lebensgewonheiten mit eine maximalen Evolutionsdistanz von 1100 Millionen Jahren. Die Arten bestanden aus Säugetiere, Fischen, Insekten und Würmern, sowie weiteren Chordaten. Alle Arten wurden mittels der Inparanoid Software paarweise "all against all" analysiert und in in-paralog Matrizen gespeichert. Basierend auf der in-paralog Matrix versuchten wir den evolutionären Baum über die Anzahl der In-paraloge als Maß für die evolutionäre Distanz zu rekonstruiren. Bei der Betrachtung alle 21 Arten würde der Baum jedoch sehr unpräzise: viel Arten wurden falsch plaziert. Durch eine Reduktion der Anzahl auf nur 12 Spezies clusterten jedoch alle Arten richtig, nur Insekten und Fische waren vertauscht. Anschließend wurde auf die In-paralog Matrix der Neighbor-net Algorithmus angewandt. Der daraus resultierende "Netz"-Baum repräsentiert die Spezies mit schneller oder langsamer Duplikationsrate im Vergleich zu den Anderen. Wir konnten Spezies mit sehr niedriger oder sehr hoher Rate identifizieren. Dabei korrelieren die Genome mit der höheren Rate zu der Anzahl der auftauchenden Whole Genome Duplikationen. Im nächsten Schritt erstellten wir Graphen für jede einzelne Spezies die das Verhältnis zwischen der Anzahl ihrer In-paraloger zur evolutionäre Distanz anzeigen. Jeder der 21 Graphen enthält insgesamt 20 Punkte. Die Punktkoordianten repräsentiern die evolutionere Distanz auf der X-Achse zu der Anzahl In-paraloger auf der Y-Achse. Bei Säugertieren wächst mit steigender Distanz auch die Anzahl In-paraloger. Das Verhältnis ist jedoch nicht linear. Bei Fischen und Insekten ist der Graph in der Nähe des Nullpunkts gleich dem von Säugetieren. Beim Erreichen einer Distanz von mehr als 800 Millionen Jahren sinkt jedoch die Anzahl der In-paralogen. Wir haben nun zusätzlich eine Simulation der Genduplikationen für alle 21 Spezies und alle dazu gehörigen Splits durchgeführt. Die Splits wurden aus publizierten Fossilien und "Molecular Clock" Daten entnommen. In unsere Simulation stieg die Duplikationsrate mit Annäherung an die heutige Zeit. In Vergleich zu den Experimentellen Daten haben die simulierten Graphen das gleiche Aussehen. Bei Fischen und Insekten musste der Koeffizient der Duplikationsrate negiert werden um die experimentelle Kurve zu erhalten. Der Koeffizient der Duplikationsrate stützt sich dabei auf folgende 2 Kriterien: Gen-Duplikation und Gen-Verlust. Da Genduplikationen einem stochastischen Prozess folgen sollten sie immer konstant sein. Daher sind die erhöhten Genverluste alter Gene verantwortlich für die Veränderunrg dieses Koeffizienten. Die Erklärung für dieses Verhalten basiert auf dem Evolutionsmodel - mit hohem Gen-Verlust und hoher Gen Duplikation. Der Verlust der In-Paralogen enstehet wahrscheinlich durch den BLAST Algorithmus. Man beobachtet dies besonders bei sehr divergenten Arten bei dennen BLAST die Orthologen nicht mehr so präzise findet. Der zweite Teil meiner Arbeit bezieht sich auf die spezifische Funktion von In-paralogen. Da diese Analyse sehr zeitaufwendig ist konnte sie nur an einer begrenzten Anzahl von Spezies durchgeführt werden. Hier habe ich die folgenden drei Insekten verwendet: Drosophila melanogaster (Fruchtfliege), Anopheles gambiae (Moskito) und Apis mellifera (Honigbiene). Alle durch die Inparanoid-Software entstandenen Cluster wurden mit der GO Annotation und der KEGG Pathway Datenbank analyiert. Wir haben herausgefunden, dass das Gen-Duplikationsmuster für jede Spezies einzigartig ist, und dass diese Einzigartigkeit durch Funktionale Unterschiede in duplizierten Genen entsteht. Die Bevorzugung einiger Gene repräsentiert die Evolutionsgeschichte der letzten 350 Millionen Jahre und erlaubt Annahmen über die Auswirkung der Gen Duplikationen im Leben der Spezies zu treffen. Weiterhin fanden wir durch die beobachteten Genduplikationen Zusammenhänge zwischen der Genomveränderung und ihrer phenotypischen Manifestation. Beispielsweise haben wir Duplikationen innerhalb des Karbohydratestoffwechsels für die Anpassung des Essvehaltens, Photo- und Olifaktorisch Rezeptoren - für Seh- und Geruchsvermögen und Troponin - zuständig