TY - JOUR A1 - Zoltner, Martin A1 - Krienitz, Nina A1 - Field, Mark C. A1 - Kramer, Susanne T1 - Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA JF - PLoS Neglected Tropical Diseases N2 - Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes. KW - Trypanosoma KW - mRNA KW - T. brucei KW - PABPs Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177126 VL - 12 IS - 7 ER - TY - JOUR A1 - Zielewska-Büttner, Katarzyna A1 - Heurich, Marco A1 - Müller, Jörg A1 - Braunisch, Veronika T1 - Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus) JF - Remote Sensing N2 - Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management. KW - deadwood KW - standing deadwood KW - dead tree KW - snags KW - three-toed woodpecker (Picoides tridactylus) KW - habitat suitability model (HSM) KW - habitat requirements KW - airborne laser scanning (ALS) KW - CIR aerial imagery Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197565 SN - 2072-4292 VL - 10 IS - 12 ER - TY - JOUR A1 - Yanku, Yifat A1 - Bitman-Lotan, Eliya A1 - Zohar, Yaniv A1 - Kurant, Estee A1 - Zilke, Norman A1 - Eilers, Martin A1 - Orian, Amir T1 - Drosophila HUWE1 ubiquitin ligase regulates endoreplication and antagonizes JNK signaling during salivary gland development JF - Cells N2 - The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development. KW - HECT KW - HUWE1 KW - ubiquitin KW - salivary gland KW - endoreplication KW - JNK KW - dMyc KW - dmP53 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197630 SN - 2073-4409 VL - 7 IS - 10 ER - TY - JOUR A1 - Tauscher, Sabine A1 - Nakagawa, Hitoshi A1 - Völker, Katharina A1 - Werner, Franziska A1 - Krebes, Lisa A1 - Potapenko, Tamara A1 - Doose, Sören A1 - Birkenfeld, Andreas L. A1 - Baba, Hideo A. A1 - Kuhn, Michaela T1 - β Cell-specific deletion of guanylyl cyclase A, the receptor for atrial natriuretic peptide, accelerates obesity-induced glucose intolerance in mice JF - Cardiovascular Diabetology N2 - Background: The cardiac hormones atrial (ANP) and B-type natriuretic peptides (BNP) moderate arterial blood pressure and improve energy metabolism as well as insulin sensitivity via their shared cGMP-producing guanylyl cyclase-A (GC-A) receptor. Obesity is associated with impaired NP/GC-A/cGMP signaling, which possibly contributes to the development of type 2 diabetes and its cardiometabolic complications. In vitro, synthetic ANP, via GC-A, stimulates glucose-dependent insulin release from cultured pancreatic islets and β-cell proliferation. However, the relevance for systemic glucose homeostasis in vivo is not known. To dissect whether the endogenous cardiac hormones modulate the secretory function and/or proliferation of β-cells under (patho)physiological conditions in vivo, here we generated a novel genetic mouse model with selective disruption of the GC-A receptor in β-cells. Methods: Mice with a floxed GC-A gene were bred to Rip-CreTG mice, thereby deleting GC-A selectively in β-cells (β GC-A KO). Weight gain, glucose tolerance, insulin sensitivity, and glucose-stimulated insulin secretion were monitored in normal diet (ND)- and high-fat diet (HFD)-fed mice. β-cell size and number were measured by immunofluorescence-based islet morphometry. Results: In vitro, the insulinotropic and proliferative actions of ANP were abolished in islets isolated from β GC-A KO mice. Concordantly, in vivo, infusion of BNP mildly enhanced baseline plasma insulin levels and glucose-induced insulin secretion in control mice. This effect of exogenous BNP was abolished in β GC-A KO mice, corroborating the efficient inactivation of the GC-A receptor in β-cells. Despite this under physiological, ND conditions, fasted and fed insulin levels, glucose-induced insulin secretion, glucose tolerance and β-cell morphology were similar in β GC-A KO mice and control littermates. However, HFD-fed β GC-A KO animals had accelerated glucose intolerance and diminished adaptative β-cell proliferation. Conclusions: Our studies of β GC-A KO mice demonstrate that the cardiac hormones ANP and BNP do not modulate β-cell's growth and secretory functions under physiological, normal dietary conditions. However, endogenous NP/GC-A signaling improves the initial adaptative response of β-cells to HFD-induced obesity. Impaired β-cell NP/GC-A signaling in obese individuals might contribute to the development of type 2 diabetes. KW - cylic GMP KW - guanylyl cyclase-A KW - insulin KW - natriuretic peptides KW - obesity KW - β-cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176322 VL - 17 IS - 103 ER - TY - THES A1 - Schücker, Katharina T1 - The molecular architecture of the