TY - THES A1 - Wagner, Nicole T1 - Charakterisierung der Kernmembranproteine Lamin-B-Rezeptor und Bocksbeutel von Drosophila melanogaster T1 - Characterization of nuclear membrane proteins Lamin B Receptor and Bocksbeutel of Drosophila melanogaster N2 - Funktionelle Charakterisierung neuer Proteine der inneren Kernmembran von Drosophila melanogaster: Drosophila Lamin B Rezeptor (dLBR), ein integrales Membranprotein der inneren Kernmembran; Bocksbeutel alpha und Bocksbeutel beta, LEM-Domänen Proteine sowie deren potentiellen Interaktionspartner Drosophila Barrier-to-Autointegration Factor (dBAF). N2 - Functional characterization of novel inner membrane proteins of Drosophila melanogaster: Drosophila Lamin B Receptor (dLBR), a novel integral membrane protein of the inner nuclear membrane; Bocksbeutel alpha and Bocksbeutel beta, LEM-domain proteins and their putative interacting partner Drosophila Barrier-to-Autointegration Factor (dBAF). KW - Taufliege KW - Kernhülle KW - Proteine KW - Molekularbiologie KW - Kernhülle KW - innere Kernmembran KW - LEM Domäne KW - nuclear envelope KW - INM KW - LEM domain Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7245 ER - TY - THES A1 - Völler, Thomas T1 - Visualisierung und Manipulation neuronaler Aktivitäten im Gehirn von Drosophila melanogaster T1 - Visualization and manipulation of neuronal activity in the brain of Drosophila melanogaster N2 - In dieser Arbeit wurden zwei Techniken zur Analyse der Funktion diverser Neuronen in Drosophila melanogaster angewendet. Im ersten Teil wurde mittels in-vivo Calcium Imaging Technik unter Verwendung des Calciumsensors Cameleon neuronale Aktivität entlang des olfaktorischen Signalweges registriert. Hierbei wurde die neuronale Repräsentation der Duftidentität und der Duftintensität untersucht. In Bezug auf diese Fragestellung wurde die Datenverarbeitung und Datenanalyse weiterentwickelt und standardisiert. Die Experimente führten zu dem Ergebnis, dass duftspezifische Aktivitätsmuster auf der Ebene des Antennallobus sehr gut unterscheidbar sind. Manche Aktivitätsmuster der präsentierten Düfte zeigten interessanterweise einen hohen Ähnlichkeitsgrad, wohingegen andere unähnlich waren. In höheren Gehirnzentren wie den Orten der terminalen Aborisationen der Projektionsneurone oder den Pilzkörper Kenyonzellen liegt eine starke Variabilität der duftevozierten Aktivitätsmuster vor, was generelle Interpretationen unmöglich macht und höchstens Vergleiche innerhalb eines Individuums zulässt. Des Weiteren konnte gezeigt werden, dass die Calciumsignale in den Rezeptorneuronen sowie prä- und postsynaptisch in den Projektionsneuronen bei Erhöhung der Konzentration der verschiedenen präsentierten Düfte über einen Bereich von mindestens drei Größenordnungen ansteigen. In den Kenyonzellen des Pilzkörper-Calyx und der Pilzkörper-Loben ist diese Konzentrationsabhängigkeit weniger deutlich ausgeprägt und im Falle der Loben nur für bestimmte Düfte detektierbar. Eine Bestätigung des postulierten „sparsed code“ der Duftpräsentation in den Pilzkörpern konnte in dieser Arbeit nicht erbracht werden, was möglicherweise daran liegt, dass eine Einzelzellauflösung mit der verwendeten Technik nicht erreicht werden kann. Im zweiten Teil dieser Arbeit sollte durch die Nutzung des lichtabhängigen Kationenkanals Channelrhodopsin-2 der Frage nachgegangen werden, ob bestimmte modulatorische Neurone die verstärkenden Eigenschaften eines bestrafenden oder belohnenden Stimulus vermitteln. Die lichtinduzierte Aktivierung von Channelrhodopsin-2 exprimierenden dopaminergen Neuronen als Ersatz für einen aversiven Reiz führte bei einer olfaktorischen Konditionierung bei Larven zur Bildung eines aversiven assoziativen Gedächtnisses. Im Gegensatz dazu induzierte die Aktivierung von Channelrhodopsin-2 in oktopaminergen/tyraminergen Neuronen als Ersatz für einen appetitiven Reiz ein appetitives assoziatives Gedächtnis. Diese Ergebnisse zeigen, dass dopaminerge Neurone bei Larven aversives Duftlernen, oktopaminerge/tyraminerge Neurone dagegen appetitives Duftlernen induzieren. N2 - In this work two different techniques were used to determine the functions of various neurons in the brain of Drosophila melanogaster. First, by using in vivo calcium imaging and the calcium indicator cameleon odor-evoked neuronal activity was monitored along the olfactory pathway. How are odor identity and odor intensity represented in the fruit fly brain? To investigate this question we improved and standardized the data processing and data analysis. The experiments reveal that calcium activity patterns elicited by different odors are distinguishable in the antennal lobe. Interestingly, the patterns evoked by some odors show a high degree of similarity whereas those of other odors show less similarity in this analyzed neuropile. In higher brain centers like the region of the terminal aborizations of the projection neurons and the mushroom body Kenyon cells the odor evoked activity patterns are highly variable allowing no general interpretations but only comparison of patterns within fruit flies. Furthermore this work demonstrates an odor concentration dependent activity in the olfactory receptor neurons as well as pre- and postsynaptically in the projection neurons. In the Kenyon cells of the mushroom body calyx this concentration dependency is less clear and in the mushroom body lobes it seems that there is a concentration dependency only for specific odors. So far we have no evidence for the postulated so called “sparsed code” of odor representation in the mushroom body which might be due to limited resolution of the technique used in this work. In the second part of my work we used the light-dependent cation channel channelrhodopsin-2 and asked the question whether specific modulatory neurons mediate the reinforcing properties of a rewarding or punishing stimulus. Light-induced activation of dopaminergic neurons expressing channelrhodopsin-2 caused aversive associative memory formation in an aversiv olfactory conditioning paradigm for Drosophila larvae. Conversely, the artificial activation of octopaminergic/tyraminergic neurons by channelrhodopsin-2 induced appetitive associative memory. The conclusion is that dopaminergic neurons trigger aversive odor learning whereas octopaminergic/tyraminergic neurons trigger appetitive odor learning. KW - Taufliege KW - Calcium KW - Calciumkonzentration KW - Calcium-bindende Proteine KW - Klassische Konditionierung KW - Drosophila KW - in-vivo Calcium-Imaging KW - Cameleon KW - Channelrhodopsin KW - Light-activation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35589 ER - TY - THES A1 - Tschäpe, Jakob-Andreas T1 - Molekulare und funktionelle Analyse der Drosophila-Mutante löchrig T1 - Molecular and Functional Analysis of the Drosophila mutant löchrig N2 - Neurodegenerative Erkrankungen des Menschen sind eines der Hauptfelder molekularer neurobiologischer Grundlagenforschung. Um generell molekulare, komplizierte Vorgänge in vivo untersuchen zu können, nutzt man seit geraumer Zeit Modellorganismen wie Caenorhabditis elegans oder Drosophila melanogaster. In der vorliegenden Arbeit wird die Drosophila-Neurodegenerationsmutante loe (löchrig) beschrieben, die als Modell für die Rolle des Cholesterinhaushalts im Bezug auf Neurodegeneration herangezogen werden kann. Die Fliegen dieser Mutante zeigen stark progressive, altersabhängige Degeneration von Neuronen, dabei unterlaufen diese Nervenzellen einen nekrotischenZelltod. Verantwortlich für diese Mutation ist die Insertion eines P-Elementes in einem Intron des Drosophila-g-5'-AMP-aktivierten Proteinkinase- (AMPK)-Gens. Die verschiedenen Spleißprodukte des loe Gens kodieren für die regulatorische g-Untereinheit des AMPK-Komplexes, der , aktiviert durch 5'AMP, energieintensive Prozesse negativ reguliert. Die Spleißform loeI ist durch die P-Element-Insertion betroffen, Anteile des P-Elementes werden in das loeI-Transkript hineingespleißt. Eine neuronale Expression von loeI im loe-Hintergrund führt zur Revertierung des loe-Phänotypes. Mit der Expression anderer Spleißformen kann dieser Effekt nicht erzielt werden. Das LOE I-Protein birgt in seinem N-Terminus eine Reihe möglicher Interaktionstellen mit anderen Proteinen, die den AMPK-Komplex in einen Kontext mit den Proteinen der APP (Amyloid Precursor Proteins) ?Familie stellen oder z. B. Interaktionen mit dem Cytoskelett herstellen können. Eine molekulare Interaktion mit NiPSNAP, einem Protein, dass vermutlich eine Rolle im Vesikelverkehr spielt, konnte nachgewiesen werden. Ein direktes humanes Homolog von LOE I ist nicht bekannt, wohlgleich es im Menschen drei AMPK-g-Untereinheiten gibt, von denen zwei ähnliche Funktionen übernehmen könnten wie LOE I. Die loe-Mutante interagiert genetisch mit der Mutante clb ? columbus, die einen Defekt im Gen der HMG-CoA-Reduktase trägt. Dieses Emzym ist das Schlüsselenzym