TY - THES A1 - Liu, Ruiqi T1 - Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish T1 - Dynamische Regulation des Melanocortin-4-Rezeptor Systems bei der Körpergewichtshomöostase und der Fortpflanzungsreifung bei Fischen N2 - Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms. Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty. Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles. In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species. In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty. In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males. In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human. N2 - Die Pubertät ist ein wichtiger Lebensabschnitt mit physiologischen Veränderungen, die die Fortpflanzung von Tieren ermöglichen. Xiphophorus Fische weisen einen Polymorphismus in Bezug auf Körpergröße, Pubertätszeit und Fortpflanzungstaktik auf. Diese phänotypischen Polymorphismen werden durch den Pubertäts (P) Locus gesteuert. In X. nigrensis und X. multilineatus kodiert der P Locus den Melanocortin-4-Rezeptor (Mc4r) mit hohen genetischen Polymorphismen. Mc4r gehört zu den Melanocortin-Rezeptoren, die zur Klasse A der G-Protein-gekoppelten Rezeptoren gehören. Das Mc4r-Signalsystem besteht aus Mc4r, dem Agonisten Pomc (Prohormon der verschiedenen MSH und des ACTH), dem Antagonisten Agrp und dem akzessorischen Protein Mrap2. Beim Menschen spielt MC4R eine Rolle bei der Energiehomöostase. MC4R und MRAP2 Mutationen stehen im Zusammenhang mit menschlicher Fettleibigkeit, jedoch nicht mit der Pubertät. Mc4rs in X. nigrensis und X. multilineatus sind in drei Allelklassen vorhanden, A, B1 und B2, von denen die X-chromosomalen A Allele funktionelle Rezeptoren exprimieren und die spezifischen männlichen Y-chromosomalen B Allele für defekte Rezeptoren kodieren. Die männliche Körpergröße korreliert mit dem B Alleltyp und der Kopienzahl des B Allels. Spätreife große Männchen tragen B Allele in hoher Kopienzahl, während frühreife kleine Männchen B Allele in niedriger Kopienzahl oder nur A Allele tragen. Koexpressions-Experimente in Zellkultur zeigten, dass B Allele als dominant negative Mutanten-Rezeptor auf A Allele wirken können. In dieser Studie war das Hauptziel die biochemische Charakterisierung des Mechanismus der Pubertätsregulation durch Mc4r in X. nigrensis und X. multilineatus. Dabei wurde untersucht, ob die Regulation durch eine Mc4r Dimerisierung und/oder Mrap2 Interaktion mit Mc4r oder durch andere Mechanismen erfolgt. Des Weiteren wurde Mc4r in X. hellerii (einer anderen Schwertträger Art) und Medaka (ein phylogenetisch naheliegender Modellorganismus von Xiphophorus) untersucht, um zu verstehen, ob die untersuchten Mechanismen in anderen Arten konserviert sind. In Medaka werden die Gene des Mc4r Signalsystems (mc4r, mrap2, pomc, agrp1) vor dem Schlüpfen exprimiert, wobei agrp1 während des Schlüpfens und der ersten Fütterung stark hochreguliert wird. Im adulten Medaka werden diese Gene hauptsächlich im Gehirn exprimiert und die Transkripte von mrap2 und mc4r kolokalisieren, was auf eine Funktion bei der Modulation der Mc4r-Signaltransduktion hinweist. Ein funktionaler Vergleich zwischen Wildtyp- und mc4r-Knockout Medaka zeigte, dass der Mc4r-Knockout das Pubertäts-Timing nicht beeinflusst, das Schlüpfen jedoch aufgrund der verzögerten embryonalen Entwicklung von Knockout-Medaka signifikant verzögert. Daher ist das Mc4r System in Medaka eher an der Regulation des Wachstums als an der Pubertät beteiligt. Bei Xiphophorus wurde die Lokalisierung von mc4r und mrap2 in erwachsenen Gehirnen von X. nigrensis und X. hellerii durch in situ Hybridisierung charakterisiert. Bei beiden Spezies zeigen große Männchen eine auffallend hohe Expression von mc4r, während mrap2 bei großen und kleinen Männchen und Weibchen ein ähnliches Expressionsniveau zeigt. Im Gegensatz dazu weist X. hellerii nur Allele vom A-Typ auf, was darauf hinweist, dass sich die Pubertätsregulationsmechanismen in dem Genus Xiphophorus unabhängig voneinander entwickelt haben. Die funktionelle Analyse der Mrap2 und Mc4r A/B1/B2 Allele von X. multilineatus zeigte, dass erhöhte Mrap2-Mengen eine höhere cAMP-Antwort induzieren, die EC50-Werte sich jedoch bei der Mrap2-Coexpression mit Mc4r nicht wesentlich ändern (nur A Allel oder A und B1 Allele). A und B1 Allele wurden in großen männlichen Gehirnen höher exprimiert, während B2 Allele kaum exprimiert wurden. Mc4r A-B1 Zellen haben eine geringere cAMP-Produktion als Mc4r A Zellen. Zusammengenommen deutet dies auf eine Rolle von Mc4r-Allelen, jedoch nicht von Mrap2, bei der Signalgebung zur Regulation des Pubertätsbeginns hin. Interaktionsstudien mit den FRET-Methoden zeigten, dass Mc4r A und B Allele in vitro Heterodimere und Homodimere bilden können, jedoch nur für einen bestimmten Anteil der exprimierten Rezeptoren. Die Einzelmolekül-co-lokalisierungsstudie unter Verwendung von der hochauflösenden Mikroskopiemethode dSTORM bestätigte, dass nur wenige Mc4r A und B1 Rezeptoren auf der Membran co-lokalisiert sind. Insgesamt ist die artspezifische Regulation des Pubertätsbeginns bei X. nigrensis und X. multilineatus auf das Vorhandensein von Mc4r B Allelen und teilweise auf deren Interaktion mit Genprodukten des A Allels zurückzuführen. Dies wird dadurch begründet, dass ein bestimmtes cAMP Niveau (statische oder dynamische Schwelle) erreicht werden muss, um die Pubertät einzuleiten. In großen Männchen wird dieses cAMP Niveau später erreicht und so die Pubertät später eingeleitet. Zusammenfassend ist die Regulation des Pubertätsbeginns durch die dominante negative Wirkung von mutierten Mc4r Allelen ein spezieller Mechanismus, der bisher nur bei X. nigrensis und X. multilineatus zu finden ist. Andere Xiphophorus Arten haben offensichtlich durch andere Mechanismen die gleiche Funktion des Signalwegs entwickelt. In anderen Fischen (Medaka) spielt Mc4r eine Rolle bei der Regulation des Wachstums und erinnert an seine Rolle bei der Energie-Homöostase beim Menschen. Die Ergebnisse dieser Studie werden dazu beitragen, die biochemischen und physiologischen Funktionen des Mc4r-Systems bei Wirbeltieren, einschließlich Menschen, besser zu verstehen. KW - Japankärpfling KW - Mc4r KW - Schwertkärpfling KW - Pubertät KW - Molekularbiologie KW - GPCR KW - Mrap2 KW - Medaka KW - Xiphophorus KW - Puberty KW - Growth Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206536 ER - TY - THES A1 - Pasch, Elisabeth T1 - The role of SUN4 and related proteins in sperm head formation and fertility T1 - Die Rolle von SUN4 und verwandten Proteinen in der Spermienkopfformierung und Fertilität N2 - Spermiogenesis describes the differentiation of haploid germ cells into motile, fertilization-competent spermatozoa. During this fundamental transition the species-specific sperm head is formed, which necessitates profound nuclear restructuring coincident with the assembly of sperm-specific structures and chromatin compaction. In the case of the mouse, it is characterized by reshaping of the early round spermatid nucleus into an elongated sickle-shaped sperm head. This tremendous shape change requires the transduction of cytoskeletal forces onto the nuclear envelope (NE) or even further into the nuclear interior. LINC (linkers of nucleoskeleton and cytoskeleton) complexes might be involved in this process, due to their general function in bridging the NE and thereby physically connecting the nucleus to the peripheral cytoskeleton. LINC complexes consist of inner nuclear membrane integral SUN-domain proteins and outer nuclear membrane KASH-domain counterparts. SUN- and KASH-domain proteins are directly connected to each other within the perinuclear space, and are thus capable of transferring forces across the NE. To date, these protein complexes are known for their essential functions in nuclear migration, anchoring and positioning of the nucleus, and even for chromosome movements and the maintenance of cell polarity and nuclear shape. In this study LINC complexes were investigated with regard to their potential role in sperm head formation, in order to gain further insight into the processes occurring during spermiogenesis. To this end, the behavior and function of the testis-specific SUN4 protein was studied. The SUN-domain protein SUN4, which had received limited characterization prior to this work, was found to be exclusively expressed in haploid stages during germ cell development. In these cell stages, it specifically localized to the posterior NE at regions decorated by the manchette, a spermatid-specific structure which was previously shown to be involved in nuclear shaping. Mice deficient for SUN4 exhibited severely disorganized manchette residues and gravely misshapen sperm heads. These defects resulted in a globozoospermia-like phenotype and male mice infertility. Therefore, SUN4 was not only found to be mandatory for the correct assembly and anchorage of the manchette, but also for the correct localization of SUN3 and Nesprin1, as well as of other NE components. Interaction studies revealed that SUN4 had the potential to interact with SUN3, Nesprin1, and itself, and as such is likely to build functional LINC complexes that anchor the manchette and transfer cytoskeletal forces onto the nucleus. Taken together, the severe impact of SUN4 deficiency on the nucleocytoplasmic junction during sperm development provided direct evidence for a crucial role of SUN4 and other LINC complex components in mammalian sperm head formation and fertility. N2 - Die Spermiogenese beschreibt die Differenzierung haploider Keimzellen zu beweglichen, fortpflanzungsfähigen Spermatozoen. Während dieses fundamentalen Entwicklungsabschnittes wird neben dem Aufbau von spermienspezifischen Strukturen und der Kompaktierung des Chromatins auch der speziesspezifische Spermienkopf geformt. Im Falle der Maus ist dies eine aktive Umformung des runden Zellkerns in einen gestreckten, sichelförmigen Spermienkopf. Eine derart gravierende Formveränderung erfordert eine Kraftweiterleitung aus dem Zytoskelett auf die Kernhülle und das Kerninnere. In diesem Zusammenhang