meiotic chromosome axis as revealed by super-resolution microscopy T1 - Die molekulare Architektur der meiotischen Chromosomenachse dargestellt mit hochauflösender Mikroskopie N2 - During meiosis proteins of the chromosome axis are important for monitoring chromatin structure and condensation, for pairing and segregation of chromosomes, as well as for accurate recombination. They include HORMA-domain proteins, proteins of the DNA repair system, synaptonemal complex (SC) proteins, condensins and cohesins. To understand more about their function in shaping the meiotic chromosome it is crucial to establish a defined model of their molecular architecture. Up to now their molecular organization was analysed using conventional methods, like confocal scanning microscopy (CLSM) and transmission electron microscopy (TEM). Unfortunately, these techniques are limited either by their resolution power or their localization accuracy. In conclusion, a lot of data on the molecular organization of chromosome axis proteins stays elusive. For this thesis the molecular structure of the murine synaptonemal complex (SC) and the localization of its proteins as well as of three cohesins was analysed with isotropic resolution, providing new insights into their architecture and topography on a nanoscale level. This was done using immunofluorescence labelling in combination with super-resolution microscopy, line profiles and average position determination. The results show that the murine SC has a width of 221.6 nm ± 6.1 nm including a central region (CR) of 148.2 nm ± 2.6 nm. In the CR a multi-layered organization of the central element (CE) proteins was verified by measuring their strand diameters and strand distances and additionally by imaging potential anchoring sites of SYCP1 (synaptonemal complex protein 1) to the lateral elements (LEs). We were able to show that the two LEs proteins SYCP2 and SYCP3 do co-localize alongside their axis and that there is no significant preferential localization towards the inner LE axis of SYCP2. The presented results also predict an orderly organization of murine cohesin complexes (CCs) alongside the chromosome axis in germ cells and support the hypothesis that cohesins in the CR of the SC function independent of CCs. In the end new information on the molecular organization of two main components of the murine chromosome axis were retrieved with nanometer precision and previously unknown details of their molecular architecture and topography were unravelled. N2 - Innerhalb der Meiose sind Proteine der Chromosomenachse wichtig für das Monitoring der Chromatinstruktur und dessen Kondensation, sowie für die Paarung und Trennung der Chromosomen und für eine fehlerfreie Rekombination. Zu diesen Proteinen zählen HORMA-domain Proteine, Proteine des DNA-Reparatur-Systems und des synaptonemalen Komplexes, sowie Kohäsine und Kondesine. Um mehr über ihre Rolle in der Formgebung meiotischer Chromosomen zu erfahren, ist es unabdingbar ein genau definiertes Modell über ihre molekulare Architektur zu erstellen. Bis jetzt wurde ihre molekulare Organisation mit konventionellen Methoden wie dem konfokalen Laser-Scanning-Mikroskop (CLSM) und dem Transmissionselektronenmikroskop (TEM) untersucht. Beide Techniken sind jedoch entweder in ihrer Auflösung oder ihrer Lokalisationsgenauigkeit beschränkt, wodurch viele Daten zur molekularen Organisation der Chromosomenachse noch nicht erfasst werden konnten. Die vorliegende Arbeit untersucht mit isotropischer Auflösung die molekulare Struktur des synaptonemalen Komplexes (SC) der Maus und die Lokalisation seiner Proteine, sowie die Lokalisation von drei Kohäsinen, was neue Einsichten in deren Architektur und Topographie auf der nanomolekularen Ebene erbrachte. Dies gelang durch die Verwendung von Immunfluoreszenzmarkierungen in Kombination mit hochauflösender Mikroskopie, Linienprofilen und durchschnittlicher Positionsbestimmung. Es konnte gezeigt werden, dass der murine SC eine Weite von 221,6 nm ± 6,1 nm besitzt, inklusive einer 148,2 nm ± 2,6 nm weiten zentralen Region (CR). Innerhalb der CR konnte eine mehrschichtige Anordnung der Proteine des zentralen Elements (CE) bestätigt werden. Dies gelang indem ihre Strangdurchmesser und –abstände gemessen worden sind und zusätzlich potentielle Bindestellen von SYCP1 (synaptonemal complex protein 1) an den lateral Elementen des SCs (LEs) abgebildet werden konnten. Zusätzlich konnte gezeigt werden, dass die beiden LE Proteine, SYCP2 und SYCP3, kolokalisieren. Dabei zeigte SYCP2 keine präferentielle Lokalisation im inneren Bereich der LE. Die Ergebnisse der