der Cholesterinbiosynthese. Die Art der Interaktion belegt eine negative Regulierung der HMG-CoA-Reduktase durch die AMPK. So schwächt die clb-Mutation den neurodegenerativen loe-Phänotyp ab, eine Überexpression von clb verstärkt diesen. Eine Verminderung der Neurodegeneration kann auch mit Medikamenten erreicht werden: Statine, potente Hemmer der HMG-COA-Reduktase, reprimieren deutlich den loe-Phänotyp. In loe ist der Cholesterinester-Spiegel auf 40% abgesenkt. Eine weitere genetische Interaktion von loe konnte nachgewiesen werden: Die Mutante für das Drosophila-Homolog von APP (Appl) verstärkt den neurodegenerativen Phänotyp in loe stark, wogegen die Appl-Mutante selbst keine neurodegenerativen Defekte aufweist. Darüberhinaus zeigt die Doppelmutante Defekte, die keine der Einzelmutanten aufweist: Sterilität oder eine extrem kurze Lebensdauer von nur 3-4 Tagen. Diese Interaktion ließ sich auf molekularer Ebene charakterisieren. Die proteolytische Prozessierung von APPL durch Sekretasen ist in loe alteriert. In der vorliegenden Arbeit konnte gezeigt werden, dass durch die loe-Mutation die b-Sekretase aus Vertebraten (BACE) und eine bisher noch nicht beschriebene endogene Sekretase aus Drosophila negativ beeiflusst werden. Ein AMPK-Komplex mit LOE I als g-Untereinheit scheint über den Cholesterinester-Spiegel die Aktivität einer speziellen Untergruppe der Sekretasen zu beeinflussen. Die Missfunktion dieser Sekretasen ist ein kritischer Punkt in der Pathogenese der Alzheimer-Krankheit. Die loe-Mutation wirft neues Licht auf die bekannten Verbindungen zwischen Cholesterin-Stoffwechsel, Vesikelverkehr und Prozessierung von APP(L). Mit den großen Möglichkeiten, die die Drosophila-Genetik bietet, stellt diese neue Mutante ein weiteres Werkzeug zur Charakterisierung von Therapie-Ansätzen für die Alzheimer-Kankheit dar. Die vorliegende Arbeit belegt um ein weiteres Mal, dass Drosophila ein potentes Modellsystem zur Untersuchung humaner, neurodegenerativer Erkrankungen wie Chorea Huntington, Parkinson oder der Alzheimer Krankheit ist. N2 - Human neurodegenerative diseases are the main topic of molecular neurobiological basic research. To investigate detailed mechanisms in vivo one uses the tool of genetic model organisms like Caenorhabditis elegans or Drosophila melanogaster for quite a long while. This thesis describes the Drosophila neurodegenration mutant löchrig (loe), which can be used as a model for cholesterol metabolism in respect to neurodegeneration. Mutant loe flies show strong and progressive age-dependent degenration of neurons undergoing necrotic cell death. The P-element inserted in an intron of the gene coding for the Drosophila 5'-AMP activated protein kinase (AMPK) complex gamma subunit is responsible for the mutation in loe. The various splice forms of the loe gene code for different regulatory gamma subunits of this complex consisiting of three subunits. The splice form loeI is affected by the P-element insertion, parts of the P-element are spliced into the loeI transkript in the loe mutant. The neuronal expression of one copy of loeI in the mutant background revertes the neurodegenerative phenotype which can not be achieved by expression of one of the other splice forms. The LOE I protein contains in its N-terminus several putative interaction motifs and domaines. These could get a LOE I-containing AMPK complex in context with the APP (amyloid precursor protein) or the cytoskeletton. An interaction with NiPSNAP ? a protein with a putative function in the vesicular transport ? has been proved molecularly. A human homolog of LOE I is not yet known, although there are three different isoforms of a AMPK gamma subunit described in humans. The loe mutant interacts genetically with the columbus (clb) mutant, wich is affected in the gene of the HMG-CoA reductase, the key enzyme in cholesterol biosynthesis. This shown interaction verifies a negative regulation of the HMG-CoA reductase by the AMPK complex in Drosophila. Thus the clb mutation supresses the loe phenotype, an overexpression of clb enhances the neurodegeneration. A supression of the neurodegenerative phenotype can be also achieved by a statin treatment of loe flies. Statins are potent inhibitors of the HMG-CoA reductase. Another genetic interaction exists between loe and the Appl mutant. Appl d, the null mutant of the Drosophila APP homolog, enhances strongly the neurogenerative phenotype of loe, whereas the Appl mutant itself shows no neuronal defects. In addition the double mutant shows defects which none of the single mutants show: sterility of females and a dramatic shortened lifespan of only 3-4 days. This interaction could be characterized on the molecular level: The proteelytic processing of APPL by sectretases is altered in the loe mutant. Both the BACE sectretase from vertebrates and an so far uncharakterized endogenous sectretase in Drosophila are negatively influenced by the loe mutation. An AMPK complex containing LOE I as the gamma subunit seems to regulate the activity of a subgroup of the sectretases via the cholesterolester level. The misfunction of secretases is a crutial point in the pathogenesis of Alzheimer's disease. The loe mutation gives new insights in the already known links between cholesterol homeostasis, vesicular transport, and processing of APP(L). Together with the exstensive tools of Drosophila genetics this new mutant will supply new possibilities to characterize putative therapies to cure Alzheimer's disease. This thesis at another time presents Drosophila as an potent model system for the research on human neurodegenerative diseases like Huntington's disease, Parkinson or Alzheimer's disease. KW - Taufliege KW - Mutante KW - Cholesterin KW - Nervenzelle KW - Degeneration KW - Alzheimer-Krankheit KW - Neurodegeneration KW - Drosophila KW - APP KW - Cholesterin KW - Alzheimer Krankheit KW - AMPK KW - Neurodegeneration KW - Drosophila KW - APP KW - Cholesterol KW - Alzheimer's Disease KW - AMPK Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2963 ER - TY - THES A1 - Schubert, Alice T1 - Immunhistochemische und funktionelle Charakterisierung der Serin/Arginin-Proteinkinase SRPK79D mit Identifizierung von Interaktionspartnern in Drosophila melanogaster T1 - Immunohistochemical and functional characterisation of the serine/arginine protein kinase SRPK79D with identification of interaction partners in Drosophila melanogaster N2 - Auf der Suche nach Mutanten mit einer vom Wildtyp abweichenden Verteilung des Aktive Zone-Proteins Bruchpilot wurde die Serin/Arginin-Proteinkinase SRPK79D identifiziert. Hier zeigte sich, dass die Mutation im Srpk79D-Gen zu einer Agglomeration von Bruchpilot in den larvalen segmentalen und intersegmentalen Nerven führt. In der vorliegenden Arbeit sollte die SRPK79D genauer charakterisiert werden. Nach Präadsorptionen und Affinitätsreinigungen von in einer früheren Arbeit erzeugten Antiseren, gelang es die Lokalisation der überexprimierten SRPK79D-GFP-Isoformen zu bestimmen. Dabei zeigte sich, dass keines der Antiseren die endogene Kinase im Western Blot oder immunhistocheimisch detektieren konnte. Dies legt den Schluss nahe, dass die Expression der SRPK79D in einer geringen Konzentration erfolgt. Es war jedoch möglich die endogene SRPK79D-PC-Isoform mittels einer Immunpräzipitation soweit anzureichern, dass sie im Western Blot nachweisbar war. Für die SRPK79D-PB-Isoform gelang dies allerdings nicht. Anhand von larvalen Nerv-Muskel-Präparaten konnte gezeigt werden, dass die panneural überexprimierte SRPK79D-PC-GFP-Isoform an die Aktiven Zone transportiert wird und dort mit Bruchpilot, sowie den Interaktionspartnern von Bruchpilot Liprin-α und Rab3 kolokalisiert. Außerdem liegt sie diffus im Zytoplasma von neuronalen Zellkörpern vor. In adulten Gehirnen lokalisiert die transgen überexprimierte SRPK79D-PC-GFP im Fanshaped body, Ringkomplex und in neuronalen Zellkörpern. Die panneural überexprimierte SRPK79D-PB-GFP-Isoform liegt im larvalen und adulten Gehirn lokal im Zytoplasma der Perikaryen akkumuliert vor und wird nicht an die Aktive Zone transportiert. Das PB-Antiserum erkennt im adulten Gehirn neuronale Zellkörper und das Neuropil in der Calyxregion der Pilzkörper. Immunhistochemische Färbungen von larvalen Nerv-Muskel-Präparaten mit verschiedenen Antikörpern gegen neuronale Proteine belegen, dass die Agglomerate in der Srpk79D-Mutante für Bruchpilot spezifisch sind. Es konnten bisher keine weiteren Komponenten der Agglomerate detektiert werden. Auch ein genereller axonaler Defekt konnte durch Färbungen gegen CSP, Synaptotagmin und Experimenten mit dem Mitochondrienfarbstoff MitoTracker® FM Green ausgeschlossen werden. Die quantitative Auswertung der Präparate zeigte, dass die Morphologie der synaptischen Boutons und die Zahl der Aktiven Zonen durch die Mutation im Srpk79D-Gen nicht beeinflusst werden. Um gesicherte Kenntnis