könnten LINC (linkers of nucleoskeleton and cytoskeleton) Komplexe eine Rolle spielen, da ihre grundlegende Funktion darin besteht die Kernhülle zu überbrücken und somit den Kern mit dem peripheren Zytoskelett zu verbinden. LlNC Komplexe werden aus SUN und KASH Domänen Proteinen aufgebaut, welche in die innere beziehungsweise äußere Kernmembran eingelagert sind. Diese membranintegralen Proteine sind direkt miteinander verbunden, so dass sie einen Komplex bilden, der zur Kräfteübertragung geeignet ist. LINC Komplexe besitzen vielfältige Funktionen in Prozessen wie nuklearer Migration, Verankerung und Positionierung des Zellkerns, Chromosomenbewegungen und in der Aufrechterhaltung der Zellpolarität oder der Kernform. Um ein größeres Verständnis der Prozesse während der Spermiogenese zu gewinnen, wurden in dieser Studie die Funktionen von LINC Komplexen in der Spermiogenese und ihre spezifische Rolle bei der gerichteten Spermienkopf-strukturierung untersucht. Dabei wurde insbesondere das Verhalten und die Funktion des bisher wenig charakterisierten SUN Domänen Proteins SUN4 erforscht. Entsprechend der Ergebnisse dieser Studie ist SUN4 ein hodenspezifisches Protein, das ausschließlich in haploiden Keimzellen exprimiert wird. In diesen lokalisiert es in der posterioren Kernhülle, spezifisch in Regionen, an die sich die spermatidenspezifische Manschette anlagert. Dies ist eine Struktur, für die bereits gezeigt wurde, dass sie an der Verformung des Kerns beteiligt ist. SUN4 defiziente Mäuse zeigten ausschließlich Spermatiden mit stark desorganisierten Manschettenüberresten und einen gravierend verformten Spermienkopf. Insgesamt führten die Fehlbildungen zu einem globozoospermieartigen Phänotyp und männlicher Sterilität bei Mäusen. Dabei zeigte sich, dass SUN4 nicht nur zwingend erforderlich ist für den korrekten Aufbau und die Verankerung der Manschette, sondern auch für die korrekte Lokalisation von SUN3 und Nesprin1, wie auch für weitere Komponenten der posterioren Kernhülle. Interaktionsstudien zeigten, dass SUN4 sowohl mit SUN3 und Nesprin1 als auch mit sich selbst interagieren kann, vermutlich um funktionsfähige LINC Komplexe zu bilden, die die Manchette verankern und Kräfte aus dem Zytoskelett auf den Kern übertragen. Zusammenfassend zeigen die schwerwiegenden Auswirkungen auf die kernzytoplasmatische Verbindung während der Spermienentwicklung, die durch den Verlust von SUN4 entstanden, einen direkten Nachweis einer entscheidenden Rolle von SUN4 und anderen LINC-Komplex-Komponenten für die Spermienkopfentwicklung und Fertilität bei Säugetieren. KW - Maus KW - spermiogenesis KW - Fertilität KW - Spermatogenese KW - Kernhülle KW - Molekularbiologie KW - LINC complex KW - SUN domain proteins KW - sperm head formation KW - fertility KW - Spermiogenese KW - Spermienbildung KW - Kernproteine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139092 ER - TY - THES A1 - Scholl, Christina T1 - Cellular and molecular mechanisms contributing to behavioral transitions and learning in the honeybee T1 - Zelluläre und molekulare Mechanismen, die zu Verhaltensänderungen und Lernen in der Honigbiene beitragen N2 - The honeybee Apis mellifera is a social insect well known for its complex behavior and the ability to learn tasks associated with central place foraging, such as visual navigation or to learn and remember odor-reward associations. Although its brain is smaller than 1mm² with only 8.2 x 105 neurons compared to ~ 20 x 109 in humans, bees still show amazing social, cognitive and learning skills. They express an age – related division of labor with nurse bees staying inside the hive and performing tasks like caring for the brood or cleaning, and foragers who collect food and water outside the hive. This challenges foragers with new responsibilities like sophisticated navigation skills to find and remember food sources, drastic changes in the sensory environment and to communicate new information to other bees. Associated with this plasticity of the behavior, the brain and especially the mushroom bodies (MBs) - sensory integration and association centers involved in learning and memory formation – undergo massive structural and functional neuronal alterations. Related to this background my thesis on one hand focuses on neuronal plasticity and underlying molecular mechanisms in the MBs that accompany the nurse – forager transition. In the first part I investigated an endogenous and an internal factor that may contribute to the nurse - forager phenotype plasticity and the correlating changes in neuronal network in the MBs: sensory exposure (light) and juvenile hormone (JH). Young bees were precociously exposed to light and subsequently synaptic complexes (microglomeruli, MG) in the MBs or respectively hemolymph juvenile hormone (JH) levels were quantified. The results show that light input indeed triggered a significant decrease in MG density, and mass spectrometry JH detection revealed an increase in JH titer. Interestingly light stimulation in young bees (presumably nurse bees) triggered changes in MG density and JH levels comparable to natural foragers. This indicates that both sensory stimuli as well as the endocrine system may play a part in preparing bees for the behavioral transition to foraging. Considering a connection between the JH levels and synaptic remodeling I used gene knockdown to disturb JH pathways and artificially increase the JH level. Even though the knockdown was successful, the results show that MG densities remained unchanged, showing no direct effect of JH on synaptic restructuring. To find a potential mediator of structural synaptic plasticity I focused on the calcium-calmodulin-dependent protein kinase II (CaMKII) in the second part of my thesis. CaMKII is a protein known to be involved in neuronal and behavioral plasticity and also plays an important part in structural plasticity reorganizing synapses. Therefore it is an interesting candidate for molecular mechanisms underlying MG reorganization in the MBs in the honeybee. Corresponding to the high abundance of CaMKII in the learning center in vertebrates (hippocampus), CaMKII was shown to be enriched in the MBs of the honeybee. Here I first investigated the function of CaMKII in learning and memory formation as from vertebrate work CaMKII is known to be associated with the strengthening of synaptic connections inducing long term potentiation and memory formation. The experimental approach included manipulating CaMKII function using 2 different inhibitors and a specific siRNA to create a CaMKII knockdown phenotype. Afterwards bees were subjected to classical olfactory conditioning which is known to induce stable long-term memory. All bees showed normal learning curves and an intact memory acquisition, short-term and mid-term memory (1 hour retention). However, in all cases long-term memory formation was significantly disrupted (24 and 72 hour retention). These results suggests the necessity of functional CaMKII in the MBs for the induction of both early and late phases of long-term memory in honeybees. The neuronal and molecular bases underlying long-term memory and the resulting plasticity in behavior is key to understanding higher brain function and phenotype plasticity. In this context CaMKII may be an important mediator inducing structural synaptic and neuronal changes in the MB synaptic network. N2 - Die Honigbiene Apis mellifera ist ein soziales Insekt, das bekannt ist für sein komplexes Verhalten und seine Fähigkeiten, Aufgaben in Bezug auf zentrales Sammelverhalten, zum Beispiel visuelle Navigation oder die Assoziation Duft – Belohnung, zu lernen, ist. Obwohl das Bienengehirn kleiner als 1mm² ist und im Vergleich zum dem des Menschen mit ~ 20 x 109 Neuronen nur 8.2 x 105 Neurone besitzt, verfügen Bienen trotzdem über beeindruckende soziale, kognitive und Lernfähigkeiten. Sie praktizieren eine altersabhängige Arbeitsteilung mit Ammen, die im Stock bleiben und Aufgaben wie das Versorgen der Brut übernehmen, und Sammlerinnen, die außerhalb des Stockes Futter und Wasser suchen. Dies fordert die Sammlerinnen zu neuen Aufgaben heraus, zum Beispiel hochentwickelte Navigation, drastischen Änderungen der sensorischen Umwelt, Lernen neuer Assoziationen und die Vermittlung der neuen Informationen an andere Bienen. Diese phänotypische Plastizität geht mit stark strukturellen und funktionell neuronalen Veränderungen im Gehirn und vor allem in den Pilzkörpern – sensorische Integrierungszentren, die an Lernen und Gedächtnisbildung beteiligt sind – einher. Passend dazu liegt ein Schwerpunkt meiner Arbeit darauf, die neuronale Plastizität und die molekularen Mechanismen im Pilzkörper, die mit der Wandlung der Amme hin zur Sammlerin zusammen hängen, zu untersuchen. Im ersten Teil werden ein endogener und ein interner Faktor, die zum Ammen - Sammlerinnen Übergang und den damit einhergehenden Änderungen im neuronalen Netzwerk beitragen könnten, untersucht: sensorische Input (Licht) und Juvenilhormon (JH). Junge Bienen wurden frühzeitig dem Licht ausgesetzt und anschließend synaptische Komplexe (Mikroglomeruli, MG) in den Pilzkörpern beziehungsweise JH aus der Hämolymphe quantifiziert. Die Ergebnisse zeigen, dass der Einfluss des Lichts tatsächlich eine plastische Verringerung der MG-Dichte auslöst und massenspektrometrische Messungen eine Zunahme an der JH-Menge in der Hämolymphe zeigen. Interessanterweise führt die Stimulation der jungen Ammen mit Licht zu Änderungen in der MG-Dichte und zu JH-Mengen, die vergleichbar sind mit den Werten bei natürlichen Sammlerinnen sind. Dies weist darauf hin, dass sowohl sensorische Stimuli als auch das Hormonsystem einen Beitrag zu der Vorbereitung der Bienen auf die bevorstehende Verhaltensänderung leisten. Um eine Verbindung zwischen der JH-Menge und synaptischen Umstrukturierungen in Betracht zu ziehen, habe ich einen Gen-Knockdown eingesetzt, um JH-Signalwege zu manipulieren und dadurch die JH-Menge künstlich zu erhöhen. Obwohl der Knockdown erfolgreich war, zeigen die Ergebnisse keinen direkten Zusammenhang zwischen der JH-Menge und