für die Muskelentwicklung gefunden. Trotz diese speziesspezifischen Unterschiede haben wir starke Korrelation zwischen unabhängig duplizierten Genen erkannt. Dies könnte ein Indikator für einen "Pool" von bevorzugt duplizierten Genen sein. Zusammengefasst stellen die beobachteten Duplikationsmuster den Evolvierungsprozess dar, und liefern eine weitere Verbindung zur genomischen Zoologie. KW - Duplikation KW - Evolution KW - Genetik KW - In-paralogs KW - Gene duplication KW - Inparanoid Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51358 ER - TY - THES A1 - Keller, Alexander T1 - Secondary (and tertiary) structure of the ITS2 and its application for phylogenetic tree reconstructions and species identification T1 - Sekundär- und Tertiärstruktur der ITS2 und Anwendung für phylogenetische Baumberechnungen und Arteerkennung N2 - Biodiversity may be investigated and explored by the means of genetic sequence information and molecular phylogenetics. Yet, with ribosomal genes, information for phylogenetic studies may not only be retained from the primary sequence, but also from the secondary structure. Software that is able to cope with two dimensional data and designed to answer taxonomic questions has been recently developed and published as a new scientific pipeline. This thesis is concerned with expanding this pipeline by a tool that facialiates the annotation of a ribosomal region, namely the ITS2. We were also able to show that this states a crucial step for secondary structure phylogenetics and for data allocation of the ITS2-database. This resulting freely available tool determines high quality annotations. In a further study, the complete phylogenetic pipeline has been evaluated on a theoretical basis in a comprehensive simulation study. We were able to show that both, the accuracy and the robustness of phylogenetic trees are largely improved by the approach. The second major part of this thesis concentrates on case studies that applied this pipeline to resolve questions in taxonomy and ecology. We were able to determine several independent phylogenies within the green algae that further corroborate the idea that secondary structures improve the obtainable phylogenetic signal, but now from a biological perspective. This approach was applicable in studies on the species and genus level, but due to the conservation of the secondary structure also for investigations on the deeper level of taxonomy. An additional case study with blue butterflies indicates that this approach is not restricted to plants, but may also be used for metazoan phylogenies. The importance of high quality phylogenetic trees is indicated by two ecological studies that have been conducted. By integrating secondary structure phylogenetics, we were able to answer questions about the evolution of ant-plant interactions and of communities of bacteria residing on different plant tissues. Finally, we speculate how phylogenetic methods with RNA may be further enhanced by integration of the third dimension. This has been a speculative idea that was supplemented with a small phylogenetic example, however it shows that the great potential of structural phylogenetics has not been fully exploited yet. Altogether, this thesis comprises aspects of several different biological disciplines, which are evolutionary biology and biodiversity research, community and invasion ecology as well as molecular and structural biology. Further, it is complemented by statistical approaches and development of informatical software. All these different research areas are combined by the means of bioinformatics as the central connective link into one comprehensive thesis. N2 - Biologische Diversität kann mit Hilfe molekularer Sequenzinformation und phylogenetischen Methoden erforscht und erfasst werden. Bei ribosomalen Genen kann man jedoch wertvolle Information nicht nur aus der Primärsequenz beziehen, sondern auch aus der Sekundärstruktur. In den letzen Jahren wurde Software entwickelt, die solche Daten für taxonomische Fragestellung verwerten kann. Diese Arbeit beschäftigt sich mit einer Erweiterung