darüber zu erlangen, ob die Mutation im Srpk79D-Gen die beobachteten Phänotypen verursacht, wurden Rettungsexperimente durchgeführt. Es konnte sowohl für das hypomorphe Srpk79DP1-Allel, als auch für die Nullmutante Srpk79DVN eine nahezu vollständige Rettung des Agglomerat-Phänotyps mit der panneural exprimierten SRPK79D-PF- oder der SRPK79D-PB-Isoform erreicht werden. Aus diesen Ergebnissen folgt, dass beide Isoformen der SRPK79D in der Lage sind den Bruchpilot-Agglomerat-Phänotyp zu retten, die Rettung der Verhaltensdefizite jedoch alle Isoformgruppen benötigen. Um zu untersuchen, ob der Agglomerations-Phänotyp der Srpk79D-Mutanten auf einer Überexpression des Bruchpilotgens oder auf Fehlspleißen seiner prä-mRNA beruht, wurden Immunpräzipitationen, semiquantitative RT-PCRs und Real Time-PCRs durchgeführt. Ausgehend von den Ergebnissen kann eine mögliche Überexpression bzw. Spleißdefekte von Bruchpilot weitgehend ausgeschlossen werden. Die simultane Überexpression von SRPK79D und Bruchpilot konnte den Phänotyp der Bruchpilot-Überexpression nicht retten. Anhand der stimulated emission depletion-Mikroskopie konnte gezeigt werden, dass die gebildeten Agglomerate das charakteristische Donut-förmige Muster der T-bars zeigen und wahrscheinlich als fusionierte Ketten von T-bars in den larvalen Nerven vorliegen. Beim in vivo Imaging Versuch konnte demonstriert werden, dass das verkürzte Bruchpilot-D3-Strawberry in die Bruchpilot-Agglomerate der Srpk79D-Nullmutante eingebaut wird und dass größere Agglomerate unbewegt im Nerv verharren. Der anterograde und retrograde Transport kleinerer Agglomerate konnte verzeichnet werden. Bei CytoTrap-Yeast-two-hybrid-Experimenten konnten für die SRPK79D-PB Isoform vier potentielle Interaktionspartner identifiziert werden: das Hitzeschockprotein Hsp70Bbb, die mitochondriale NADH-Dehydrogenase mt:ND5, das large ribosomal RNA Gen in Mitochondrien und das am Spleißen beteiligte Protein 1.3CC/Caper. Die Sequenzierung zeigte, dass nur das letzte Exon von Caper im pMyr-Vektor vorliegt. Der für die PC-Isoform durchgeführte CytoTrap-Versuch ergab nur Temperatur-Revertanten. SR-Proteinkinasen phosphorylieren die RS-Domäne von SR-Proteinen und sind dadurch an der Regulation des konstitutiven und alternativen Spleißens beteiligt. Somit stellen die acht identifizierten SR-Proteine in Drosophila potentielle Interaktionspartner der SRPK79D dar. Die durch RNAi-vermittelte Reduktion von sieben SR-Proteinen führte zu keiner Agglomeration von Bruchpilot. Jedoch führte die RNAi-vermittelte Reduktion des SR-Proteins Spleißfaktor 2 (SF2) zu kleineren Bruchpilot-Agglomeraten in den axonalen Nerven. SF2 ist selbst kein Bestandteil der Agglomerate der Srpk79D-Nullmutante. Die Überexpression von SF2 führt wahrscheinlich zu einem axonalen Transportdefekt, wie die Färbung gegen das Cysteine string protein zeigte. Weiterhin führt die Überexpression zu einer Akkumulation von SF2 in larvalen Axonen und im adulten Gehirn der Fliegen. SF2 ist nicht nur in Zellkernen sämtlicher Zellen nachweisbar, sondern es konnte auch ein spezifisches Signal im subsynaptischen Retikulum der Postsynapse detektiert werden, wie die Färbungen gegen Disc large bestätigten. N2 - In a Screen for mutations which affect the distribution of the active zone protein Bruchpilot, the serine/arginine protein kinase 79D (SRPK79D) was identified. A mutation in the Srpk79D gene leads to conspicuous agglomeration of Bruchpilot in the larval segmental and intersegmental nerves. The aim of this thesis was to characterize the function of SRPK79D and to identify its interaction partners. The isoform specific antisera which were generated in an earlier PhD thesis recognized only the pan-neuraly overexpressed GFP-tagged SRPK79D isoforms in Western blots and immunhistochemical stainings. After preabsorption and affinity purification the antisera could uncover the localization of the overexpressed SRPK79D-GFP. Without enrichment of the endogenous SRPK79D concentration seems to be too low to be detected with the antisera. However, the endogenous SRPK79D-PC isoform could be detected in a Western blot after immunoprecipitation, but not the SRPK79D-PB isoform. The panneural overexpressed SRPK79D-PC-GFP isoform co-localizes with Bruchpilot as well as with the Bruchpilot interaction partners Liprin-α and Rab3 at active zones and showed a diffuse pattern in the cytoplasm of neuronal cell bodies. In adult brains the panneural overexpressed SRPK79D-PC isoform is detectable in the fanshaped body, ring complex and neuronal cell bodies. The panneural overexpressed SRPK79D-PB isoform is not present at the active zone but is detectable in larval and adult CNS accumulating in discrete spots in the cytoplasm of neuronal cells. The panneural overexpressed SRPK79D-PB isoform is also present in the neuronal cell bodies and calyces of the mushroom body. Larval dissections followed by stainings with different antibodies against synaptic proteins showed that the agglomerates in the Srpk79D mutants are quite specific for Bruchpilot. No other components of the agglomerates could be revealed until now. General impairments of axonal transport could be excluded by stainings against cysteine string protein (CSP), Synaptotagmin, and experiments with the dye MitoTracker® Green FM. These synaptic proteins are uniformly distributed along the larval nerves. The quantification of boutons revealed that the basic synaptic structure is not altered in Srpk79D-mutants. Stainings on frozen head sections of null mutant Srpk79D revealed a spot like Bruchpilot accumulation in the antennal nerves. The mutation of Srpk79D causes behavioral deficits in adult flies as well as a shortened life span. In order to test if expression of either isoform (SRPK79D-PC/PF or –PB) is able to rescue the obtained phenotypes, rescue experiments were performed. A nearly complete rescue of the agglomerate phenotype was achieved with both SRPK79D isoforms. Rescue experiments for the observed behavioral phenotype in the null mutant background did not significant by improve the defect, neither when using the pannreural driver lines elav-GAL4 nor the newly generated nSyb-GAL4. Alkaline Phosphatase treatment followed by 1D- or 2D-gelelecrophoresis could not detect a possible phosphorylation of SRPK79D. Also the vesicle-associated protein Synapsin showed a normal isoform pattern which indicates that Synapsin is not a substrate for SRPK79D. In experiments to detect overexpression or splicing defects of the active zone protein Bruchpilot as possible cause for the agglomeration phenotype in mutant Srpk79D animals, immunoprecipitations, semiquantitative RT-PCRs and Real Time-PCRs were performed. The results showed that overexpression or splicing deficits could be largely excluded. In stainings with the new Bruchpilot antisera N-Term and D2 the staining pattern did not differ from the nc82 staining showing that the PF isoform of Bruchpilot is not forming separate agglomerates in Srpk79DVN mutants. The overexpression of D2-4 and D1-3, truncated Bruchpilot proteins without either the N- or C-terminus, respectively, showed an agglomeration of the corresponding proteins in larval and adult CNS. However the overexpression of D1-3 is not affecting the endogenous Bruchpilot distribution. The simultaneous overexpression of SRPK79D and Bruchpilot could not rescue the phenotype caused by Bruchpilot overexpression. With the stimulated emission depletion microscope the pattern of the Bruchpilot agglomerates in the Srpk79DVN mutant revealed electron-dense donut-shaped structures in larval nerves, presumably fused T-bars. With in vivo imaging experiments anterograde as well as retrograde movement of D3-labeled agglomerates in the Srpk79DVN mutant was observed whereas large agglomerates are immobile. To identify substrates or interaction partners of SRPK79D the Yeast-two-hybrid screen CytoTrap was performed. The CytoTrap screen for the SRPK79D-PB isoform identified four interaction partners: the heat shock protein Hsp70Bbb, the mitochondrial NADH-Dehydrogenase mt:ND5, the large ribosomal RNA gene in mitochondria and 1.3CC/Caper. Caper is involved in splicing via the spliceosome. Sequencing revealed that the pMyr vector includes only the last exon of Caper. The performed CytoTrap for the RC-Isoform detected only temperature revertants. The RNAi mediated knock down of each of the eight known SR proteins in Drosophila showed that seven of them do not produce a phenotype whereas the reduction of SF2 leads to Bruchpilot agglomerates in larval nerves. The SR-Protein SF2 is not included in the agglomerates of the Srpk79D mutant but showed expression in nuclei of all cell types. The overexpression of SF2 leads to an agglomeration of SF2 in the larval nerves probably due to an impairment of general axonal transport. SF2 is not only a nuclear protein; it is also associated with post synaptic structures. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - RNS-Spleißen KW - Genmutation KW - Drosophila melanogaster KW - SRPK79D KW - Serin-Arginin Proteinkinase KW - Spleißen KW - Bruchpilot KW - Drosophila melanogaster KW - SRPK79D KW - serine-arginine protein kinase KW - splicing KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53841 ER - TY - THES A1 - Riemensperger, Thomas T1 - Untersuchung prädiktiver Eigenschaften des dopaminergen Systems von Drosophila melanogaster mittels genetisch kodierter Calcium Sensoren T1 - Analysis of predictive features in the dopaminergic System of Drosophila melanogaster using genetically encoded Calcium Sensors N2 - Die Technik des optischen Imaging unter Verwendung DNA-codierter Sensoren ermöglicht es, Messungen neuraler Aktivitäten in genetisch definierten Populationen von Neuronen durchzuführen. In der Vielzahl der verschiedenen entwickelten Sensoren konnten die Calciumsensoren bisher das beste Verhältnis zwischen Signal und Rauschen und die beste zeitliche Auflösung aufzeigen. Hierbei handelt es sich in erster Linie um zwei Typen von Sensoren, zum einen ratiometrische Sensoren, deren Signal auf einem Fluoreszenz Resonanz Energie Transfer (FRET) basiert, und zum anderen um zirkulär permutierte Sensoren, die auf einem modifizierten GFP-Molekül basieren, wobei das Signal auf einer veränderten Protonierung des Chromophors beruht. Beide Arten dieser Sensoren wurden schon erfolgreich zum Messen neuraler Aktivitäten in Nervensystemen verschiedener Tierarten verwendet. Ein Teil dieser Arbeit bestand darin, zu untersuchen, welche Sensoren sich für die Messung an einem lebenden Organismus am besten eignen. Hierfür wurden die Eigenschaften von vier verschiedenen FRET basierten Sensoren und zwei der zyklisch permutierten Sensoren nach Expression im zentralen Nervensystem von Drosophila charakterisiert. Die Sensoren wurden in Neuronen zweiter und dritter Ordnung des olfaktorischen Signalwegs exprimiert und ihre Antworten auf physiologische Duftstimulation oder artifiziell induzierte Depolarisation des Gehirns untersucht. Während die calciumabhängigen Signale der zyklisch permutierten Sensoren in der Regel größer waren als die der FRET basierten Sensoren, zeichneten sich letztere durch ein besseres Signal zu Rausch-Verhältnis aus, wenn Bewegungen der fluoreszierenden Strukturen nicht zu vermeiden waren. Dies war auch der ausschlaggebende Grund für die Verwendung eines FRET basierten Sensors im anschließenden Teil der Arbeit. Im zweiten Teil der Arbeit wurde der Effekt untersucht, den die Paarung eines neutralen Stimulus mit einem bestrafenden Stimulus auf dopaminerge Neurone hat. Eine solche Paarung kann zu einer klassischen Konditionierung führen, einer einfachen Form des Lernens, in welcher das Tier einem ursprünglich neutralen Stimulus einen Wert zuordnet, und dadurch sein Verhalten dem Stimulus gegenüber ändert. Die olfaktorische klassische Konditionierung in Drosophila wird seit vielen Jahren intensiv untersucht, um die molekularen und neuronalen Grundlagen von Lernen und Gedächtnis zu charakterisieren. Dabei hat sich gezeigt, dass besonders die Pilzkörper von essentieller Bedeutung für die Ausbildung eines olfaktorischen Gedächtnisses sind. Während das olfactorische System bei Insekten bereits detailiert analysiert wurde, ist über die Neurone, die den bestrafenden Stimulus vermitteln, nur sehr wenig bekannt. Unter Anwendung des funktionellen optischen Calcium Imaging konnte im Rahmen der Arbeit gezeigt werden, dass die Projektionen von dopaminergen Neuronen im Bereich der Loben der Pilzkörper schwach auf die Präsentation eines Duftes, jedoch sehr stark auf eine Stimulation durch einen Elektroschock antworten. Nach mehrmaliger Paarung eines Duftes mit einem Elektroschock während eines Trainings, verlängert sich die Aktivität dieser dopaminergen Neurone auf den bestraften Duft hin im Test ohne Elektroschock drastisch, während die Antwort auf den Kontrollduft keine signifikanten Veränderungen aufweist. Während bei Säugetieren belohnende Reize bei appetitiven Lernvorgängen über dopaminerge Neurone vermittelt werden, spielen bei Drosophila diese Neurone offensichtlich eine Rolle bei der aversiven Konditionierung. Jedoch blieb, auch wenn sich die Rolle des Dopamins im Laufe der Evolution geändert zu haben scheint, die Fähigkeit dieses Neuronentyps, nicht nur auf einen eintreffenden verstärkenden Stimulus zu reagieren, sondern diesen auch vorhersagen zu können, zwischen Säugern und Drosophila erhalten. N2 - The technique of optical in vivo imaging using genetically encoded fluorescent sensors in transgenic animals has paved the way for real-time monitoring of spatio-temporal activity in the brain. Among the different fluorescent probes, the calcium sensors produce signals with the highest signal to noise ratio and the best temporal resolution. Basically these sensors can be split into two groups, those based on a FRET-effect between two modified green fluorescent proteins (GFPs) and those which make use of on a circular permutation of GFP. Both types have successfully been used for measuring neuronal activity in various species. One part of the present work was to test which of these different sensor types are best suited for an in vivo situation. For this, two members of the class of circularly permutated sensors and four members of the class of FRET based sensors were tested and compaired in Drosophila. Each sensor was expressed in second and third order neurons of the olfactory pathway and the calcium activity evoked by artificial depolarisation or physiological odour stimuli was recorded. Whereas the Calcium dependent change in signal intensity is substantially higher for the circularly permutated sensors, the FRET based sensors tested in this work showed a better signal to noise ratio when movement of the brain structures under investigation could not be prevented. For this reason a FRET based sensor was chosen to measure the activity of dopaminergic neuronsin a classical conditioning paradigm. In the second part of this work the effect of pairing a neutral stimulus with a negative reinforcer (in this case an electric shock) on the activity of dopaminergic neurons was investigated. The pairing of these two stimuli can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila melanogaster is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. In particular the mushroom bodies have been shown to be essential for olfactory memory formation. While the olfactory system of insects has been extensively characterized little is known about the neurons that mediate the reinforcing stimulus. Using the technique of optical calcium imaging it was possible to show that dopaminergic projections in the region of the mushroom body lobes responded weakly to odour presentations, but strongly to the stimulation by an electric shock. After pairing for several times one of two odours presented to the fly with an electric shock (training), the activity of the dopaminergic neurons to the punished odour is significantly prolonged in a test after the training. No change is observed after the training for the control odour that was not paired with the electric shock. Whereas in mammals rewarding stimuli are mediated by dopaminergic neurons, in Drosophila this catecholamine apparently plays a role in mediating aversive reinforcement. Even though the role of dopamine seems to have changed during evolution the capability of dopaminergic neurons to predict a reinforcing stimulus appears to be conserved between Drosophila and mammals. KW - Taufliege KW - Dopaminerge Nervenzelle KW - Calcium KW - Calcium imaging KW - Sensoren KW - Dopamin KW - Drosophila melanogaster KW - prädiktive Eigenschaften KW - Calcium imaging KW - Sensors KW - Dopamine KW - Drosophila melanogaster KW - predictive features Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19041 ER - TY - THES A1 - Reisch, Natasa T1 - Das Cysteine-String-Protein in Drosophila melanogaster: Molekulare und funktionelle Analyse verschiedener CSP-Mutanten; Ein Modell zur räumlich und zeitlich kontrollierten CSP-Expression T1 - The cysteine string protein in Drosophila melanogaster: Molecular and functional analysis of different CSP-mutants; A model for spatial and temporal controlled CSP-expression N2 - Die Exozytose von Neurotransmittern und Peptiden während der Verarbeitung und Weiterleitung von Reizen im Nervensystem wird durch eine komplexe Maschinerie von Proteinen reguliert. Das konservierte Cysteine String Protein (CSP), das gebunden an synaptische und andere sekretorische Vesikel vorliegt, konnte in den vergangenen Jahren als Teil in diesen Prozess eingeordnet werden. Die Frage nach der genauen Funktion von CSP während der Exozytose ist allerdings weiterhin offen. CSP-Nullmutanten in Drosophila melanogaster zeigen temperatursensitive Paralyse und eine extrem verkürzte Lebenserwartung, gepaart