einer synaptischer Umgestaltung. Um einen möglichen Vermittler von struktureller Plastizität zu finden, habe ich den Fokus im zweiten Teil meiner Arbeit auf die Calcium-Calmodulin-abhängige Protein-Kinase II (CaMKII) gerichtet. CaMKII ist ein Protein, das für seine Rolle sowohl in neuronaler und Verhaltensplastizität als auch in struktureller Plastizität bekannt ist. Daher ist es ein interessanter Kandidat, um molekulare Mechanismen zu untersuchen, die bei der MG-Umstrukturierung in den Pilzkörpern beteiligt sind. In Übereinstimmung mit dem hohen Vorkommen der CaMKII in Lernzentren in Vertebraten (Hippocampus) kommt CaMKII auch in hohem Maß in den Pilzkörpern der Biene vor. In dieser Arbeit habe ich zuerst die Funktion der CaMKII in Lernvorgängen und bei der Gedächtnisbildung untersucht, da bekannt ist, dass CaMKIII mit verstärkten synaptischen Verbindungen, die Langzeitpotenzierung und Gedächtnisbildung auslösen, in Zusammenhang gebracht wird. Der experimentelle Ansatz beinhaltet die Manipulation der CaMKII mit zwei verschiedenen Inhibitoren und einer spezifische siRNA, um einen CaMKII-Knockdown-Phänotyp zu erzeugen. Alle Substanzen wurden über den medialen Ocellartrakt injiziert, um zu gewährleisten, dass sie den Pilzkörper erreichen. Anschließend wurde eine klassische olfaktorische Konditionierung durchgeführt, die ein stabiles Langzeitgedächtnis induziert. Alle Bienen zeigten ein normales Lernverhalten, Kurzzeitgedächtnis und Mittelzeitgedächtnis (eine Stunde Speicherung) waren intakt. Jedoch war in allen Fällen das Langzeitgedächtnis beschädigt (24 und 72 Stunden Speicherung). Diese Ergebnisse legen nahe, dass CaMKII in den Pilzkörpern essentiell für das Auslösen von frühen und späten Formen des Langzeitgedächtnisses der Biene ist. Die neuronalen und molekularen Grundlagen des Langzeitgedächtnis sind der Schlüssel, um höhere Gehirnfunktionen und phänotypische Plastizität zu verstehen. CaMKII könnte ein wichtiger Vermittler sein, um strukturelle und neuronale synaptische Änderungen im Netzwerk des Pilzkörpers auszulösen. KW - Biene KW - honeybee KW - learning and memory KW - division of labor KW - Lernen KW - Molekularbiologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115527 ER - TY - THES A1 - Vona, Barbara C. T1 - Molecular Characterization of Genes Involved in Hearing Loss T1 - Molekulare Charakterisierung der in Hörstörungen involvierten Genen N2 - The auditory system is an exquisitely complex sensory organ dependent upon the synchronization of numerous processes for proper function. The molecular characterization of hereditary hearing loss is complicated by extreme genetic heterogeneity, wherein hundreds of genes dispersed genome-wide play a central and irreplaceable role in normal hearing function. The present study explores this area on a genome-wide and single gene basis for the detection of genetic mutations playing critical roles in human hearing. This work initiated with a high resolution SNP array study involving 109 individuals. A 6.9 Mb heterozygous deletion on chromosome 4q35.1q35.2 was identified in a syndromic patient that was in agreement with a chromosome 4q deletion syndrome diagnosis. A 99.9 kb heterozygous deletion of exons 58-64 in USH2A was identified in one patient. Two homozygous deletions and five heterozygous deletions in STRC (DFNB16) were also detected. The homozygous deletions alone were enough to resolve the hearing impairment in the two patients. A Sanger sequencing assay was developed to exclude a pseudogene with a high percentage sequence identity to STRC from the analysis, which further solved three of the six heterozygous deletion patients with the hemizygous, in silico predicted pathogenic mutations c.2726A>T (p.H909L), c.4918C>T (p.L1640F), and c.4402C>T (p.R1468X). A single patient who was copy neutral for STRC and without pathogenic copy number variations had compound heterozygous mutations [c. 2303_2313+1del12 (p.G768Vfs*77) and c.5125A>G (p.T1709A)] in STRC. It has been shown that STRC has been previously underestimated as a hearing loss gene. One additional patient is described who does not have pathogenic copy number variation but is the only affected member of his family having hearing loss with a paternally segregating translocation t(10;15)(q26.13;q21.1). Twenty-four patients without chromosomal aberrations and the above described patient with an USH2A heterozygous deletion were subjected to a targeted hearing loss gene next generation sequencing panel consisting of either 80 or 129 hearing-relevant genes. The patient having the USH2A heterozygous deletion also disclosed a second mutation in this gene [c.2276G>T (p.C759F)]. This compound heterozygous mutation is the most likely cause of hearing loss in this patient. Nine mutations in genes conferring autosomal dominant hearing loss [ACTG1 (DFNA20/26); CCDC50 (DFNA44); EYA4 (DFNA10); GRHL2 (DFNA28); MYH14 (DFNA4A); MYO6 (DFNA22); TCF21 and twice in MYO1A (DFNA48)] and four genes causing autosomal recessive hearing loss were detected [GJB2 (DFNB1A); MYO7A (DFNB2); MYO15A (DFNB3), and USH2A]. Nine normal hearing controls were also included. Statistical significance was achieved comparing controls and patients that revealed an excess of mutations in the hearing loss patients compared to the control group. The family with the GRHL2 c.1258-1G>A mutation is only the second family published worldwide with a mutation described in this gene to date, supporting the initial claim of this gene causing DFNA28 hearing loss. Audiogram analysis of five affected family members uncovered the progressive nature of DFNA28 hearing impairment. Regression analysis predicted the annual threshold deterioration in each of the five family members with multiple audiograms available over a number of years. N2 - Das Gehör als komplexes Sinnesorgan ist für eine einwandfreie Funktion abhängig von der Synchronisation zahlreicher Prozesse. Durch die extreme genetische Heterogenität wird die molekulare Charakterisierung einer erblich bedingten Schwerhörigkeit erschwert, da hunderte genomweit verteilter Gene eine zentrale und unersetzliche Rolle beim Hören spielen. Die vorliegende Studie untersucht dieses Forschungsgebiet auf genomweiter Ebene und auf der Basis von Einzelgenen, um genetische Mutationen zu ermitteln, die eine entscheidende Rolle bei der menschlichen auditiven Wahrnehmung besitzen. Diese Arbeit beginnt mit einer Studie an 109 Personen unter Zuhilfenahme von hochauflösenden SNP-Arrays. In dieser Studie wurde eine 6,9 Mb heterozygote Deletion auf Chromosom 4q35.1q35.2 bei einem syndromalen Patienten identifiziert, die eine Übereinstimmung mit einem Chromosom 4q-Deletionssyndrom aufwies. Bei einem weiteren Patienten wurde eine 99,9 kb heterozygote Deletion der Exons 58-64 in USH2A nachgewiesen. Zwei homozygote Deletionen und fünf heterozygote Deletionen in STRC (DFNB16) wurden ebenfalls detektiert. Die homozygoten Deletionen waren ausreichend, um die Schwerhörigkeit bei beiden Patienten zu klären. Ein Sanger-Sequenzierungs-Assay wurde entwickelt, um ein Pseudogen mit einer hohen prozentualen Sequenzidentität zu STRC von der Analyse auszuschließen. Dadurch konnten drei der sechs heterozygoten Deletionspatienten mit hemizygot in silico vorhergesagten pathogenen Mutationen, c.2726A>T (p.H909L), c.4918 C>T (p.L1640F) und c.4402C>T (p.R1468X), aufgeklärt werden. Ein Patient, der eine kopieneutrale STRC Variation und keine pathogenen Kopienzahlvariationen besaß, zeigte eine compound heterozygote Mutation [c.2303_2313+1del12 (p.G768Vfs*77) und c.5125A>G (p.T1709A)] in STRC. Es wurde gezeigt, daß die Beurteilung von STRC als Hörstörungsgen bisher unterschätzt wurde. Zusätzlich wird ein Patient beschrieben, der keine pathogenen Kopienzahlvariationen aufwies, aber das einzige Familienmitglied mit einer Schwerhörigkeit und einer paternalen segregierten Translokation t(10;15)(q26.13;q21.1) war. Vierundzwanzig Patienten ohne Chromosomenstörungen und der oben beschriebene Patient mit einer USH2A heterozygoten Deletion wurden mit einem Next Generation Sequencing Panel bestehend aus entweder 80 oder 129 für das Hören relevanter Gene untersucht. Der Patient mit einer USH2A heterozygoten Deletion zeigte eine zweite Mutation in diesem Gen [c.2276G>T (p.C759F)]. Diese compound heterozygote Mutation ist die wahrscheinlichste Ursache für die Schwerhörigkeit des Patienten. Neun Mutationen in Genen, die zu einem autosomal dominanten Hörverlust führen [ACTG1 (DFNA20/26); CCDC50 (DFNA44); EYA4 (DFNA10); GRHL2 (DFNA28); MYH14 (DFNA4A); MYO6 (DFNA22); TCF21], sowie zwei MYO1A (DFNA48) Mutationen und Mutationen in vier weiteren Genen, verantwortlich für autosomal rezessive Schwerhörigkeit [GJB2 (DFNB1A); MYO7A (DFNB2); MYO15A (DFNB3) und USH2A], konnten identifiziert werden. Neun normal hörende Kontrollen waren ebenfalls in diese Studie einbezogen worden. Durch einen Vergleich der Kontrollen mit den Patienten konnte eine statistische Signifikanz erreicht werden, die einen Überschuss an Mutationen bei der Patientengruppe gegenüber der Kontrollgruppe aufzeigte. Die Familie mit einer GRHL2 c.1258-1G>A Mutation ist die erst zweite Familie weltweit, die mit einer Mutation in diesem Gen publiziert worden ist. Dies unterstützt die initiale Behauptung, dass dieses Gen für eine DFNA28 Schwerhörigkeit verantwortlich ist. Die Audiogrammanalyse von fünf der betroffenen Familienmitglieder lässt eine voranschreitende Natur der DFNA28 Hörschädigung erkennen. Eine jährliche Verschlechterung der Hörschwelle bei jedem der fünf Familienmitglieder konnte eine Regressionsanalyse anhand von Audiogrammen, die über eine Anzahl von Jahren zur Verfügung standen, vorhersagen. KW - Molekularbiologie KW - Hearing loss KW - Hörverlust Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112170 N1 - Dieses Dokument wurde aus Datenschutzgründen - ohne inhaltliche Änderungen - erneut veröffentlicht. Die ursprüngliche Veröffentlichung war am: 09.07.2014 ER - TY - THES A1 - Ott, Christine Kornelia T1 - Diverse Aspects of the Sorting and Assembly Machinery in Human Mitochondria T1 - Diverse Aspekte der Sortierungs- und