dieser Methodik durch eine Software-Anwendung, die die Annotation des ribosomalen Genes ITS2 deutlich vereinfacht. Mit dieser Studie konnten wir zeigen, dass dies einen entscheidenden Schritt der Sequenz-Struktur-Phylogenie und der Datenerfassung der ITS2-Datenbank darstellt. Die daraus resultierende und frei verfügbare Anwendung ermöglicht Annotationen von hoher Güte. In einer weiteren Studie wurde mittels Simulationen der gesamte Arbeitsfluß der Sequenz-Struktur Phylogenie auf theoretischer Ebene evaluiert. Dabei zeigte sich, dass sich sowohl die Genauigkeit, als auch die Robustheit von phylogenetischen Stammbäumen durch diesen Ansatz deutlich verbessern. Der zweite große Teil der Arbeit befasst sich mit Fallbeispielen, in denen dieser Arbeitsfluß zur Aufklärung von taxomonischen and ökologischen Fragestellungen Anwendung fand. In diesem Rahmen konnten wir mehrere und voneinander unabhängige Phylogenien ermitteln, welche die theoretischen Ergebnisse einer Verbesserung phylogenetischer Bäume auch von biologischer Seite aus bekräftigen. Der Ansatz war anwendbar in sehr feinskaligen Studien auf Art bzw. Gattungsniveau, aber durch die starke Konservierung der Sekundärstruktur auch an sehr weit von einander entfernten taxonomischen Gruppen. Eine weitere Studie, die sich mit der Phylogenie von Bläulingen befasst, zeigt deutlich, dass dieser Ansatz nicht nur für Fragestellungen bei Pflanzen, sondern auch im Tierreich angewandt werden kann. Die Bedeutung von qualitativ hochwertigen Stammbäumen auch für andere Fachbereiche wird an zwei unserer ökologischen Studien deutlich: Mit Hinzunahme von Sekundärstruktur war es uns möglich Fragestellungen über die Evolution von Ameisen-Pflanzen Interaktionen sowie über ökologische Gemeinschaften von Bakterien auf verschiedenen Pflanzenteilen zu beantworten. Zuletzt gehen wir spekulativ auf die Frage ein, wie Strukturphylogenie um die dritte Dimension erweitert werden kann. Dies bleibt zwar spekulativ und wurde nur um ein kleines Fallbeispiel ergänzt, jedoch zeigt sich deutlich, dass das Potential von Strukturphylogenie noch nicht erschöpft ist. Insgesamt befasst sich diese Arbeit mit Aspekten aus verschiedenen biologischen Disziplinen: Evolutionsbiologie und Biodiversitätsforschung, sowie Gemeinschafts- und Invasionsökologie, aber auch Molekular- und Strukturbiologie. Dies wurde ergänzt durch statistische Ansätze und Entwicklung von informatischer Software. Diese verschiedenen Forschungsrichtungen wurden mit Hilfe der Bioinformatik als zentrales Bindeglied vereint. KW - Phylogenie KW - Evolution KW - Sekundärstruktur KW - DNS-Sequenz KW - Algen KW - Ribosomale RNS KW - rRNA KW - secondary structure KW - phylogeny evolution KW - sequence Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56151 ER - TY - THES A1 - Pinkert, Stefan T1 - The human proteome is shaped by evolution and interactions T1 - Das menschliche Proteom ist geformt durch Evolution und Interaktion N2 - Das menschliche Genom ist seit 2001 komplett sequenziert. Ein Großteil der Proteine wurde mittlerweile beschrieben und täglich werden bioinformatische Vorhersagen praktisch bestätigt. Als weiteres Großprojekt wurde kürzlich die Sequenzierung des Genoms von 1000 Menschen gestartet. Trotzdem ist immer noch wenig über die Evolution des gesamten menschlichen Proteoms bekannt. Proteindomänen und ihre Kombinationen sind teilweise sehr detailliert erforscht, aber es wurden noch nicht alle Domänenarchitekturen des Menschen in ihrer Gesamtheit miteinander verglichen. Der verwendete große hochqualitative Datensatz von Protein-Protein-Interaktionen und Komplexen stammt aus dem Jahr 2006 und ermöglicht es erstmals das menschliche Proteom mit einer vorher nicht möglichen Genauigkeit analysieren zu können. Hochentwickelte Cluster Algorithmen und die Verfügbarkeit von großer Rechenkapazität befähigen uns neue Information über Proteinnetzwerke ohne weitere Laborarbeit zu gewinnen. Die vorliegende Arbeit analysiert das menschliche Proteom auf drei verschiedenen Ebenen. Zuerst wurde der Ursprung von Proteinen basierend auf ihrer Domänenarchitektur analysiert, danach