vorliegenden Arbeit deuten auf eine organisierte Anordnung der murinen Kohäsin Komplexe (CCs) entlang der Chromosomenachse in Keimzellen hin und unterstützen die Hypothese, dass Kohäsine innerhalb der CR des SC eine Funktion unabhängig der von CCs haben. Schlussendlich konnten neue Informationen zur molekularen Anordnung von zwei wichtigen Komponenten der murinen Chromosomenachse mit einer Präzision im Nanometerbereich gewonnen werden und bisher nicht bekannte Details ihrer molekularen Architektur und Topographie aufgedeckt werden. KW - Meiose KW - Super-resolution microscopy KW - Meiosis KW - Synaptonemal complex KW - Cohesin complex Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144199 ER - TY - JOUR A1 - Schlichting, Matthias A1 - Rieger, Dirk A1 - Cusumano, Paola A1 - Grebler, Rudi A1 - Costa, Rodolfo A1 - Mazzotta, Gabriella M. A1 - Helfrich-Förster, Charlotte T1 - Cryptochrome interacts with actin and enhances eye-mediated light sensitivity of the circadian clock in Drosophila melanogaster JF - Frontiers in Molecular Neuroscience N2 - Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as “assembling” protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the “signalplex” of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock. KW - Drosophila melanogaster KW - cryptochrome KW - F-actin KW - phototransduction KW - activity rhythms Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177086 VL - 11 IS - 238 ER - TY - JOUR A1 - Schenk, Mariela A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Holzschuh, Andrea T1 - Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees JF - PeerJ N2 - Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees (Osmia cornuta and O. bicornis), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change. KW - Wild bees KW - Timing KW - Fitness KW - Hibernation KW - Climate change KW - Mechanistic model KW - Osmia KW - Body weight KW - Body size KW - Pollinators Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228544 VL - 6 ER - TY - JOUR A1 - Schenk, Mariela A1 - Krauss, Jochen A1 - Holzschuh, Andrea T1 - Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees JF - Journal of Animal Ecology N2 - 1. Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. 2. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. 3. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3days and (iii) a mismatch of 6days, with bees occurring earlier than flowers in the latter two cases. 4. A mismatch of 6days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3days as under perfect synchronization. However, O.cornuta decreased the number of female offspring, whereas O.bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O.bicornis. 5. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources. KW - conditional sex allocation KW - emergence KW - mitigation strategies KW - mutualism KW - phenological shift KW - pollination KW - species interactions KW - pollinator interactions KW - climate-change KW - phenological response Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228533 VL - 87 IS - 1 ER - TY - THES A1 - Schenk [née Wolf], Mariela T1 - Timing of wild bee emergence: mechanisms and fitness consequences T1 - Zeitliche Abstimmung des Bienenschlupfes: Mechanismen und Fitnesskonsequenzen N2 - Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in Würzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately. N2 - Solitäre Bienen aus gemäßigten Breiten müssen ihre Lebenszyklen vorteilhaften Umweltbedingungen und –ressourcen angleichen. Deshalb ist ein gutes Timing ihrer saisonalen Tätigkeit von höchster Relevanz. Die meisten Arten aus gemäßigten Breiten nutzen Temperatur als Trigger um ihre saisonale Aktivität zeitlich abzustimmen. Aus diesem Grund kann der Klimawandel die mutualistischen Interaktionen zwischen Bienen- und Pflanzenarten stören, falls steigende Temperaturen das Timing der Interaktionspartner unterschiedlich verändern. Das Ziel dieser Doktorarbeit war es, die Timing-Mechanismen von Frühlingsbienenarten zu untersuchen, sowie die resultierenden Fitnessfolgen, falls zeitliche Fehlabstimmungen zu ihren Wirtspflanzen eintreten sollten. In meinen Experimenten konzentrierte ich mich auf Frühlingsbienenarten der Gattung Osmia (Mauerbienen) und dabei vor allem auf zwei spezielle Arten, nämlich O. cornuta und O. bicornis (in meiner Studie, die ich im Kapitel IV meiner Doktorarbeit präsentiere, untersuchte ich zusätzlich noch eine dritte Bienenart: O. brevicornis). Kapitel II präsentiert eine Studie, in der ich verschiedene Trigger untersuchte, die solitäre Bienen nutzen um ihren Schlupfzeitpunkt im Frühjahr