Assemblierungsmaschinerie in humanen Mitochondrien N2 - Mitochondria are organelles of endosymbiotic origin, which play many important roles in eukaryotic cells. Mitochondria are surrounded by two membranes and, considering that most of the mitochondrial proteins are produced in the cytosol, possess import machineries, which transport mitochondria-targeted proteins to their designated location. A special class of outer mitochondrial membrane (OMM) proteins, the β-barrel proteins, require the sorting and assembly machinery (SAM) for their OMM integration. Both mitochondrial β-barrel proteins and the central component of the SAM complex, Sam50, have homologs in gram-negative bacteria. In yeast mitochondria, bacterial β-barrel proteins can be imported and assembled into the OMM. Our group demonstrated that this, however, is not the case for human mitochondria, which import only neisserial β barrel proteins, but not those of Escherichia coli and Salmonella enterica. As a part of this study, I could demonstrate that β-barrel proteins such as Omp85 and PorB of different Neisseria species are targeted to human mitochondria. Interestingly, only proteins belonging to the neisserial Omp85 family were integrated into the OMM, whereas PorB was imported into mitochondria but not assembled. By exchanging parts of homologous neisserial Omp85 and E. coli BamA and, similarly, of neisserial PorB and E. coli OmpC, it could be demonstrated in this work that the mitochondrial import signal of bacterial β barrel proteins cannot be limited to one short linear sequence, but rather secondary structure and protein charge seem to play an important role, as well as specific residues in the last β-strand of Omp85. Omp85 possesses five conserved POTRA domains in its amino-terminal part. This work additionally demonstrated that in human mitochondria, at least two POTRA domains of Omp85 are necessary for membrane integration and functionality of Omp85. In the second part of this work, the influence of Sam50 on the mitochondrial cristae structure was investigated. This work contributed to a study performed by our group in which it was confirmed that Sam50 is present in a high molecular weight complex together with mitofilin, CHCHD3, CHCHD6, DnaJC11, metaxin 1 and metaxin 2. This connection between the inner and outer mitochondrial membrane was shown to be crucial for the maintenance of the mitochondrial cristae structure. In addition, a role of Sam50 in respiratory complex assembly, suggested by a SILAC experiment conducted in our group, could be confirmed by in vitro import studies. An influence of Sam50 not only on respiratory complexes but also on the recently described respiratory complex assembly factor TTC19 was demonstrated. It was shown that TTC19 not only plays a role in complex III assembly as published, but also influences the assembly of respiratory complex IV. Thus, in this part of the work a connection between the OMM protein Sam50 and maintenance of cristae structure, respiratory complex assembly and an assembly factor could be established. N2 - Mitochondrien sind Zellorganellen endosymbiotischen Ursprungs, die viele wichtige Funktionen in eukaryotischen Zellen haben. Mitochondrien sind von zwei Membranen umgeben, und da die meisten Mitochondrienproteine im Cytosol hergestellt werden, besitzen sie Importmaschinerien, die die für die Mitochondrien bestimmten Proteine zu ihrem jeweiligen Zielort transportieren. Eine besondere Klasse von Proteinen der äußeren Mitochondrienmembran (ÄMM), die β-Fassproteine, benötigen die Sortierungs- und Assemblierungsmaschinerie (SAM) für ihre Integration in die ÄMM. Sowohl mitochondriale β-Fassproteine als auch die zentrale Komponente des SAM-Komplexes, Sam50, haben Homologe in gramnegativen Bakterien. In Hefemitochondrien können bakterielle β Fassproteine importiert und in der ÄMM assembliert werden. Unsere Gruppe hat gezeigt, dass dies jedoch nicht auf humane Mitochondrien zutrifft, die nur neisserielle β-Fassproteine importieren, nicht aber diejenigen von Escherichia coli und Salmonella enterica. Im Rahmen dieser Studie konnte ich zeigen, dass β Fassproteine verschiedener Neisserienarten, wie Omp85 und PorB, in humane Mitochondrien aufgenommen werden. Interessanterweise wurden nur Proteine der neisseriellen Omp85-Familie in die ÄMM eingebaut, während PorB zwar importiert, jedoch nicht assembliert wurde. Durch das Austauschen von Teilen von homologem neisseriellen Omp85 und E.coli BamA und ebenso von neisseriellem PorB und E. coli OmpC konnte in dieser Arbeit gezeigt werden, dass das mitochondriale Importsignal bakterieller β-Fassproteine nicht auf eine kurze lineare Sequenz eingegrenzt werden kann, sondern dass die Sekundärstruktur und die Ladung des Proteins eine wichtige Rolle zu spielen scheinen, sowie im Fall von Omp85 einige bestimmte Aminosäurereste des letzten β-Stranges. Omp85 besitzt fünf konservierte POTRA-Domänen in seiner aminoterminalen Hälfte. In dieser Arbeit wurde zudem demonstriert, dass in humanen Mitochondrien mindestens zwei POTRA-Domänen von Omp85 für die Membranintegration und Funktionalität von Omp85 vorhanden sein müssen. Im zweiten Teil dieser Arbeit wurde der Einfluss von Sam50 auf die mitochondriale Cristaestruktur untersucht. Diese Arbeit hat zu einer von unserer Gruppe durchgeführten Studie beigetragen, in der bestätigt werden konnte, dass Sam50 in einem hochmolekularen Komplex mit Mitofilin, CHCHD3, CHCHD6, DnaJC11, Metaxin 1 und Metaxin 2 vorliegt. Es wurde gezeigt, dass diese Verbindung zwischen der inneren und äußeren Mitochondrienmembran unverzichtbar für die Aufrechterhaltung der mitochondrialen Cristaestruktur ist. Zudem konnte eine Rolle von Sam50 bei der Assemblierung von Atmungskettenkomplexen, die durch ein in unserem Labor durchgeführtes SILAC-Experiment nahegelegt worden war, durch in-vitro-Importstudien bestätigt werden. Weiterhin wurde ein Einfluss von Sam50 nicht nur auf Atmungskettenkomplexe, sondern auch auf einen vor kurzem beschriebenen Assemblierungsfaktor der Atmungskette, TTC19, demonstriert. Es wurde gezeigt, dass TTC19 nicht nur, wie veröffentlicht, eine Rolle bei der Assemblierung des Atmungskettenkomplexes III spielt, sondern auch die Assemblierung des Atmungskettenkomplexes IV beeinflusst. In diesem Teil der Arbeit konnte folglich eine Verbindung zwischen dem ÄMM-Protein Sam50 und der Organisation der Cristaestruktur, der Atmungskettenassemblierung und einem Assemblierungsfaktor nachgewiesen werden. KW - Mitochondrien KW - Mensch KW - Molekularbiologie KW - mitochondria KW - Import KW - Omp85 KW - beta-barrel-proteins KW - cristae KW - beta-Fassproteine KW - Cristaestruktur Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85462 ER - TY - THES A1 - Melzer, Juliane T1 - Die Funktion der p21-aktivierten Kinase Mbt in Neuroblasten während der Entwicklung des zentralen Nervensystems von Drosophila melanogaster T1 - The function of the p21-activated kinase Mbt in neuroblasts during the development of the central nervous system of Drosophila melanogaster N2 - p21-aktivierte Kinasen regulieren zahlreiche zelluläre Prozesse, die während der Entwicklung, aber auch beispielsweise bei der Krebsentstehung, von zentraler Bedeutung sind. Mbt, das einzige Typ II PAK-Protein von Drosophila melanogaster, spielt eine Rolle bei der Gehirnentwicklung. Eine Nullmutation von mbt, mbtP1, bildet kleinere Gehirne mit stark verkleinerten Pilzkörpern aus. In dieser Arbeit wurde die Funktion von Mbt in Neuroblasten untersucht. Mbt wurde als Teil des apikalen Proteinkomplexes in Neuroblasten des Zentralhirns nachgewiesen. Die apikale Lokalisation von Mbt ist Zellzyklus-abhängig und wird über Bindung an Cdc42 reguliert. Sie ist essentiell für die Funktion von Mbt in Neuroblasten. Trotz apikaler Mbt-Lokalisation in Neuroblasten zeigte die mbt Nullmutante keine Defekte des basalen Mechanismus der asymmetrischen Zellteilung. Mud zeigte geringfügige Lokalisationsveränderungen, die auf einen möglichen Einfluss von Mbt hinweisen. Obwohl PAKs zentrale Regulatoren des Zytoskeletts sind, zeigte die mbtP1 Mutante keine offensichtlichen Veränderungen des Aktin- und Tubulin-Zytoskeletts. Armadillo, ein Aktin-assoziiertes Mbt-Substrat, zeigte ebenfalls keine Lokalisationsveränderung in Neuroblasten. Mbt steuert jedoch die apikale Anreicherung von Cno, einem weiteren Aktin-assoziierten Protein, in Neuroblasten. Darüber hinaus beeinflusst Mbt die Zellgröße von Neuroblasten, sowie deren Proliferationspotenzial und Überleben. mbtP1 Neuroblasten sind kleiner als wildtypische Neuroblasten, haben ein geringeres Proliferationsvermögen und eine geringere Überlebenswahrscheinlichkeit. Der Zelltod von Neuroblasten ist jedoch ein sekundärer Effekt. Daher kann eine Blockierung von Apoptose den adulten Pilzkörperphänotyp nicht retten. Signalwege, die Zellgröße und Proliferation regulieren, wurden auf eine Beteiligung von Mbt hin analysiert. mbtP1 induzierte leichte Effekte im Insulin-Signalweg und die Delokalisation eines nukleolären Proteins. Eine genetische Interaktion von mbtP1 mit Mutationen in Genen des klassischen MAPK-Signalweges identifzierte mbt als Positivregulator dieses Signalweges im Auge. Ein ähnlicher, schwächerer Effekt wurde auch bzgl. der Proliferation und Größe von Neuroblasten beobachtet. Eine 2D-Gelanalyse von Larvengehirnen identifizierte Bic und Hsp83 als mögliche von Mbt regulierte Proteine. Diese Arbeit charakterisiert eine bisher unbekannte Funktion der p21-aktivierten Kinase Mbt in neuronalen Stammzellen und liefert damit Ansatzpunkte für eine detaillierte Aufklärung der Funktionsmechanismen von Typ II PAKs bei der Regulation von Zellproliferation und Überleben N2 - p21-activated kinases regulate numerous cellular processes central not only during development, but also for example for cancer pathogenesis. Mbt, the only type II PAK in Drosophila, regulates brain development. The mbt null mutant mbtP1 exhibits reduced brain size, with the mushroom bodies showing the most pronounced reduction. In this work, the function of Mbt in neuroblasts was investigated. Mbt was identified as a