wurden Protein-Protein-Interaktionen untersucht und schließlich erfolgte Einteilung der Proteine nach ihren vorhandenen und fehlenden Interaktionen. Die meisten bekannten Proteine enthalten mindestens eine Domäne und die Proteinfunktion ergibt sich aus der Summe der Funktionen der einzelnen enthaltenen Domänen. Proteine, die auf der gleichen Domänenarchitektur basieren, das heißt die die gleichen Domänen in derselben Reihenfolge besitzen, sind homolog und daher aus einem gemeinsamen ursprünglichen Protein entstanden. Die Domänenarchitekturen der ursprünglichen Proteine wurden für 750000 Proteine aus 1313 Spezies bestimmt. Die Gruppierung von Spezies und ihrer Proteine ergibt sich aus taxonomischen Daten von NCBI-Taxonomy, welche mit zusätzlichen Informationen basierend auf molekularen Markern ergänzt wurden. Der resultierende Datensatz, bestehend aus 5817 Domänen und 32868 Domänenarchitekturen, war die Grundlage für die Bestimmung des Ursprungs der Proteine aufgrund ihrer Domänenarchitekturen. Es wurde festgestellt, dass nur ein kleiner Teil der neu evolvierten Domänenarchitekturen eines Taxons gleichzeitig auch im selben Taxon neu entstandene Proteindomänen enthält. Ein weiteres Ergebnis war, dass Domänenarchitekturen im Verlauf der Evolution länger und komplexer werden, und dass so verschiedene Organismen wie der Fadenwurm, die Fruchtfliege und der Mensch die gleiche Menge an unterschiedlichen Proteinen haben, aber deutliche Unterschiede in der Anzahl ihrer Domänenarchitekturen aufweisen. Der zweite Teil beschäftigt sich mit der Frage wie neu entstandene Proteine Bindungen mit dem schon bestehenden Proteinnetzwerk eingehen. In früheren Arbeiten wurde gezeigt, dass das Protein-Interaktions-Netzwerk ein skalenfreies Netz ist. Skalenfreie Netze, wie zum Beispiel das Internet, bestehen aus wenigen Knoten mit vielen Interaktionen, genannt Hubs, und andererseits aus vielen Knoten mit wenigen Interaktionen. Man vermutet, dass zwei Mechanismen zur Entstehung solcher Netzwerke führen. Erstens müssen neue Proteine um auch Teil des Proteinnetzwerkes zu werden mit Proteinen interagieren, die bereits Teil des Netzwerkes sind. Zweitens interagieren die neuen Proteine, gemäß der Theorie der bevorzugten Bindung, mit höherer Wahrscheinlichkeit mit solchen Proteinen im Netzwerk, die schon an zahlreichen weiteren Protein-Interaktionen beteiligt sind. Die Human Protein Reference Database stellt ein auf Informationen aus in-vivo Experimenten beruhendes Proteinnetzwerk für menschliche Proteine zur Verfügung. Basierend auf den in Kapitel I gewonnenen Informationen wurden die Proteine mit dem Ursprungstaxon ihrer Domänenarchitekturen versehen. Dadurch wurde gezeigt, dass ein Protein häufiger mit Proteinen, die im selben Taxon entstanden sind, interagiert, als mit Proteinen, die in anderen Taxa neu aufgetreten sind. Es stellte sich heraus, dass diese Interaktionsraten für alle Taxa deutlich höher waren, als durch das Zufallsmodel vorhergesagt wurden. Alle Taxa enthalten den gleichen Anteil an Proteinen mit vielen Interaktionen. Diese zwei Ergebnisse sprechen dagegen, dass die bevorzugte Bindung der alleinige Mechanismus ist, der zum heutigen Aufbau des menschlichen Proteininteraktion-Netzwerks beigetragen hat. Im dritten Teil wurden Proteine basierend auf dem Vorhandensein und der Abwesenheit von Interaktionen in Gruppen eingeteilt. Proteinnetzwerke können in kleine hoch vernetzte Teile zerlegt werden, die eine spezifische Funktion ausüben. Diese Gruppen können mit hoher statistischer Signifikanz berechnet werden, haben meistens jedoch keine biologische Relevanz. Mit einem neuen Algorithmus, welcher zusätzlich zu Interaktionen auch Nicht-Interaktionen berücksichtigt, wurde ein Datensatz bestehend aus 8,756 Proteinen und 32,331 Interaktionen neu unterteilt. Eine Einteilung in elf Gruppen zeigte hohe auf Gene Ontology basierte Werte und die Gruppen konnten signifikant einzelnen Zellteilen zugeordnet werden. Eine Gruppe besteht aus Proteinen, welche wenige Interaktionen miteinander aber viele Interaktionen zu zwei benachbarten Gruppen besitzen. Diese Gruppe enthält