mit verminderter Fertilität. In larvalen Nerv-Muskel Präparaten kommt es bei Temperaturen über 29°C zu einem reversiblen Block der elektrophysiologisch messbaren synaptischen Transmission. Die Primärstruktur des Cysteine String Proteins kann in folgende konservierte Sequenzabschnitte unterteilt werden: eine N-terminale Protein Kinase A Phosphorylierungsstelle, eine Region mit Homologie zu einer charakteristischen Domäne von DnaJ-Proteinen (DnaJ-Domäne), einen als Linkerregion bezeichneten Abschnitt, eine cysteinreiche Sequenz, die bei Drosophila aus dem namensgebenden Strang von 11 aufeinanderfolgenden Cysteinen flankiert von 2 Cysteinpaaren besteht, und einen schwächer konservierten C-Terminus, in dem sich auch einzelne Spleißvarianten unterscheiden. Versuche mit Vertebraten konnten zeigen, dass CSP in einem trimeren Komplex aus Hsc70/CSP/SGT vorkommt und bei der Exozytose wahrscheinlich als molekulares Co-Chaperon wirkt. Der Cysteinstrang liegt mehrfach palmityliert vor und ist für die Zielfindung des Proteins zur Vesikelmembran essentiell. In vorangegangenen Arbeiten wurde begonnen, bei Drosophila durch gezielte Mutagenese und Keimbahntransformation die Rolle des Cysteinstrangs, der Linkerregion und des C-Terminus für die Funktion des CSP zu analysieren. In der vorliegenden Dissertation wurden in transgenen Fliegen die Eigenschaften von Isoformen mit vier unterschiedlich mutierten Varianten des Cysteinstrangs (CSLP, SCSP, CLP, SSP) und je Deletionen in der Linkerregion (LΔ8) und im C-terminalen Bereich (CΔ27) charakterisiert. Die subzelluläre Verteilung und veränderte Membranbindungseigenschaften dieser Proteine wurden mithilfe von Membranfraktionierung und Glycerindichtegradienten von Homogenaten der transgenen Mutanten aufgezeigt. Die Isoformen CLP und SSP sind aufgrund der fehlenden Palmitylierung nicht an die Membran der synaptischen Vesikel gebunden, während die Isoform CSLP sowohl in der Vesikelmembranfraktion als auch als lösliches Protein nachgewiesen werden kann. Die flankierenden Cysteinpaare und die verbliebenen Cysteine in den Isoformen CSLP und SCSP erfüllen offenbar noch teilweise die Aufgabe des Cysteinstrangs bei der Zielfindung der Proteine. Eine Depalmitylierung mit Hydroxylamin löst das verkürzte SCSP Protein ebensowenig aus der Membran wie das intakte CSP. Die Ergebnisse dieser Untersuchungen stehen im Einklang mit immunhistochemischen Befunden. Die Deletion bzw. Substitution der zentralen 11 Cysteine in den Isoformen CSLP, CLP und SSP äußert sich in den transgenen Fliegen in einer gleichmäßigeren Verteilung der Proteine, die nicht mehr wie im Wildtyp auf das synaptische Neuropil beschränkt ist. Keine der Isoformen mit verändertem Cysteinstrang ist in der Lage die Funktion des wildtypischen CSP zu übernehmen, da die adulten transgenen Fliegen den temperatursensitiven Phänotyp und eine kurze Lebensdauer ähnlich den Csp-Nullmutanten zeigen. Die Proteinisoformen LΔ8 und CΔ27 dagegen lassen in den biochemischen Analysen keine Abweichung vom Wildtyp erkennen und weisen auch eine wildtypische Verteilung in Kryostat-Gehirnschnitten auf. Die Deletion in der Linkerregion in der Isoform LΔ8 scheint die Funktion des CSPs allerdings einzuschränken, da die entsprechenden transgenen Fliegen bereits bei 38°C, wildtypische Tiere dagegen erst bei 40°C paralysieren. Die in der Literatur beschriebene Interaktion zwischen Drosophila CSP und Syntaxin konnte für die transgen exprimierte größte CSP Isoform CSP1 in Immunpräzipitationsexperimenten mit Drosophila-Kopfhomogenat bestätigt werden. Die Frage nach einer Interaktion zwischen Syntaxin und den anderen untersuchten mutierten CSP-Isoformen bleibt dagegen offen. Der zweite Teil dieser Arbeit befasst sich mit dem Versuch, mithilfe des UAS/Gal4- und des Flippase/FRT -Systems die CSP-Expression räumlich und zeitlich zu kontrollieren. Dazu wurde aufgrund von Datenbankangaben eine minimale FRT-Sequenz aus Oligonukleotiden mit entsprechenden Linkern konstruiert. Das gesamte Csp-Gen beziehungsweise die Csp cDNA1 einschließlich der regulatorischen Sequenzen wurde zwischen zwei gleichgerichteten FRT-Sequenzen pW8 eingebracht. Die Keimbahntransformation führte zu mehreren transgenen Fliegenlinien. Nach aufwendigen Kreuzungen mit Gal4-, UAS-Flippase- und Csp-Null-Linien entstanden Fliegen im CSP-Nullhintergrund, welche eine durch die verwendete Gal4-Linie definierte Expression von Flippase zeigten und das FRT-Konstrukt trugen. Diese Fliegen sollten in Flippase positiven Bereichen keine CSP-Expression mehr zeigen. Verhaltensanalysen an solchen Tieren bei normaler und erhöhter Temperatur könnten dann Aufschluss über die Funktion der Zellen ohne CSP-Expression geben. Leider konnten die erwarteten Veränderungen in der CSP-Expression nicht beobachtet werden, obwohl alle Konstrukte sich nach einer Überprüfung als intakt erwiesen haben. Die Ursache für die fehlende Rekombination zwischen den FRT-Sequenzen ist möglicherweise in einer zu geringen Länge dieser Zielsequenz der Flippase zu suchen. Im dritten Abschnitt der Arbeit wird der Csp-Genlokus und seine benachbarten Gene vorgestellt, und die möglichen Auswirkungen der Deletionen in den zur Verfügung stehenden Mutanten CspU1, CspU1w und CspK16 diskutiert. Aufgrund der Daten aus dem Drosophila Genomprojekt lag die Spekulation nahe, dass der Phänotyp der Deletionsmutanten auch durch eine veränderte Expression der benachbarten Gene stromab- und stromaufwärts des Csp Gens beeinflusst werden könnte. Die Auswertung eines Northern Blots von PolyA+-RNA adulter Fliegen, sowie einfache Verhaltenstests an vorliegenden und neu generierten CSP-Nullmutanten konnten diesen Verdacht allerdings nicht bestätigen. N2 - Exocytosis during synaptic transmission is regulated by a complex machinery of numerous proteins. CSPs (cysteine string proteins), conserved from C.elegans to mamals, are attached to synaptic vesicle membranes and other secretory granules. They were therefore implicated to play a distinct part in this regulated process. However the exact role of the CSP protein in exocytosis is not yet known. Studies of Drosophila in null mutants for the Csp gene revealed a temperature sensitive paralytic phenotype, severely shortened lifespan and fertility. Exposure of larval nerve-muscle preparations to elevated temperatures (>29°C) lead to a reversible block of neurotransmitter release in electrophysiological measurements. The primary structure of the cysteine string protein is characterized by distinct conserved domains: a N-terminal protein kinase A (PKA) phosphorylation site, a region showing high homology to a domain found in DnaJ proteins (DnaJ-domain), a region called linker domain, a cysteine rich region, which in Drosophila comprises the characteristic string of 11 cysteines flanked by two additional pairs of cysteines, and a less conserved C-terminal region, which is absent in various splice variants. Experiments using vertebrates showed that CSP is part of a trimeric complex of Hsc70/CSP/SGT and may possibly act as co-chaperone during exocytotic processes. The cysteine string is found to be modified with multiple palmitoyl residues and appears to be essential for targeting of the protein to the vesicle membrane. In earlier studies mutagenesis and germ-line transformation were used to initiate an analysis on the role of the cysteine string, the linker domain and C-terminal region for CSP function. The present thesis extends this work by characterizing in transgenic flies four different mutated cysteine string isoforms (CSLP, SCSP, CLP, SSP) and deletions affecting the linker domain (LΔ8) and C-terminal region (CΔ27) using transgenic flies. The subcellular distribution and altered membrane binding properties of the mutated isoforms were analyzed using glycerol gradients and membrane fractionation. Due to the lack of palmitoylation CLP and SSP are exclusively found as soluble proteins in the cytosol whereas CSLP can also be found attached to vesicle membranes in membrane fractions. The flanking and remaining cysteines in the isoforms CSLP and SCSP apparently are able to partially direct the proteins to the membrane. The shortened cysteine string in SCSP is sufficient to induce membrane binding and is as resistant to depalmitoylation with hydroxylamine as wildtype CSP. The biochemical results correspond to the immunohistochemical findings, which show an almost homogenous distribution of the proteins CSLP, CLP and SSP, unlike the wildtype staining which is confined to neuropil regions in the adult brain. The mutant isoforms with deleted or substituted cysteine string do neither rescue the temperature sensitive phenotype nor the short life span observed in CSP-null mutants. In contrast the proteins LΔ8 and CΔ27 exhibit wildtype properties in the biochemical assays and the staining pattern of the adult brain. The deletion LΔ8 seems to interfere with regular CSP function