component of the apical protein complex in central brain neuroblasts. The apical localization of Mbt was cell cycle dependent and regulated by binding to Cdc42, which is essential for Mbt function in neuroblasts. Despite apical localization of Mbt, the mbtP1 null allel showed no defects in the basic mechanism of asymmetric cell division in larval neuroblasts. However, Mud showed minor localization changes indicating a possible influence of Mbt. Even though PAKs are well-known regulators of the cytoskeleton, no obvious changes in the actin and tubulin cytoskeleton were observed in mbtP1 neuroblasts. The localization of Armadillo, an actin-associated Mbt substrate, was also undisturbed throughout the cell cycle. Mbt controls the apical enrichment of Cno, another actin-associated protein. Moreover, Mbt influences neuroblast cell size, proliferation potential and survival. mbtP1 neuroblasts were smaller than wildtype neuroblasts and showed reduced proliferation activity and survival. However, the apoptotic loss of mbtP1 neuroblasts is a secondary effect. Thus, the adult mushroom body phenotype cannot be rescued by blocking apoptosis. Signalling pathways known to regulate growth and proliferation were analyzed with respect to a possible participation of Mbt. mbtP1 induced slight effects in the insulin pathway and strongly influenced the localization of an unknown nucleolar protein. Genetic interactions of mbtP1 with mutations in genes involved in the classical MAPK pathway identified mbt as a positive regulator of the MAPK pathway. A similar effect was also observed with respect to neuroblast proliferation and size. A 2D gel analysis of larval brains identified Bic and Hsp83 as candidate proteins, that might be regulated by Mbt. This work characterizes a novel function of the p21-activated kinase Mbt in neural stem cells. It provides starting points for a detailed analysis of the mechanisms of type II PAK functions in the control of cell growth, proliferation and survival. KW - Taufliege KW - Auge KW - Ontogenie KW - Pilzkörper KW - Molekularbiologie KW - p21-aktivierten Kinase KW - PAK KW - Neuroblast KW - Pilzkörper KW - Drosophila melanogaster KW - p21 activated kinase KW - PAK KW - neuroblast KW - mushroombody KW - Drosophila melanogaster Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85619 ER - TY - THES A1 - Vona, Barbara C. T1 - Molecular Characterization of Genes Involved in Hearing Loss T1 - Molekulare Charakterisierung der in Hörstörungen involvierten Genen N2 - The auditory system is an exquisitely complex sensory organ dependent upon the synchronization of numerous processes for proper function. The molecular characterization of hereditary hearing loss is complicated by extreme genetic heterogeneity, wherein hundreds of genes dispersed genome-wide play a central and irreplaceable role in normal hearing function. The present study explores this area on a genome-wide and single gene basis for the detection of genetic mutations playing critical roles in human hearing. This work initiated with a high resolution SNP array study involving 109 individuals. A 6.9 Mb heterozygous deletion on chromosome 4q35.1q35.2 was identified in a syndromic patient that was in agreement with a chromosome 4q deletion syndrome diagnosis. A 99.9 kb heterozygous deletion of exons 58-64 in USH2A was identified in one patient. Two homozygous deletions and five heterozygous deletions in STRC (DFNB16) were also detected. The homozygous deletions alone were enough to resolve the hearing impairment in the two patients. A Sanger sequencing assay was developed to exclude a pseudogene with a high percentage sequence identity to STRC from the analysis, which further solved three of the six heterozygous deletion patients with the hemizygous, in silico predicted pathogenic mutations c.2726A>T (p.H909L), c.4918C>T (p.L1640F), and c.4402C>T (p.R1468X). A single patient who was copy neutral for STRC and without pathogenic copy number variations had compound heterozygous mutations [c. 2303_2313+1del12 (p.G768Vfs*77) and c.5125A>G (p.T1709A)] in STRC. It has been shown that STRC has been previously underestimated as a hearing loss gene. One additional patient is described who does not have pathogenic copy number variation but is the only affected member of his family having hearing loss with a paternally segregating translocation t(10;15)(q26.13;q21.1). Twenty-four patients without chromosomal aberrations and the above described patient with an USH2A heterozygous deletion were subjected to a targeted hearing loss gene next generation sequencing panel consisting of either 80 or 129 hearing-relevant genes. The patient having the USH2A heterozygous deletion also disclosed a second mutation in this gene [c.2276G>T (p.C759F)]. This compound heterozygous mutation is the most likely cause of hearing loss in this patient. Nine mutations in genes conferring autosomal dominant hearing loss [ACTG1 (DFNA20/26); CCDC50 (DFNA44); EYA4 (DFNA10); GRHL2 (DFNA28); MYH14 (DFNA4A); MYO6 (DFNA22); TCF21 and twice in MYO1A (DFNA48)] and four genes causing autosomal recessive hearing loss were detected [GJB2 (DFNB1A); MYO7A (DFNB2); MYO15A (DFNB3), and USH2A]. Nine normal hearing controls were also included. Statistical significance was achieved comparing controls and patients that revealed an excess of mutations in the hearing loss patients compared to the control group. The family with the GRHL2 c.1258-1G>A mutation is only the second family published worldwide with a mutation described in this gene to date, supporting the initial claim of this gene causing DFNA28 hearing loss. Audiogram analysis of five affected family members uncovered the progressive nature of DFNA28 hearing impairment. Regression analysis predicted the annual threshold deterioration in each of the five family members with multiple audiograms available over a number of years. N2 - Das Gehör als komplexes Sinnesorgan ist für eine einwandfreie Funktion abhängig von der Synchronisation zahlreicher Prozesse. Durch die extreme genetische Heterogenität wird die molekulare Charakterisierung einer erblich bedingten Schwerhörigkeit erschwert, da hunderte genomweit verteilter Gene eine zentrale und unersetzliche Rolle beim Hören spielen. Die vorliegende Studie untersucht dieses Forschungsgebiet auf genomweiter Ebene und auf der Basis von Einzelgenen, um genetische Mutationen zu ermitteln, die eine entscheidende Rolle bei der menschlichen auditiven Wahrnehmung besitzen. Diese Arbeit beginnt mit einer Studie an 109 Personen unter Zuhilfenahme von hochauflösenden SNP-Arrays. In dieser Studie wurde eine 6,9 Mb heterozygote Deletion auf Chromosom 4q35.1q35.2 bei einem syndromalen Patienten identifiziert, die eine Übereinstimmung mit einem Chromosom 4q-Deletionssyndrom aufwies. Bei einem weiteren Patienten wurde eine 99,9 kb heterozygote Deletion der Exons 58-64 in USH2A nachgewiesen. Zwei homozygote Deletionen und fünf heterozygote Deletionen in STRC (DFNB16) wurden ebenfalls detektiert. Die homozygoten Deletionen waren ausreichend, um die Schwerhörigkeit bei beiden Patienten zu klären. Ein Sanger-Sequenzierungs-Assay wurde entwickelt, um ein Pseudogen mit einer hohen prozentualen Sequenzidentität zu STRC von der Analyse auszuschließen. Dadurch konnten drei der sechs heterozygoten Deletionspatienten mit hemizygot in silico vorhergesagten pathogenen Mutationen, c.2726A>T (p.H909L), c.4918 C>T (p.L1640F) und c.4402C>T (p.R1468X), aufgeklärt werden. Ein Patient, der eine kopieneutrale STRC Variation und keine pathogenen Kopienzahlvariationen besaß, zeigte eine compound heterozygote Mutation [c.2303_2313+1del12 (p.G768Vfs*77) und c.5125A>G (p.T1709A)] in STRC. Es wurde gezeigt, daß die Beurteilung von STRC als Hörstörungsgen bisher unterschätzt wurde. Zusätzlich wird ein Patient beschrieben, der keine pathogenen Kopienzahlvariationen aufwies, aber das einzige Familienmitglied mit einer Schwerhörigkeit und einer paternalen segregierten Translokation t(10;15)(q26.13;q21.1) war. Vierundzwanzig Patienten ohne Chromosomenstörungen und der oben beschriebene Patient mit einer USH2A heterozygoten Deletion wurden mit einem Next Generation Sequencing Panel bestehend aus entweder 80 oder 129 für das Hören relevanter Gene untersucht. Der Patient mit einer USH2A heterozygoten Deletion zeigte eine zweite Mutation in diesem Gen [c.2276G>T (p.C759F)]. Diese compound heterozygote Mutation ist die wahrscheinlichste Ursache für die Schwerhörigkeit des Patienten. Neun Mutationen in Genen, die zu einem autosomal dominanten Hörverlust führen [ACTG1 (DFNA20/26); CCDC50 (DFNA44); EYA4 (DFNA10); GRHL2 (DFNA28); MYH14 (DFNA4A); MYO6 (DFNA22); TCF21], sowie zwei MYO1A (DFNA48) Mutationen und Mutationen in vier weiteren Genen, verantwortlich für autosomal rezessive Schwerhörigkeit [GJB2 (DFNB1A); MYO7A (DFNB2); MYO15A (DFNB3) und USH2A], konnten identifiziert werden. Neun normal hörende Kontrollen waren ebenfalls in diese Studie einbezogen worden. Durch einen Vergleich der Kontrollen mit den Patienten konnte eine statistische Signifikanz erreicht werden, die einen Überschuss an Mutationen bei der Patientengruppe gegenüber der Kontrollgruppe aufzeigte. Die Familie mit einer GRHL2 c.1258-1G>A Mutation ist die erst zweite Familie weltweit, die mit einer Mutation in diesem Gen publiziert worden ist. Dies unterstützt die initiale Behauptung, dass dieses Gen für eine DFNA28 Schwerhörigkeit verantwortlich ist. Die Audiogrammanalyse von fünf der betroffenen Familienmitglieder lässt eine voranschreitende Natur der DFNA28 Hörschädigung erkennen. Eine jährliche Verschlechterung der Hörschwelle bei jedem der fünf Familienmitglieder konnte eine Regressionsanalyse anhand von Audiogrammen, die über eine Anzahl von Jahren zur Verfügung standen, vorhersagen. KW - Hearing loss KW - Molekularbiologie KW - Hörverlust Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-98031 N1 - Aus datenschutzrechtlichen Gründen wurde der Zugriff auf den Volltext zu diesem Dokument gesperrt. Eine inhaltlich identische neue Version ist erhältlich unter: http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112170 