eine signifikant erhöhte Anzahl an Transportproteinen und die zwei benachbarten Gruppen haben eine erhöhte Anzahl an einerseits extrazellulären und andererseits im Zytoplasma und an der Membran lokalisierten Proteinen. Der Algorithmus hat damit unter Beweis gestellt das die Ergebnisse nicht bloß statistisch sondern auch biologisch relevant sind. Wenn wir auch noch weit vom Verständnis des Ursprungs der Spezies entfernt sind, so hat diese Arbeit doch einen Beitrag zum besseren Verständnis der Evolution auf dem Level der Proteine geleistet. Im Speziellen wurden neue Erkenntnisse über die Beziehung von Proteindomänen und Domänenarchitekturen, sowie ihre Präferenzen für Interaktionspartner im Interaktionsnetzwerk gewonnen. N2 - The human genome has been sequenced since 2001. Most proteins have been characterized now and with everyday more bioinformatical predictions are experimentally verified. A project is underway to sequence thousand humans. But still, little is known about the evolution of the human proteome itself. Domains and their combinations are analysed in detail but not all of the human domain architectures at once. Like no one before, we have large datasets of high quality human protein-protein-protein interactions and complexes available which allow us to characterize the human proteome with unmatched accuracy. Advanced clustering algorithms and computing power enable us to gain new information about protein interactions without touching a pipette. In this work, the human proteome is analysed at three different levels. First, the origin of the different types of proteins was analysed based on their domain architectures. The second part focuses on the protein-protein interactions. Finally, in the third part, proteins are clustered based on their interactions and non-interactions. Most proteins are built of domains and their function is the sum of their domain functions. Proteins that share the same domain architecture, the linear order of domains are homologues and should have originated from one common ancestral protein. This ancestor was calculated for roughly 750 000 proteins from 1313 species. The relations between the species are based on the NCBI Taxonomy and additional molecular data. The resulting data set of 5817 domains and 32868 domain architectures was used to estimate the origin of these proteins based on their architectures. It could be observed, that new domain architectures are only in a small fraction composed of domains arisen at the same taxon. It was also found that domain architectures increase in length and complexity in the course of evolution and that different organisms like worm, and human share nearly the same amount of proteins but differ in their number of distinct domain architectures. The second part of this thesis focuses on protein-protein interactions. This chapter addresses the question how new evolved proteins form connections within the existing network. The network built of protein-protein interactions was shown to be scale free. Scale free networks, like the internet, consist of few hubs with many connections and many nodes with few connections. They are thought to arise by two mechanisms. First, newly emerged proteins interact with proteins of the network. Second, according to the theory of preferential attachment, new proteins have a higher chance to interact with already interaction rich proteins. The Human Protein Reference Database provides an on in-vivo interaction data based network for human. With the data obtained from chapter one, proteins were marked with their taxon of origin based on their domain architectures. The interaction ratio of proteins of the same taxa compared to all interactions was calculated and higher values than the random model showed for nearly every taxa. On the other hand, there was no enrichment of proteins originated at the taxon of cellular organisms for the node degree found. The node degree is the number of links for this node. According to the theorie of preferential attachment the oldest nodes should have the most interactions and newly arisen proteins should