in some way, as these transgenic flies paralyze at 38°C whereas wildtype flies paralyze at 40°C. The previously described interaction of CSP and syntaxin in Drosophila could be confirmed by precipitating syntaxin together with the largest CSP isoform CSP1 from Drosophila head homogenates using an antibody against CSP. A possible disruption of this interaction in the mutant transgenic flies could not be shown and remains to be investigated. The second part of this work describes the attempt to temporally and spatially regulate CSP expression by employing the UAS/Gal4- and flippase/FRT-system. Using database information a minimal FRT-sequence with apprropriate linkers was generated from oligonucleotides. The entire Csp gene or Csp cDNA1 with necessary regulatory sequences was ligated between two FRT sites and inserted into the transformation vector pW8. After extensive crossing of transgenic flies carrying the FRT-construct with Gal4-,UAS-flippase-, and Csp-null-lines flies were obtained which expressed the flippase in defined areas of Gal4 expression and contained the FRT construct, all in Csp-null background. Areas positiv for flippase expression should loose transgenic CSP expression. Behavioural analyis of these flies at normal and elevated temperatures should provide functional information on the cells lacking CSP. Unfortunately no differences in behaviour or staining pattern of adult brain could be detected, although all constructs were proven to be functional. The lack of recombination events might be due to the reduced length of the flippase target sequence used. The third project presents the Csp-locus and its neighbouring genes in Drosophila. The possible influence of deletions in the CSP null mutants CspU1, CspU1w and CspK16 on the expression of neighbouring genes are discussed. Based on sequence data offered by the Drosophila genome project it was speculated that these genes might influence the mutant phenotype. Northern blotting of adult head polyA+-RNA, simple tests of behaviour of already known and newly generated Csp null mutants could not confirm this speculation. KW - Taufliege KW - Cysteinderivate KW - Genexpression KW - Cysteine String Protein KW - Drosophila melanogaster KW - Cysteine String Protein KW - Drosophila melanogaster Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6291 ER - TY - THES A1 - Porps, Patrick T1 - Erhöhte Lebenserwartung und Resistenz gegenüber oxidativem Stress in Maus-Prion-Protein (PrP)-exprimierenden Drosophila melanogaster T1 - Increased lifespan and resistance against oxidative stress in Drosophila melanogaster expressing the murine prion protein (PrP) N2 - Übertragbare spongiforme Enzephalopathien (TSE) wie Scrapie beim Schaf, die bovine spongiforme Enzephalopathie (BSE) beim Rind oder die Creutzfeldt-Jakob-Krankheit (CJD) beim Menschen sind fortschreitende neurodegenerative Erkrankungen, die nach langer Inkubationszeit zum Tod führen. Die protein only-Hypothese besagt, dass das infektiöse Agens „Prion“ teilweise oder vollständig aus dem zellulären Prion-Protein (PrPC) besteht und nach Infektion des Organismus die Konversion von PrPC in die pathogene Isoform (PrPSc) verursacht. Die der Krankheit zugrunde liegenden neuropathologischen Mechanismen und die physiologische Funktion von PrPC sind bisher unbekannt. Es wurden jedoch eine neuroprotektive Funktion oder eine mögliche Rolle im Zusammenhang mit der oxidativen Stress Homöostase postuliert. In dieser Arbeit wurden transgene Drosophila melanogaster-Linien als Modell zur Untersuchung der Funktion von PrPC etabliert. Unter Verwendung des Expressionssystems UAS/GAL4 exprimierten die Fliegen entweder wildtypisches PrP (wt-PrP) oder eine trunkierte, krankheits-assoziierte Mutante PrPΔ32-134 (tr-PrP), der die potentielle neuroprotektive Octarepeat-Domäne entfernt wurde. Wt-PrP transgene Fliegen zeigten nach Vergleich mit Kontrolllinien eine signifikante, um 20% erhöhte allgemeine Lebenserwartung. Obwohl die Expression von tr-PrP in Drosophila zu keinen nachweisbaren neuropathologischen Veränderungen führte, wurde die Lebensspanne um 8% reduziert. Ko-Expression von wt-PrP und tr-PrP konnte diesen Effekt nicht komplementieren, was eine chronische Toxizität der trunkierten Form nahelegt, die in diesem Zusammenhang der Neuroprotektion übergeordnet ist. Da Lebenserwartung und Stressresistenz eng miteinander korrelieren, wurden die Fliegen den reaktiven Sauerstoffspezies Wasserstoffperoxid, Sauerstoff und Paraquat ausgesetzt, um auf drei unabhängigen Wegen oxidativen Stress zu induzieren. In der Tat vermittelt wt-PrP eine signifikante Stressresistenz, wohingegen tr-PrP-exprimierende Tiere eine normale Anfälligkeit offenbarten, die jedoch teilweise durch Ko-Expression beider PrP-Formen komplementiert werden konnte. Hier erscheint die protektive Funktion von wt-PrP der Toxizität der Deletionsmutante übergeordnet zu sein. Diese Daten belegen eine wichtige Funktion des Prion-Proteins bezüglich der Abwehr von oxidativem Stress. Essentiell ist dabei die Kupfer-bindende Octarepeat-Domäne, durch die möglicherweise Fenton-ähnliche Reaktionen, die bei der Sauerstoff-Radikalsynthese eine wichtige Rolle spielen, inhibiert werden könnten. Konsistent damit ist die Beobachtung des Verlusts der erworbenen Stressresistenz nach Expression der Octarepeat-losen Mutante tr-PrP und die signifikante Reduktion der Lebenserwartung über einen bislang unaufgeklärten Mechanismus. Das Drosophila PrP-Modell bietet die Möglichkeit, die physiologische Funktion von PrP detailliert zu untersuchen. Außerdem ist die Identifizierung unbekannter PrP-Interaktionspartner ermöglicht, um Signaltransduktionswege des PrP und die zugrunde liegenden neurodegenerativen Mechanismen aufzuklären. N2 - Transmissible spongiforme encephalopathies (TSE) such as scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt-Jakob disease (CJD) in humans are fatal progressive neurodegenerative disorders. The protein only hypothesis proposes that the infectious agent designated prion consists partly or entirely of the host cellular prion protein (PrPC) and, when the prion is introduced into the organism, causes the conversion of PrPC into the pathogenic isoform PrPSc. However, the disease underlying neuropathogenic mechanisms and the physiological function of PrPC still remain unknown, although a neuroprotective function or a role in oxidative stress homeostasis has been postulated previously. In this work transgenic Drosophila melanogaster lines were evaluated as a model for studying the function of PrPC. By using the bipartite expression system UAS/GAL4 either wild-type PrP (wt-PrP) or a truncated disease associated variant PrPΔ32-134 (tr-PrP) lacking the putative neuroprotective octarepeat domain were utilized. Wt-PrP transgenic flies displayed an approximately 20% increase in average lifespan compared to controls. Although expression of tr-PrP in Drosophila did not induce any obvious neuropathology, it significantly reduced the lifespan by 8%. Co-expression of wt-PrP and tr-PrP did not complement this phenotype, indicating a chronic toxicity of the truncated PrP that is overriding the neuroprotection. Since extended lifespan and stress resistance are closely associated, flies were exposed to the reactive oxygen species (ROS) hydrogen peroxide, oxygen and Paraquat as three independent treatments to provoke oxidative stress. Interestingly, wt-PrP confered resistance to ROS-induced stress, whereas tr-PrP transgenic flies showed normal susceptibility, which was partly rescued by co-expression of wt-PrP. In this regard PrP presence in its physiological compartment, the central nervous system, is sufficient to maintain the described beneficial effects. These findings suggest that PrP is involved in oxidative stress homeostasis by a mechanism that requires the copper binding octarepeat domain. This function might be responsible for the inhibition of Fenton-like reactions which are known to play an important role in oxygen radical synthesis. Consistent with this theory is the observation that ectopic expression of the octarepeat deletion mutant tr-PrP reduces both acquired stress resistance and lifespan by an unrelated, yet unknown mechanism. The Drosophila PrP model provides the possibility to investigate the physiological function of PrP in more detail. It is likewise considerable to identify unknown ligands of PrP in order to uncover PrP signal transduction pathways or neuropathogenic mechanisms. KW - Prion KW - Prionprotein KW - Oxidativer Stress KW - Taufliege KW - PrP KW - prion KW - prion protein KW - drosophila melanogster KW - oxidative stress KW - longevity KW - stress resistance Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36171 ER - TY - THES A1 - Pick, Simon T1 - Kinematik und visuelle Steuerung des Kletterverhaltens und der Beinplatzierung der Fliege Drosophila melanogaster und Übertragung auf die Robotik