ER - TY - THES A1 - Schramm, Sabine T1 - SYCE3, ein neues Synaptonemalkomplexprotein: Expression, funktionelle Analyse und Bindungspartner T1 - SYCE3, a novel synaptonemal complex protein:Expression, functional analysis and binding partners N2 - Der Synaptonemalkomplex ist eine evolutionär hoch konservierte Struktur. Er wird spezifisch während der Prophase I der Meiose ausgebildet und ist essentiell für die Segregation der homologen Chromosomen während der Meiose und auch für die Entstehung genetischer Vielfalt. Der Synaptonemalkomplex ist eine proteinöse Struktur, deren Aufbau dem einer Leiter ähnelt. Dabei werden die Leiterholme als Lateralelemente bezeichnet. Sie bestehen unter anderem aus den Proteinen SYCP2 und SYCP3 und assoziieren mit dem Chromatin der homologen Chromosomen. Die Stufen der Leiter bestehen hingegen aus Transversalfilamenten, deren Hauptkomponente parallele Homodimere des meiosespezifische Proteins SYCP1 sind. Dabei wird ein SYCP1 Dimer mit seinem C-Terminus in den Lateralelementen verankert und kann über seine N-terminale Domäne eine schwache Interaktion mit der N-terminalen Domäne eines gegenüberliegenden SYCP1 Dimers eingehen. Um diese Bindung zu stabilisieren werden Proteine des Zentralelements des Synaptonemalkomplexes benötigt: Während SYCE1 durch seine Interaktion mit SYCP1 die N-terminale Assoziation zweier gegenüberliegender SYCP1 Dimere stabilisiert, verknüpfen die zwei anderen zentralelementspezifischen Proteine SYCE2 und Tex12 lateral benachbarte SYCP1 Filamente und breiten so das SYCP1 Netzwerk entlang der chromosomalen Achsen aus. Dieser Prozess wird als Synapse bezeichnet und stellt eines der Schlüsselereignisse der Meiose dar. Fehler während dieses Prozesses führen meist zu Aneuploidie der entstehenden Gameten oder zum Abbruch der Meiose und somit zu Infertilität des betroffenen Organismus. In dieser Arbeit wurde mit SYCE3 ein neues Protein des murinen Synaptonemalkomplexes charakterisiert. Es konnte gezeigt werden, dass SYCE3 meiosespezifisch in Männchen und Weibchen exprimiert wird und Bestandteil des Zentralelements des Synaptonemalkomplexes ist. Hierbei zeigt es dasselbe Verteilungsmuster wie SYCP1 und SYCE1 und kann mit beiden Proteinen interagieren. Eine zusätzliche Interaktion konnte zwischen SYCE3 und SYCE2 nachgewiesen werden. Durch Untersuchungen an entsprechenden Knockout Mausmodellen konnte in dieser Arbeit außerdem gezeigt werden, dass SYCE3 in Abwesenheit von SYCP1 nicht an die chromosomalen Achsen rekrutiert werden kann. Die Ausbildung der Lateralelemente und auch die Anwesenheit der anderen zentralelementspezifischen Proteine SYCE1 und SYCE2 sind hingegen für die Anlagerung von SYCE3 an die chromosomalen Achsen nicht essentiell. Somit steht SYCE3 hinsichtlich seiner Bedeutung für die Paarung und die Synapse der homologen Chromosomen hierarchisch offenbar über den bisher beschriebenen Zentralelementproteinen SYCE1, SYCE2 und Tex12. Die funktionelle Bedeutung von SYCE3 für die Synapse der homologen Chromosomen und für den korrekten Ablauf der homologen Rekombination wurde im Rahmen dieser Arbeit durch die Herstellung und die Charakterisierung einer Syce3-/- Maus detailliert untersucht: Dabei führte der Knockout von SYCE3 zur Infertilität in beiden Geschlechtern, die gleichzeitig mit einer signifikanten Reduktion der Größe der entsprechenden Hoden und Ovarien im Vergleich zum Wildtyp einherging. Weitere Untersuchungen ergaben zudem, dass es in Syce3 defizienten Tieren zu einem Abbruch der Meiose kommt. Dabei hatte das Fehlen von SYCE3 keinen Einfluss auf die Ausbildung der Axialelemente. Die Initiation der Synapse hingegen war sowohl in Oocyten als auch in Spermatocyten in Abwesenheit von SYCE3 stark gestört. Darüber hinaus konnte in der vorliegenden Arbeit nachgewiesen werden, dass das Fehlen von SYCE3 Einfluss auf die homologe Rekombination nimmt: Zwar können sich frühe (DNA Doppelstrangbrüche) und intermediäre (Transitionsknoten) Rekombinationsereignisse in der Abwesenheit von SYCE3 ausbilden, die Prozessierung zu späten Rekombinationsstrukturen (Rekombinationsknoten) und die damit einhergehende Ausbildung von Crossing-over Strukturen fand jedoch nicht statt. Zusammengefasst wurde in dieser Arbeit gezeigt, dass das neue Synaptonemalkomplexprotein SYCE3 essentiell für die Fertilität von Mäusen ist. Durch den Knockout von Syce3 kann die Synapse zwischen den Homoligen nicht initiiert werden und es findet kein Crossing-over statt. Im Assembly Prozess des Synaptonemalkomplexes agiert SYCE3 oberhalb der anderen zentralelementspezifischen Proteine und unterhalb von SYCP1. N2 - The synaptonemal complex is an evolutionary highly conserved structure. It assembles specifically during prophase I of meiosis and is essential for the segregation of homologous chromosomes and thus represents a major determinant of the genetic diversity of sexually reproducing organisms. The synaptonemal complex is a proteinacious, ladder-like structure. The ladder beams are termed lateral elements and are composed of the meiosis-specific proteins SYCP2 and SYCP3 which are associated with the chromatin of the homologs. The rungs are made up of transverse filaments mainly consisting of the meiosis-specific protein SYCP1. SYCP1 forms parallel homodimers that are anchored via their C-termini to the lateral elements and interact in a head-to-head fashion with an opposing SYCP1 homodimer. For stabilizing this interaction additional proteins are essential. These are components of the so-called central element of the synaptonemal complex: while SYCE1 stabilizes the N-terminal association of opposing SYCP1 homodimers, the two other central element specific proteins SYCE2 and Tex12 connect adjoined SYCP1 filaments and thus elongate the SYCP1 network along the homologs. This process is termed synapsis and is a key feature of meiosis. Errors occurring during this process frequently lead to aneuploidy of the resulting gametes or cause meiotic arrest and infertility. Within the scope of this study a novel protein of the murine synaptonemal complex, we named SYCE3, was characterized. SYCE3 is exclusively expressed during male and female meiosis and is a component of the central element. Its expression pattern resembles that of SYCP1 and SYCE1 and it is able to interact with both of these proteins. Additionally, an interaction between SYCE3 and SYCE2 could be verified. In the context of this dissertation it was found that loading of SYCE3 to the chromosomal axis requires SYCP1. In contrast, chromosome loading of SYCE3 was independent of lateral element assembly and of the presence of the other central element specific proteins, SYCE1, SYCE2 and Tex12. The second thematic complex addressed in this thesis was the relevance of SYCE3 for synapsis and homologous recombination. To this end a Syce3-/- mouse was generated. Syce3-/- mice are infertile and both testes and ovaries are characterized by a significant reduction in size compared to wild-type littermates. Furthermore, depletion of SYCE3 had no influence on the assembly of axial elements and in males alignment of homologs was not affected. However, Syce3-/- oocytes and spermatocytes were unable to initiate synapsis between homologous chromosomes. In addition, homologous recombination was analyzed in the scope of this study and the obtained data strongly points to a central role of SYCE3 during this process: while early (DNA double-strand breaks) and intermediate (transition nodules) recombination events could take place in the absence of SYCE3, structures indicating late recombination events (recombination nodules) and sites of homologous recombination (crossovers) failed to develop. Taken together, this thesis clearly demonstrates that the novel synaptonemal complex protein SYCE3 is essential for fertility in mice. Deletion of Syce3 blocks initiation of synapsis and formation of crossovers. During synaptonemal complex assembly, SYCE3 acts downstream of SYCP1, but upstream of other central element proteins (SYCE1, SYCE2 and Tex12). KW - Meiose KW - Molekularbiologie KW - Fertilität KW - Synaptonemalkomplex KW - Meiosis KW - Synaptonemal complex KW - fertility Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70903 ER - TY - THES A1 - Nuwal, Tulip T1 - Characterization of Synapsin, Tubulin-Binding Chaperone E-like, And Their Putative Interactions With Synapse Associated Protein Of 47 kDa In Drosophila melanogaster N2 - In this thesis we have used Drosophila melanogaster as a model organism to investigate proteins and their putative interacting partners that are directly or indirectly involved in the release of neurotransmitters at the synapse. We have used molecular techniques to investigate conserved synaptic proteins, synapsin and synapse associated protein of 47 kD (SAP47), and a putative interaction partner of SAP47, tubulin binding chaperone E-like (TBCEL). SAP47 and synapsins are highly conserved synaptic vesicle associated proteins in Drosophila melanogaster. To further investigate the role and function of Sap47 and Syn genes, we had earlier generated the null mutants by P-element mutagenesis (Funk et al., 2004; Godenschwege et al., 2004). Western blots and ELISA of brain homogenates from Sap47156 null mutants showed the presence of up-regulated phospho-synapsin in comparison to wild-type (CS) and the presence of up-regulated phospho-synapsin was partially abolished when a pan-neuronal rescue of SAP47 was performed by the Gal4- UAS technique. Thus, the results suggest a qualitative and quantitative modulation of synapsin by SAP47. At the transcript level, we did not observe any difference in content of Syn transcript in Sap47156 and wild-type CS flies. The question of a direct molecular interaction between SAP47 and synapsin was investigated by co-immunoprecipitation (Co-IP) experiments and we did not find any stable interactions under the several IP conditions we tested. The possibility of Sap47 as a modifier of Syn at the genetic level was investigated by generating and testing homozygous double null mutants of Sap47 and Syn. The Syn97, Sap47156 double