be preferably attached to them not together. Both could not be shown in this analysis, preferential attachment could therefore not be the only explanation for the forming of the human protein interaction network. Finally in part three, proteins and all their interactions in the network are analysed. Protein networks can be divided into smaller highly interacting parts carrying out specific functions. This can be done with high statistical significance but still, it does not reflect the biological significance. Proteins were clustered based on their interactions and non-interactions with other proteins. A version with eleven clusters showed high gene ontology based ratings and clusters related to specific cell parts. One cluster consists of proteins having very few interactions together but many to proteins of two other clusters. This first cluster is significantly enriched with transport proteins and the two others are enriched with extracellular and cytoplasm/membrane located proteins. The algorithm seems therefore well suited to reflect the biological importance behind functional modules. Although we are still far from understanding the origin of species, this work has significantly contributed to a better understanding of evolution at the protein level and has, in particular, shown the relation of protein domains and protein architectures and their preferences for binding partners within interaction networks. KW - Evolution KW - Protein KW - Domäne KW - Interaktion KW - evolution KW - protein KW - interaction KW - domain Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35566 ER - TY - THES A1 - Gros, Andreas T1 - Interactions in the evolution of dispersal distance and emigration probability T1 - Wechselwirkungen bei der Evolution von Ausbreitungsdistanz und Auswanderwahrscheinlichkeit N2 - Chapter 1 - Evolution of local adaptations in dispersal strategies The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat’s edge and consequently, optimal dispersal probability and distance should decline towards the habitat’s border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model I investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. I compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. I conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel. Chapter 2 - How dispersal propensity and distance depend on the capability to assess population density We analyze the simultaneous evolution of emigration probability and dispersal distance for species with different abilities to assess habitat quality (population density) and which suffer from distance dependent dispersal costs. Using an individual-based model I simulate dispersal as a multistep (patch to patch) process in a world consisting of habitat patches surrounded by lethal matrix. Our simulations show that natal dispersal is strongly driven by kin-competition but that consecutive dispersal steps are mostly determined by the chance to immigrate into patches with lower population density. Consequently, individuals following an informed strategy where emigration probability depends on local population density disperse over larger distances than individuals performing density-independent emigration; this especially holds when variation in environmental conditions is spatially correlated. However, already moderate distance-dependent dispersal costs prevent the evolution of long-distance dispersal irrespectively of the chosen dispersal strategy. Chapter 3 - Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding Inbreeding avoidance and asymmetric competition over resources have both been identified as factors favouring the evolution of sex- biased dispersal. It has also been recognized that sex-specific costs of dispersal would promote selection for sexspecific dispersal, but there is little quantitative information on this aspect. In this paper I explore (i) the quantitative relationship between cost-asymmetry and a bias in dispersal, (ii) the influence of demographic stochasticity on this effect, and (iii) how inbreeding and cost-asymmetry interact in their effect on