T1 - Kinematics and visual control of climbing behaviour and leg placement in the fly Drosophila melanogaster and applications to robotics N2 - Im Rahmen dieser Arbeit wurden visuelle Einflüsse auf die Beinplatzierung beim Laufen und auf das Kletterverhalten der Fliege Drosophila melanogaster analysiert. Während sich die Beinplatzierung als vorwiegend taktil gesteuert herausstellte, ist das Klettern sowohl bezüglich der Entscheidung zur Durchführung (Motivationssteuerung) als auch bezüglich der Ausführung selbst unter präziser visueller Kontrolle. Für die Untersuchungen wurde ein Lücken-Überwindungsparadigma entwickelt und die Kinematik des Kletterns über verschieden breite Lücken mit einer eigens entwickelten 3D-Hochgeschwindigkeits-Videoanlage erstmals quantitativ beschrieben. Drei wesentliche Verhaltensanpassungen sorgen dafür, dass die Fliegen die maximal mögliche Spannbreite ihrer Beine voll ausnützen und Lücken von bis zu 170% der eigenen Körperlänge überqueren können. Das Kletterverhalten wird abhängig von der Lückenbreite initiiert und sinnlose Versuche an unüberwindbar breiten Lücken vermieden. Die visuelle Lückenbreitenmessung wurde analysiert; sie beruht auf der Auswertung von Bewegungsparallaxe beim Anlauf. Einige Erkenntnisse aus der Laufforschung an Fliegen wurden auf einem im Rahmen dieser Arbeit modifizierten hexapoden Laufroboter umgesetzt und die Verbesserungen quantifiziert. N2 - This work started out to analyze visual influences on leg placement and on the climbing behavior of the fly Drosophila melanogaster. Whereas leg placement turned out to be predominantly under tactile control, climbing is indeed under tight visual control both with regard to the decision to initiate the behavior (motivational control) as well as with regard to the execution of climbing. A gap-crossing paradigm has been developed to facilitate a detailed study and the kinematics of climbing over gaps of various widths has been quantified using a 3D high-speed video analysis system developed for this purpose. Three major behavioral adaptations help the fly to exploit fully the limits of its leg span in order to overcome gaps of up to 170% of its own body length. Climbing is initiated dependent on gap width. Vain attempts to overcome insurmountably broad gaps are avoided. Analysis showed that the fly uses parallax motion generated during the approach to estimate the width of a gap. Some of the results of the research on the fly’s walking behavior have been implemented in a modified hexapod walking robot, and the improvements have been quantified. KW - Taufliege KW - Kinematik KW - Klettern KW - Verhaltensanpassung KW - Drosophila KW - Verhalten KW - Klettern KW - Laufen KW - Robotik KW - Drosophila KW - behaviour KW - climbing KW - walking KW - robotics Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12737 ER - TY - THES A1 - Mronz, Markus T1 - Die visuell motivierte Objektwahl laufender Taufliegen (Drosophila melanogaster) - Verhaltensphysiologie, Modellbildung und Implementierung in einem Roboter T1 - Visually motivated object choice in walking fruit flies (Drosophila melanogaster) – behavioural physiology, modelling and implementation in a robot N2 - Im Rahmen dieser Arbeit wurden offene Fragen zur Objektwahl, zur Objektbeibehaltung und zur Aufgabe von Zielobjekten bei laufenden Taufliegen (Drosophila melanogaster) untersucht. Die Erkenntnisse zur Objektwahl wurden als kybernetisches Modell formuliert, auf einem eigens dafür konstruierten, autonom navigierenden Roboter mit Kameraauge implementiert und dessen Verhalten bei verschiedenen Landmarkenkonstellationen quantitativ mit dem Orientierungsverhalten laufender Fliegen verglichen. Es war bekannt, dass Drosophila in einer Wahlsituation zwischen unterschiedlich weit entfernten Objekten eine ausgeprägte Präferenz für nahe Objekte zeigt, wobei die Entfernung über das Ausmaß der retinalen Bildverschiebung auf dem Auge (Parallaxe) erfasst wird. In der vorliegenden Arbeit wurde analysiert, ob die Parallaxe streng aus der Eigenbewegung der Fliege resultieren muss oder ob Eigenbewegung der Objekte Nähe vortäuschen und deren Attraktivität erhöhen kann. Es wurde gezeigt, dass die Präferenz für ein Objekt bei Drosophila umso größer wird, je mehr Bewegung dessen Abbild auf der Retina erzeugt; die relative Verschiebung des Objektabbildes muss dabei nicht mit der Eigenbewegung der Fliege gekoppelt sein. Überraschenderweise verschwand die Präferenz für nahe Objekte, wenn eine zusammenstehende Gruppe aus einer nahen und mehreren fernen Objekten präsentiert wurden, solange sie zusammen einen Sehwinkel von weniger als etwa 90° einnahmen. Diese Beobachtung ist konform mit einer Vorstellung, wonach Bewegung über größere Augenbereiche integriert und nicht einzelnen Objekten zugeordnet wird. Obwohl Drosophila bei gleichem Präsentationsort auf der Retina die größere parallaktische Bewegung bevorzugte, wurden bei gleicher Entfernung dennoch frontalere gegenüber lateraleren Objekten bevorzugt. Es wird postuliert, dass der frontale und der caudale Sehbereich eine Verstärkung erfahren, die die physikalisch bedingt geringere Parallaxe überkompensiert. Laufende Fliegen reagieren verzögert auf die Präsentation eines Objekts; dies wird im Sinne einer zeitlichen Bewegungsintegration interpretiert. Die darauf folgende Richtungsänderung hängt vom Präsentationswinkel des Objektes ab. Erscheint das Objekt frontolateral, findet eine Hinwendung statt, erscheint es caudolateral, kommt es bevorzugt zur Abwendung. Eine weitere wichtige kognitive Leistung der Fliege ist das Aufgeben eines zuvor ausgewählten Ziels, wenn sich dieses Ziel während des Anlaufs als unerreichbar herausstellt. In der vorliegenden Arbeit wurde gezeigt, dass Fliegen mit stark reduzierten Pilzkörpern erheblich mehr Zeit benötigen als wildtypische Fliegen, um vom gewählten Zielobjekt abzulassen. Dieser dem Perseveranzverhalten bei Parkinson-kranken Menschen ähnliche Phänotyp wurde unabhängig von der Methode der Ausschaltung der Pilzkörper gefunden. Die Dauer der Perseveranz nahm mit zunehmender Attraktivität des Zielobjekts, d. h. mit abnehmender Distanz, zu. Es wird vorgeschlagen, dass die Pilzkörper für die Evaluierung von eingehender sensorischer Information oder für Entscheidungsfindungen im Allgemeinen benötig werden. Basierend auf diesen Ergebnissen wurde ein Minimalmodell für die visuelle Orientierung nach Landmarken entwickelt. Das Modell beinhaltet eine zeitliche Integration des optischen Flusses in einem frontolateralen und einem caudolateralen Kompartiment pro Auge. Je nachdem, in welchem Kompartiment eine festgesetzte Schwelle zuerst erreicht wird, kommt es entweder zu einer Hin- (frontolateral) oder zu einer Abwendungsreaktion (caudolateral). Eine Gewichtungsfunktion kompensiert die geringe parallaktische Verschiebung in diesen Sehregionen. Das Modell wurde in einem mobilen Roboter mit Kameraauge implementiert und mit dem visuellen Orientierungsverhalten der Fliege quantitativ verglichen. Der Roboter war in der Lage, viele Aspekte der Landmarkenwahl von laufenden Fliegen erfolgreich zu reproduzieren und fliegenähnliches, autonomes Orientierungsverhalten unter verschiedenen Landmarkenkonfigurationen zu zeigen. N2 - The present study addresses open questions regarding visual orientation behaviour of walking fruit flies (Drosophila melanogaster), in particular how they choose near over far objects and how they maintain or adaptively abandon their choice. The findings led to a cybernetic model, suitable to autonomously control a mobile robot with panoramic vision, which was constructed, built and quantitatively compared to fly behaviour during this study. For a wide range of landmark constellations the robot exhibits fly-like orientation behaviour. Drosophila is known to choose, with a high probability, the nearest of several similar objects first. Distance to objects is measured by the extent of the retinal shift of their images on the eye (parallax motion). The present study asked whether parallax motion needs to directly result from the fly’s self-motion or whether motion of objects can increase their attractiveness because they appear to be closer to the fly. The data show that flies prefer objects the more, the larger the shift of the object image becomes on the retina. This is independent of the source of the retinal shift, object motion or self-motion of the fly. Surprisingly, the preference for near objects disappeared when a near object was presented together with several distant objects within a viewing angle of less then 90°. This observation led to the assumption that motion parallax is spatially integrated over larger areas of the eye and not seen as an entity of the single object. Physically, the extent of parallax motion caused by a stationary object on the retina of a walking fly depends not only on the distance but also on the angle under which it