mutants are viable but have a reduced life span and decreased locomotion when compared to CS. In 2D-PAGE analysis of synapsins we identified trains of spots corresponding to synapsins, suggesting that synapsin has several isoforms and each one of them is posttranslationally modified. In an analysis by Blue native-SDS-PAGE (BN-SDS-2D- PAGE) and Western blot we observed synapsin and SAP47 signals to be present at 700-900 kDa and 200-250 kDa, respectively, suggesting that they are part of large but different complexes. We also report the possibility of Drosophila synapsin forming homo- and heteromultimers, which has also been reported for synapsins of vertebrates. In parallel to the above experiments, phosphorylation of synapsins in Drosophila was studied by IP techniques followed by 1D-SDS gel electrophoresis and mass spectrometry (in collaboration with S. Heo and G. Lubec). We identified and verified 5 unique phosphorylation sites in Drosophila synapsin from our MS analysis. Apart from phosphorylation modifications we identified several other PTMs which have not been verified. The significance of these phosphorylations and other identified PTMs needs to be investigated further and their implications for synapsin function and Drosophila behavior has to be elucidated by further experiments. In a collaborative project with S. Kneitz and N. Nuwal, we investigated the effects of Sap156 and Syn97 mutations by performing a whole Drosophila transcriptome microarray analysis of the individual null mutants and the double mutants (V2 and V3). We obtained several candidates which were significantly altered in the mutants. These genes need to be investigated further to elucidate their interactions with Sap47 and Syn. In another project, we investigated the role and function of Drosophila tubulin- binding chaperone E-like (Tbcel, CG12214). The TBCEL protein has high homology to vertebrate TBCE-like (or E-like) which has high sequence similarity to tubulin-binding chaperone E (TBCE) (hence the name TBCE-Like). We generated an anti-TBCEL polyclonal antiserum (in collaboration with G. Krohne). According to flybase, the Tbcel gene has only one exon and codes for two different transcripts by alternative transcription start sites. The longer transcript RB is present only in males whereas the shorter transcript RA is present only in females. In order to study the gene function we performed P- element jump-out mutagenesis to generate deletion mutants. We used the NP4786 (NP) stock which has a P(GawB) insertion in the 5’ UTR of the Tbcel gene. NP4786 flies are homozygous lethal due to a second-site lethality as the flies are viable over a deficiency (Df) chromosome (a deletion of genomic region spanning the Tbcel gene and other upstream and downstream genes). We performed the P-element mutagenesis twice. In the first trial we obtained only revertants and the second experiment is still in progress. In the second attempt, jump-out was performed over the deficiency chromosome to prevent homologous chromosome mediated double stranded DNA repair. During the second mutagenesis an insertion stock G18151 became available. These flies had a P-element insertion in the open reading frame (ORF) of the Tbcel gene but was homozygous viable. Western blots of fresh tissue homogenates of NP/Df and G18151 flies probed with anti-TBCEL antiserum showed no TBCEL signal, suggesting that these flies are Tbcel null mutants. We used these flies for further immunohistochemical analyses and found that TBCEL is specifically expressed in the cytoplasm of cyst cells of the testes and is associated with the tubulin of spermatid tails in wild-type CS, whereas in NP/Df and G18151 flies the TBCEL staining in the cyst cells was absent and there was a disruption of actin investment cones. We also found enrichment of TBCEL staining around the actin investment cone. These results are also supported by the observation that the enhancer trap expression of the NP4786 line is localised to the cyst cells, similar to TBCEL expression. Also, male fertility of NP/Df and G18151 flies was tested and they were found to be sterile with few escapers. Thus, these results suggest that TBCEL is involved in Drosophila spermatogenesis with a possible role in the spermatid elongation and individualisation process. N2 - In dieser Arbeit benutzte ich Drosophila melanogaster als Modellorganismus für die Untersuchung von Proteinen und ihren möglichen Interaktionspartnern, die direkt oder indirekt an der Freisetzung von Neurotransmittern an der Synapse beteiligt sind. Für die Untersuchung der konservierten synaptischen Proteine Synapsin (SYN) und Synapsen-assoziertes Protein von 47 kDa (SAP47), sowie ihrer möglichen Interaktionspartner, bediente ich mich molekularer Methoden. SAP47 und SYN sind hoch konservierte Proteine von Drosophila melanogaster, die mit synaptischen Vesikeln assoziert sind. Um die Rolle und Funktion der Sap47- und Syn-Gene näher zu beleuchten, wurden bereits früher mit Hilfe von P-Element Mutagenesen Null Mutanten generiert (Funk et al., 2004; Godenschwege et al., 2004). Western Blots und ELISA der Gehirnhomogenate der Sap47156 Nullmutanten zeigten im Vergleich zum Wildtyp (CS) das Vorhandensein von hochreguliertem phospho-Synapsin. Dieser Effekt ließ sich durch ein panneuronales Rescue wieder partiell rückgängig machen. Diese Ergebnisse lassen eine qualitative sowie quantitative Modulation von SYN druch SAP47 vermuten. Auf der Transkriptebene konnte ich keinen Unterschied im Gehalt von Syn Transkript zwischen den Sap47156 und wildtypischen CS Fliegen feststellen. Das Vorhandensein einer direkten molekularen Interaktion zwischen SAP47 und SYN wurde in Co-Immunopräzipitations-Experimenten (CO-IP) untersucht. Ich konnte unter diversen getesteten IP Bedingungen keine stabilen Interaktionen finden. Die Möglichkeit, dass Sap47 auf der molekularen Ebene modifizierend auf das Syn-Gen wirkt, wurde durch das Erzeugen und Testen homozygoter doppelter Nullmutanten für Sap47 und Syn untersucht. Syn97, Sap47156 Doppelmutanten sind lebensfähig, zeigen jedoch eine im Vergleich zu CS reduzierte Lebensspanne und Lokomotion. In einer 2D-SDS-PAGE Analyse der Synapsine identifizierte ich Reihen von Synapsin-Signalen, die darauf schließen ließen, dass Synapsin über mehrere Isoformen verfügt, von denen jede mehrfach posttranslational modifiziert ist. In einer Blue native-SDS-PAGE (BN-SDS-2D-PAGE) mit anschließendem Western Blot konnte ich Synapsin und SAP47 Signale bei 700-900 kDa beziehungsweise 200-250 kDa feststellen, was darauf schließen ließ, dass sie als Komponenten von unterschiedlichen größeren Komplexen fungieren. Ich zeigte außerdem die Möglichkeit auf, dass Drosophila Synapsin Homo- und Heteromultimere bilden kann, was bereits für Synapsine von Wirbeltieren gezeigt wurde. Gleichzeitig mit den obigen Experimenten untersuchte ich durch IP Methoden, gefolgt von 1D SDS Gelelektrophorese und Massenspektroskopie (in Zusammenarbeit mit S. Heo und G. Lubec), die Phosphorylierung der Synapsine in Drosophila. In der MS Analyse konnte ich 5 distinkte Phosphorylierungs-Stellen des Drosophila Synapsins identifizieren und verifizieren. Zusätzlich zu den Modifikationen durch Phosphorylierung konnte ich einige andere posttranslationale Modifikationen zeigen, die jedoch nicht verifiziert wurden. Die Bedeutung dieser Phosphorylierung, sowie anderer identifizierter Modifikationen, sollte durch weitere Experimente beleuchtet werden. In einem Kollaborationsprojekt mit S. Kneitz und N. Nuwal untersuchte ich die Auswirkungen der Sap47156 und Syn97 Mutationen mithilfe einer Microarray Analyse des gesamten Drosophila Transkriptoms der individuellen Nullmutanten sowie Doppelmutanten (V2 und V3). Es wurden einige Kandidaten gefunden, die in den Mutanten signifikante Änderungen aufweisen. Diese Gene sollten weiterhin auf ihre Interaktionen mit Sap47 und Syn untersucht werden. In einem weiteren Projekt untersuchte ich die Rolle und Funktion des Drosophila tubulin binding chaperon E-like-Gens(Tbcel, CG12214). Das TBCEL Protein weist eine hohe Homologie zum Vertebraten TBCE-like (oder E-like) auf, welches über eine namensgebende hohe Sequenzähnlichkeit zum Tubulin bindenden Chaperon E (TBCE) verfügt. Ich erzeugte ein polyklonales anti-TBCEL Antiserum (in Kollaboration mit G. Krohne). Laut Flybase besitzt das Tbcel-Gen nur ein Exon und kodiert für zwei unterschiedliche Transkripte durch alternative Orte des Transkriptionsstarts. Das längere Traskript RB ist nur in Männchen vorhanden, während das kürzere Transkript RA sich nur in Weibchen finden lässt. Um eine Untersuchung der Genfunktion zu ermöglichen, führte ich eine P-Element jump-out-Mutagenese durch, mit der Deletions-Mutanten generiert werden sollten. Ich benutzte dazu den Stamm NP4786 (NP), welches eine P(GawB) Insertion in der 5´ UTR des Tbcel-Gens aufweist. NP4786 Fliegen sind aufgrund einer second-site Lethalität homozygot letal, da sie über einer chromosomalen Defizienz (Df) (einer Deletion der genomischen Region, die das Tbcel-Gen sowie benachbarte Gene umfasst) lebensfähig sind. Die P-Element jump-out-Mutagenese wurde von mir zweimal durchgeführt, wobei ich beim ersten Mal nur Revertanten erhielt, während der zweite Durchgang sich momentan noch in Arbeit befindet. Beim zweiten Versuch wurde der jump-out über dem Defizienz-Chromosom durchgeführt, um eine doppelsträngige DNA Reparatur durch das homologe Chromosom zu verhindern. Während der zweiten Mutagenese wurde ein Stamm G18151 verfügbar, bei welchem die P-Element Insertion im offenen Leseraster (Open reading frame: ORF) des Tbcel-Gens erfolgt war. Western Blots von frischem Gewebehomogenat der NP/Df und G18151 Fliegen zeigten nach dem Testen mit anti-TBCEL Antiserum kein Signal, was darauf schließen lässt, dass diese Fliegen Tbcel Nullmutanten sind. Ich verwendete diese Fliegen für weitere immunhistochemische Analysen und fand heraus, dass TBCEL im Wildtyp spezifisch im Zytoplasma der Cysten-Zellen der Hoden exprimiert wird, sowie mit dem Tubulin der Spermatidenschwänze assoziert ist, während es in den NP/Df und G18151 Fliegen