sex-specific dispersal. I adjust an existing analytical model to account for sex-specific costs of dispersal. Based on numerical calculations I predict a severe bias in dispersal already for small differences in dispersal costs. I corroborate these predictions in individualbased simulations, but show that demographic stochasticity generally leads to more balanced dispersal. In combination with inbreeding, cost asymmetries will usually determine which of the two sexes becomes the more dispersive. Chapter 4 - Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding Inbreeding depression, asymmetries in costs or benefits, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce a male bias in dispersal. The latter evolves if between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others. N2 - Die optimale Dispersal- oder Ausbreitungsstrategie (eine Kombination aus Auswanderwahrscheinlichkeit und Ausbreitungsdistanz) hängt hauptsächlich von dem Risiko ab, in einem für Reproduktion ungeeigneten Habitat zu enden. Dieses Risiko ist am Rand eines Habitats am höchsten, und daher sollten die evolvierenden Ausbreitungsdistanzen und Auswanderwahrscheinlichkeiten zum Rand des Habitats hin abnehmen. Dieser Selektionsdruck sollte zu räumlichen Gradienten in Ausbreitungsstrategien führen. Der Genfluss, der durch Dispersal verursacht wird, wirkt jedoch lokaler Anpassung der Ausbreitungsstrategie an die jeweilige Umgebung entgegen. Mit einem individuenbasierten Modell untersuchen wir die Evolution lokaler Anpassungen von Ausbreitungsstrategien innerhalb eines einzelnen, kreisförmigen Habitats. Ich vergleiche die evolvierenden Auswanderwahrscheinlichkeiten und -distanzen von sechs verschiedenen Ausbreitungsfunktionen (sog. Kernels, welche die Kombination aus Auswanderwahrscheinlichkeit und Ausbreitungsdistanz abbilden: zwei negativ-exponentielle Kernels, zwei schiefe Kernels, ein Kernel, der Ausbreitung nur in die unmittelbare Nachbarschaft der Mutterpflanze erlaubt (nearest-neighbor dispersal), und ein Kernel, der darin besteht, einen zufälligen Zielort auszuwählen (global dispersal)). Die Evolution der Form der Kernels untersuchen wir in Habitatinseln unterschiedlicher Größe. Ich konnte zeigen, dass eine minimale Habitatgröße nötig ist, um lokale Anpassungen der Ausbreitungsstrategien zu ermöglichen. In Habitatinseln, die diese minimale Größe überschreiten, nimmt die Differenz der Ausbreitungsdistanz zwischen Mitte und Rand des Habitats linear zu, wobei jedoch der Betrag der Differenz vom Kernel abhängt. Mit Ausnahme der Kernels “global dispersal” und “nearest-neighbor dispersal” gleichen sich die evolvierenden räumlichen Muster qualitativ für Auswanderwahrscheinlichkeit und Ausbreitungsdistanz der Kernels. Ich schließe daraus, dass trotz des Genflusses, der mit Ausbreitung einhergeht, lokale Anpassungen der Ausbreitungsstrategien möglich sind, wenn die Habitatinsel groß genug ist. Dies gilt wahrscheinlich für jede realistische Ausbreitungsfunktion. Kapitel 2 - Wie hängen Auswanderwahrscheinlichkeit und Ausbreitungsdistanz von der Fähigkeit ab, Populationsdichten zu bestimmen? Ich untersuche die gleichzeitige Evolution von Auswanderwahrscheinlichkeit und Ausbreitungsdistanz für Arten, die die Populationsdichte in ihren Habitaten unterschiedlich gut wahrnehmen können. In diesem System werden die Überlebenswahrscheinlichkeiten für Nachkommen von steigender Populationsdichte negativ beeinflusst. Mit einem individuenbasierten Modell simuliere ich Dispersal als einen schrittweisen Prozess, in dem Individuen von einem Habitat zum nächsten dispergieren können, wobei sie in jedem dieser Schritte mit einer bestimmten Wahrscheinlichkeit sterben. Meine Ergebnisse zeigen, dass die Emigration aus dem Geburtshabitat stark von Verwandtenselektion beeinflusst wird, wohingegen die Tendenz, weitere Dispersalschritte zu unternehmen, zum größten Teil von der Aussicht bestimmt wird, in ein Habitat einzuwandern, das eine geringere Populationsdichte – und damit bessere Bedingungen für das Überleben der Nachkommen – aufweist, als das Geburtshabitat. Hierbei wird deutlich, dass Individuen, die