is seen. Although Drosophila prefers the larger amount of visual motion at a given presentation angle, it clearly prefers frontal over lateral objects. In order to account for the preference for frontal objects an amplification of the frontal and caudal eye regions is postulated which would otherwise receive less parallax motion. It turned out that walking flies respond only delayed to the presentation of a single object. This delay is consistent with the idea of temporal integration of parallax motion in order to judge distance. Astonishingly, the following course change depends on the viewing angle of the object. If an attractive object is shown in the frontolateral eye region the flies turn towards it. If it appears in the caudolateral part of the retina the flies preferentially turn away from it. Among the key abilities of animals must be the ability to give up on a once chosen target object if that object turns out to be inaccessible. The present study proves that flies with a strong reduction in mushroom body volume need considerably more time to give up on an object. The phenotype resembles the perseverance behaviour of humans suffering from Parkinson’s disease and was found regardless of the methods of interference with the mushroom bodies. The duration of the erroneously continued approach in flies with a strong reduction in mushroom body volume increases with decreasing distance between platform rim and landmark. In the absence of landmarks the defective flies behave normally, suggesting that mushroom bodies are involved in the evaluation of incoming sensory stimuli or in more general decision making processes. Modelling and implementation. Based on the findings outlined above a minimal model for landmark orientation has been established. The minimal model is based on a temporal integration of visual motion in four compartments, a frontolateral and a caudolateral compartment per eye. Depending on which compartment reaches a certain threshold first, a turning response will be elicited either towards (frontolateral compartment) or away from the target object (caudolateral compartment). Frontal and caudal eye regions naturally receive less parallax motion than lateral eye regions. To compensate for the small amount of parallax motion in the respective eye regions a weighting function has been introduced. The algorithm was finally implemented on a mobile robot equipped with a fish-eye lens mounted on camera allowing for panoramic vision. The behaviour of the robot was measured and quantitatively compared to the orientation behaviour of walking fruit flies. The robot reproduced successfully many aspects of the fruit fly's landmark orientation behaviour and showed fly-like autonomous orientation behaviour in the presence of various landmark arrangements. KW - Taufliege KW - Bewegungssehen KW - Orientierung KW - Bewegungssehen KW - Insekt KW - Orientierung KW - Fliege KW - vision KW - motion KW - insect KW - orientation KW - fly Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11748 ER - TY - THES A1 - Mentzel, Benjamin Tobias T1 - Biochemische und phänotypische Untersuchungen zur Funktion der p21-aktivierten Kinase DPAK3 in Drosophila melanogaster T1 - Biochemical and phenotypic analysis of the p21-activated kinase DPAK3 in Drosophila melanogaster N2 - Gegenstand dieser Arbeit ist das Drosophila melanogaster Protein DPAK3, ein Vertreter der hochkonservierten Familie der p21-aktivierten Kinasen (PAK). DPAK3 und seine Homologen aus anderen Insektenarten und C. elegans können aufgrund eines Vergleichs der Proteinsequenz und struktureller Merkmale in eine eigenen Untergruppe 1* innerhalb der Gruppe 1 der PAK-Proteine eingeordnet werden. Das Genom von Drosophila kodiert noch für zwei weitere PAK-Proteine, das zur Gruppe 1 gehörende DPAK1 und das Gruppe 2 PAK-Protein Mbt. Wie die klassischen Gruppe 1 PAK-Proteine bildet DPAK3 im inaktiven Zustand Dimere. DPAK3 interagiert mit den GTP-gebundenen Formen der RhoGTPasen Rac1, Rac2 und Cdc42. Durch die Bindung dieser Proteine geht DPAK3 aus dem dimeren in den monomeren Zustand über und seine Kinaseaktivität wird durch diese Bindung gesteigert. DPAK3 ist für die Ausbildung der korrekten Morphologie kultivierter Drosophila Zellen erforderlich und beeinflußt die Regulation des Aktinzytoskeletts. Weiterhin konnte CK2beta, die regulatorische Untereinheit der Casein Kinase 2, als neuer Regulator von p21-aktivierten Kinasen identifiziert werden. Das Genom von Drosophila besitzt drei Transkriptionseinheiten, die für CK2beta', CK2betatestes und fünf verschiedene Isoformen von CK2beta kodieren. Eine vergleichende Analyse zeigt, daß alle CK2beta-Proteine mit DPAK1, DPAK3 und in geringerem Maß auch mit Mbt interagieren und in der Lage sind, die Aktivität der PAK-Proteine in vitro zu hemmen. Die Bindung von CK2beta an DPAK3 wird, wie bei allen anderen Serin- / Threoninkinasen, die bisher als Interaktionspartner von CK2beta identifiziert wurden, über die Kinasedomäne von DPAK3 vermittelt. Die Bildung des aus zwei katalytischen CK2a und zwei CK2beta Untereinheiten bestehenden CK2-Holoenzyms hängt von der Fähigkeit von CK2beta ab, Dimere zu bilden. Es konnte gezeigt werden, daß die Bildung eines b-b Dimers für die Interaktion mit und Regulation von DPAK3 nicht erforderlich ist. In vivo wurden die bisher bekannten Dpak3 Allele untersucht, wobei kein gesichertes Nullallel identifiziert werden konnte. Durch enzymatisch katalysierte Rekombination wurde eine neue Deletion hergestellt, die das komplette Leseraster von Dpak3 entfernt. Mit Hilfe von genetischen Mosaiken wurde die Rolle von DPAK3 in der Augenentwicklung untersucht. Durch den Verlust der Genfunktion von Dpak3 wird die Ausbildung der korrekten Struktur der Komplexaugen nur leicht beeinträchtigt. Bei der Analyse einer Dpak1 Mutante wurde dasselbe Ergebnis erzielt. Gleichzeitiger Verlust der Genfunktion von Dpak1 und Dpak3 hingegen führt zu massiven strukturellen Defekten. DPAK1 und DPAK3 erfüllen somit zumindest teilweise redundante Funktionen in der Augenentwicklung. Es wird Gegenstand zukünftiger Studien sein müssen, die gemeinsamen und getrennten Funktionen dieser PAK-Proteine in Drosophila aufzuklären. N2 - Subject of this work is the Drosophila melanogaster protein DPAK3, a member of the highly conserved family of p21-activated kinases. Based on the comparison of the amino acid sequence and structural features, DPAK3 and its homologues from other insect species and C. elegans can be assigned to a distinct subgroup 1* within the group 1 PAK proteins. The genome of Drosophila encodes for two additional PAK proteins, DPAK1 and Mbt, which belong to the group 1 and group 2 p21-activated kinases, respectively. Like the classical group 1 PAK proteins, DPAK3 forms dimers in its inactive conformation. DPAK3 binds to and is activated by the Rho GTPases Rac1, Rac2 and Cdc42. The interaction with these proteins leads to the disruption of the DPAK3 dimer and an increase in the kinase activity of DPAK3. DPAK3 is necessary for the development of the normal morphology of cultured Drosophila cells and influences the regulation of the actin cytoskeleton. CK2b the regulatory subunit of casein kinase 2 was identified as a new regulator of p21 activated kinases. The genome of Drosophila possesses three different transcriptional units that encode the proteins CK2b', CK2btestes and five different isoforms of CK2b. A comparative analysis shows that all CK2b proteins interact with DPAK1, DPAK3 and Mbt and negatively regulate the activity of these kinases in vitro. CK2b binds to the kinase domain of DPAK3 which is consistent with previous results obtained from other serine/threonine kinases interacting with CK2b. The CK2 holoenzyme consists of two catalytically active CK2a subunits and two regulatory CK2b subunits. My results show that the ability of CK2b to form dimers, which is essential for the formation of the CK2 holoenzyme, is not necessary for the regulation of p21 activated kinases. The analysis of the available Dpak3 alleles in vivo revealed the necessity to create a new bona fide loss of function allele. To accomplish this goal, a new deletion which removes the entire Dpak3 open reading frame was created by enzymatically catalysed recombination. Genetic mosaics were used to study the role of DPAK3 in eye development. The morphology of the complex eyes was only slightly impaired by the loss of Dpak3 function. The same result was obtained when analysing Dpak1 mutants, but removal of the gene function of both Dpak1 and Dpak3 leads to massive structural defects. This shows that Dpak1 and Dpak3 have at least partially redundant functions in eye development. Further studies will be necessary to reveal the common and distinct functions of these p21-activated kinases in Drosophila. KW - Taufliege KW - Drosophila melanogaster Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30290 ER -