keine TBCEL-Färbung der Cysten-Zellen gab. Des weiteren konnte eine Störung der Actin Kegel und eine Anreicherung von TBCEL um diese herum gezeigt werden. Diese Ergebnisse werden zusätzlich durch die Beobachtung unterstützt, dass die Enhancer-trap Expression der NP4786 Linie analog zu dem TBCEL in den Cysten-Zellen lokalisiert ist. Zusätzlich wurde die Fertilität der NP/Df und G18151 Männchen getestet und gezeigt, dass diese Tiere nahezu vollständig steril sind. Die Ergebnisse lassen daher vermuten, dass TBCEL an der Spermatogenese bei Drosophila beteiligt ist, sowie eine mögliche Rolle bei der Elongation und Individualisierung der Spermatiden spielt. KW - Taufliege KW - Synapsine KW - Molekularbiologie KW - synaptisch protein KW - synapsin KW - tubulin binding chaperone E-like KW - SAP47 KW - Massenspektrometrie KW - synaptic proteins KW - synapsin KW - tubulin binding chaperone E-like KW - SAP47 KW - mass spectrometry Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51683 ER - TY - THES A1 - Knapek, Stephan T1 - Synapsin and Bruchpilot, two synaptic proteins underlying specific phases of olfactory aversive memory in Drosophila melanogaster T1 - Synapsin und Bruchpilot, zwei synaptische Proteine für spezifische Komponenten von aversivem olfaktorischem Gedächtnis bei Drosophila melanogaster N2 - Memory is dynamic: shortly after acquisition it is susceptible to amnesic treatments, gets gradually consolidated, and becomes resistant to retrograde amnesia (McGaugh, 2000). Associative olfactory memory of the fruit fly Drosophila melanogaster also shows these features. After a single associative training where an odor is paired with electric shock (Quinn et al., 1974; Tully and Quinn, 1985), flies form an aversive odor memory that lasts for several hours, consisting of qualitatively different components. These components can be dissociated by mutations, their underlying neuronal circuitry and susceptibility to amnesic treatments (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). A component that is susceptible to an amnesic treatment, i.e. anesthesia-sensitive memory (ASM), dominates early memory, but decays rapidly (Margulies et al., 2005; Quinn and Dudai, 1976). A consolidated anesthesia-resistant memory component (ARM) is built gradually within the following hours and lasts significantly longer (Margulies et al., 2005; Quinn and Dudai, 1976). I showed here that the establishment of ARM requires less intensity of shock reinforcement than ASM. ARM and ASM rely on different molecular and/or neuronal processes: ARM is selectively impaired in the radish mutant, whereas for example the amnesiac and rutabaga genes are specifically required for ASM (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). The latter comprise the cAMP signaling pathway in the fly, with the PKA being its supposed major target (Levin et al., 1992). Here I showed that a synapsin null-mutant encoding the evolutionary conserved phosphoprotein Synapsin is selectively impaired in the labile ASM. Further experiments suggested Synapsin as a potential downstream effector of the cAMP/PKA cascade. Similar to my results, Synapsin plays a role for different learning tasks in vertebrates (Gitler et al., 2004; Silva et al., 1996). Also in Aplysia, PKA-dependent phosphorylation of Synapsin has been proposed to be involved in regulation of neurotransmitter release and short-term plasticity (Angers et al., 2002; Fiumara et al., 2004). Synapsin is associated with a reserve pool of vesicles at the presynapse and is required to maintain vesicle release specifically under sustained high frequency nerve stimulation (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). In contrast, the requirement of Bruchpilot, which is homologous to the mammalian active zone proteins ELKS/CAST (Wagh et al., 2006), is most pronounced in immediate vesicle release (Kittel et al., 2006). Under repeated stimulation of a bruchpilot mutant motor neuron, immediate vesicle release is severely impaired whereas the following steady-state release is still possible (Kittel et al., 2006). In line with that, knockdown of the Bruchpilot protein causes impairment in clustering of Ca2+ channels to the active zones and a lack of electron-dense projections at presynaptic terminals (T-bars). Thus, less synaptic vesicles of the readily-releasable pool are accumulated to the release sites and their release probability is severely impaired (Kittel et al., 2006; Wagh et al., 2006). First, I showed that Bruchpilot is required for aversive olfactory memory and localized the requirement of Bruchpilot to the Kenyon cells of the mushroom body, the second-order olfactory interneurons in Drosophila. Furthermore, I demonstrated that Bruchpilot selectively functions for the consolidated anesthesia-resistant memory. Since Synapsin is specifically required for the labile anesthesia sensitive memory, different synaptic proteins can dissociate consolidated and labile components of olfactory memory and two different modes of neurotransmission (high- vs. low frequency dependent) might differentiate ASM and ARM. N2 - Gedächtnis ist ein dynamischer Prozess. In der Zeit kurz nach seiner Bildung ist es instabil und anfällig gegen amnestische Störungen, dann wird es schrittweise konsolidiert und schließlich resistent gegenüber retrogradem Gedächtnisverlust (McGaugh, 2000). Auch das assoziative olfaktorische Gedächtnis der Fruchtfliege Drosophila melanogaster zeigt diese Merkmale. Nach einem einzelnen assoziativen Training, in welchem ein Duft mit elektrischen Stromstößen gepaart wird, bilden die Fliegen ein aversives Duftgedächtnis, welches über mehrere Stunden anhält und aus qualitativ unterschiedlichen Komponenten besteht (Quinn et al., 1974; Tully and Quinn, 1985). Diese Komponenten können zum Beispiel durch Mutationen, die zugrunde liegenden neuronalen Verknüpfungen oder durch ihre Anfälligkeit für amnestische Behandlungen unterschieden werden (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). Eine gegen amnestische Behandlungen, wie beispielsweise Kälte-induzierte Betäubung, anfällige Komponente beherrscht das frühe Gedächtnis, zerfällt jedoch schnell (Margulies et al., 2005; Quinn and Dudai, 1976). Diese wird deshalb Anästhesie-sensitives Gedächtnis genannt (anesthesia-sensitive memory [ASM]). Im Gegensatz dazu baut sich eine konsolidierte Komponente erst langsam in den folgenden Stunden nach dem Training auf, hält stattdessen jedoch länger an (Margulies et al., 2005; Quinn and Dudai, 1976). Diese Komponente ist resistent gegenüber Kälte-induzierter Anästhesie und wird deshalb als ARM (anesthesia-resistant memory) bezeichnet. In der vorliegenden Arbeit konnte ich zeigen, dass das konsolidierte ARM bereits mit deutlich weniger starken Elektroschocks im Training gebildet wird als das instabile ASM. ARM und ASM unterliegen unterschiedliche molekulare und/oder neuronale Prozesse. Während in einer Mutante für das radish Gen selektiv ARM beeinträchtigt ist, werden andere Gene wie zum Beispiel amnesiac oder rutabaga ausschließlich für ASM benötigt (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). Die beiden letzteren sind Teil des cAMP Signalweges, welcher vermutlich hauptsächlich die cAMP abhängige Protein-Kinase A (PKA) aktiviert (Levin et al., 1992). Hier zeige ich, dass eine Null-Mutante für das evolutionär konservierte Phosphoprotein Synapsin einen selektiven Defekt in ASM hat. Weitere Experimente lassen vermuten, dass Synapsin als Effektor stromabwärts der cAMP/PKA Kaskade wirkt. Ähnlich wie bei Drosophila spielt Synaspin auch in Vertebraten eine Rolle in unterschiedlichen Lernparadigmen (Gitler et al., 2004; Silva et al., 1996). Auch in der Meeresschnecke Aplysia wurde eine PKA abhängige Phosphorylierung von Synapsin als Mechanismus für die Regulierung von Neurotransmitterausschüttung und Kurzzeitplastizität vorgeschlagen (Angers et al., 2002; Fiumara et al., 2004). Synapsin wird für die Bildung eines Reserve-Pools von Vesikeln an der Präsynapse und für die Aufrechterhaltung der Vesikelausschüttung speziell bei anhaltender, hochfrequenter Stimulation von Nervenzellen benötigt (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). Im Gegensatz dazu wird Bruchpilot, ein Protein der aktiven Zone und homolog zu den ELKS/CAST Proteinen bei Säugern (Wagh et al., 2006), haupsächlich für sofortige Vesikelausschüttung gebraucht (Kittel et al., 2006). Bei wiederholter Stimulation an Motorneuronen einer bruchpilot Mutante ist die akute Vesikelausschüttung stark vermindert, während die darauf folgende andauernde Ausschüttung noch immer möglich ist (Kittel et al., 2006). Dazu passend beeinträchtigt eine künstliche Verminderung des Bruchpilot-Proteins die Ansammlung von Ca2+ Kanälen an den aktiven Zonen, sowie die Bildung von elektronendichten Strukturen (T-bars) an den präsynaptischen Endigungen. Deshalb akkumulieren weniger Vesikel des “readily-releasable” Pools an den Ausschüttungsstellen und die Ausschüttungswahrscheinlichkeit ist stark vermindert (Kittel et al., 2006; Wagh et al., 2006). In dieser Arbeit zeige ich zum ersten Mal, dass Bruchpilot für aversives olfaktorisches Gedächtnis benötigt wird. Der Ort an dem Bruchpilot hierfür gebraucht wird sind die Kenyon-Zellen des Pilzkörpers, die olfaktorischen Interneuronen zweiter Ordnung in Drosophila. Desweiteren zeige ich, dass die Funktion von Bruchpilot selektiv für das konsolidierte ARM ist. Da Synapsin spezifisch für das labile ASM benötigt wird, können diese beiden olfaktorischen Gedächtniskomponenten durch verschiedene synaptische Proteine getrennt werden, und zwei unterschiedliche Arten der Neurotransmitterausschüttung (abhängig von hoch- oder niedrig-frequenter Stimulation) könnten ASM und ARM auseinander halten. KW - Taufliege KW - Assoziatives Gedächtnis KW - Geruchswahrnehmung KW - Molekularbiologie KW - Synapsin KW - Bruchpilot KW - Präsynapse KW - Drosophila melanogaster KW - olfaktorisches Gedächtnis KW - Synapsin KW - Bruchpilot KW - presynapse KW - Drosophila melanogaster KW - olfactory memory Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49726 ER -