sich abhängig von der lokalen Populationsdichte dazu “entscheiden”, auszuwandern, im Durchschnitt größere Distanzen zurücklegen, als Individuen die unabhängig von der Populationsdichte auswandern. Dies gilt vor allem dann, wenn die Populationsdichten räumlich korreliert sind und damit dicht und weniger dicht besiedelte Habitate geklumpt vorkommen. Jedoch sorgen schon geringe Wahrscheinlichkeiten, während des Dispersal zu sterben, dafür, dass mit keiner Ausbreitungsstrategie Ausbreitungsdistanzen evolvieren, die im Schnitt mehr als zwei Schritte beinhalten. Kapitel 3 - Evolution von geschlechterspezifischen Ausbreitungsstrategien: die Rolle von geschlechtsspezifischer Wandermortalität, demographischer Mortalität und Inzucht-Depression Inzucht-Vermeidung und asymmetrische Ressourcen-Konkurrenz wurden schon als mögliche Auslöser der Evolution von geschlechterspezifischen Ausbreitungsstrate gien identifiziert. Daneben können jedoch auch unterschiedliche Wandermortalitäten die geschlechterspezifischen Ausbreitungsstrategien beeinflussen, insofern als dasjenige Geschlecht mit der höheren Wandermortalität wahrscheinlich philopatrisch wird, das andere hingegen das Dispersal übernimmt. Leider gibt es dazu wenig quantitative Daten. In diesem Kapitel untersuche ich den quantitativen Zusammenhang zwischen der Differenz in Wandermortalität und dem Ungleichgewicht in der Auswanderwahrscheinlichkeit der Geschlechter. Weiterhin untersuche ich den Einfluss von demographischer Stochastizität und wie Inzucht-Depression in Zusammenspiel mit Unterschieden in der Wandermortalität das Ungleichgewicht der Auswanderwahrscheinlichkeit beeinflusst. Dazu habe ich ein existierendes mathematisches Modell so angepasst, dass geschlechtsspezifische Wandermortalitäten betrachtet werden können. Auf dieser numerischen Basis kann ich Unterschiede in der Auswanderwahrscheinlichkeit von Geschlechtern selbst für sehr kleine Differenzen in der Mortalität vorhersagen. Ich bestätige diese Ergebnisse mit individuenbasierten Simulationen und zeige, dass demographische Stochastizität einen ausgleichenden Einfluss auf die Auswanderwahrscheinlichkeiten der beiden Geschlechter hat. Selbst bei gleichzeitig wirkender Inzucht-Depression bestimmen dieMortalitätsunterschiede welches Geschlecht die höhere Auswanderwahrscheinlichkeit entwickelt. Kapitel 4 - Geschlechtsspezifische räumlich-zeitliche Variabilität des reproduktiven Erfolgs fördert die Evolution von geschlechtsspezifischen Ausbreitungsstrategien Inzucht-Depression, asymmetrische Wandermortalität und unterschiedliche Paarungssysteme wurden als mögliche Auslöser für die Evolution von Ausbreitungsstrategien identifiziert, in denen die Auswanderwahrscheinlichkeit eines Geschlechtes die des anderen überwiegt. Wir verwenden individuenbasierte Simulationen, um den Einfluss des Paarungssystems und demographischer Stochastizität auf die Evolution geschlechtsspezifischen Dispersals zu untersuchen. Wir betrachten dabei Meta-Populationen, in denen Weibchen um Brutplätze und Männchen um Paarungen mit erfolgreichen Weibchen konkurrieren. Der Vergleich der Ergebnisse der Paarungssysteme “random-mating” (alle Weibchen wählen zufällig Männchen als Paarungspartner aus) und “harem” (alle Weibchen eines Habitats paaren sich mit demselben Männchen) zeigt, dass ein Unterschied in der Intensität der Konkurrenz um reproduktionsrelevante Ressourcen alleine nicht genügt, um einen Unterschied in den Auswanderwahrscheinlichkeiten der Geschlechter hervorzurufen. Vielmehr kommt es in solchen Fällen zu besagtem Ungleichgewicht, in denen ein Geschlecht eine größere Variabilität der Nachkommenzahl zwischen Habitaten erfährt. Dann evolviert das Geschlecht mit der höheren Varianz der Nachkommenzahl zwischen Habitaten die höhere Auswanderwahrscheinlichkeit. KW - Theoretische Ökologie KW - Ausbreitung KW - Evolution KW - Evolutionsstabile Strategie KW - Ausbreitungsstrategie KW - Auswanderwahrscheinlichkeit KW - Ausbreitungsdistanz KW - dispersal strategy KW - dispersal propensity KW - dispersal distance Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29226 ER -