festzulegen. Dazu untersuchte ich in einem Klimakammerexperiment den Zusammenhang zwischen Überwinterungstemperaturen, Körpergröße, Körpergewicht und Schlupftag. Zusätzlich entwickelte ich ein einfaches mechanistisches Modell, welches mir ermöglichte, meine verschiedenen Ergebnisse in einem einheitlichen Rahmen zusammenzufügen. In Kombination mit den empirischen Daten deutet das Modell stark darauf hin, dass Bienen einen strategischen Ansatz verfolgen und genau an dem Tag schlüpfen, der für ihre individuelle Fitnesserwartung am sinnvollsten ist. Ich konnte zeigen, dass dieser gewählte Schlupftag einerseits temperaturabhängig ist, da wärmere Temperaturen den Gewichtverlust der Bienen während der Überwinterung steigern, was wiederum den optimalen Schlupftag auf einem früheren Zeitpunkt verschiebt, andererseits konnte ich ebenfalls zeigen, dass der optimale Schlupfzeitpunkt von der individuellen Körpergröße bzw. dem Körpergewicht der Biene abhängt, da diese ihren Schlupftag danach abstimmen. Meine Daten zeigen, dass es nicht reicht alleinig Temperatureffekte auf das Timing der solitären Bienen zu untersuchen, sondern dass wir ebenfalls die Körperkonditionen der Bienen beachten sollten, um die zeitliche Abstimmung des Bienenschlupfes besser verstehen zu können. In Kapitel III präsentiere ich eine Studie, in der ich den Temperatureinfluss auf den Schlupftermin solitärer Bienen detailreicher untersuchte. Dazu habe ich verschiedene Varianten von Temperatursummen-Modellen getestet, um Temperaturzeitreihen auf Schlupftermine zu beziehen. Die grundlegende Funktionsweise solcher Temperatursummen-Modelle ist, dass der Bienenschlupf auf den Tag prognostiziert wird an dem die Bienen eine bestimmte Menge an Temperatursummen aufsummiert haben. Ich konnte zeigen, dass Bienen Temperatursummen erst ab bestimmten Temperaturen bilden (ab circa 4°C bei O. cornuta und circa 7°C bei O. bicornis) und erst nach Erreichen eines bestimmten Kalendertages (circa 10.März bei O. cornuta und circa 28.März bei O. bicornis). Solch ein bestimmter Kalendertag, vor dessen Erreichen und unabhängig von der aktuellen Temperatur keine Temperatursummen gebildet werden, wird grundsätzlich recht selten verwendet und in Phänologie-Modellen zur Vorhersage des Bienenschlupfes, bis heute auch nur zwei Mal. Zusätzlich benutzte ich mein Modell, um rückwirkend den Bienenschlupf über die letzten Jahrzehnte vorherzusagen. Dazu wandte ich das Modell auf Langzeit-Temperaturdaten an, die von der regionalen Wetterstation in Würzburg aufgezeichnet wurden. Das Modell prognostizierte rückwirkend, dass im Verlauf der letzten 63 Jahre die Bienen ungefähr 4 Tage früher schlüpfen. In Kapitel IV präsentiere ich eine Studie, in der ich untersuchte, inwieweit zeitliche Fehlabstimmungen in Bienen-Pflanzen-Interaktionen die Fitness der solitären Bienen beeinflussen. Dazu führte ich ein Experiment mit großen Flugkäfigen durch, die als Mesokosmos dienten. Innerhalb jedes dieser Mesokosmen manipulierte ich das Angebot an Blüten um Bienen-Pflanzen-Interaktionen wahlweise zu synchronisieren oder zu desynchronisieren. Zusammengefasst konnte ich dabei aufzeigen, dass sogar kurze zeitliche Fehlabstimmungen von drei oder sechs Tagen bereits genügen (Bienen schlüpften zeitlich vor dem Erscheinen der Pflanzen) um bei den Bienen fatale Fitnessfolgen zu verursachen. Nichtsdestotrotz konnte ich bei den Bienen verschiedene Strategien erkennen, mit denen sie Auswirkungen auf ihre Fitness nach zeitlichen Fehlabstimmungen entgegenwirken wollten. Allerdings könnten diese Strategien zu sekundären Fitnessverlusten folgen da sie zu einem veränderten Geschlechterverhältnis oder einem stärkeren Prasitierungsgrad führen. Deshalb konnte ich zusammenfassend feststellen, dass nach zeitlichen Fehlabstimmungen zu den entsprechenden Wirtspflanzen, die Kompensationsstrategien der Bienen nicht ausreichen, um Fitnessverlusste zu minimieren. Im Falle des weiter voranschreitenden Klimawandel könnten die Fitnessverluste der Bienen nicht nur das momentane Bienensterben weiter verschärfen, sondern auch ihren Bestäubungsdienst an später blühenden Arten minimieren und dadurch Populationen von tierbestäubten Pflanzen beeinträchtigen. Zusammenfassend konnte ich zeigen, dass Frühlingsbienenarten anfällig für Klimawandel sind, da sie nach warmen Überwinterungstemperaturen früher schlüpfen und einen geringeren Fitnesszustand aufweisen. Da Frühlingsbienenarten bei der zeitlichen Abstimmung ihres Schlupftages nicht nur Überwinterungstemperaturen, sondern auch ihren individuellen Fitnesszustand beachten, könnte dies unterschiedliche Reaktionen innerhalb oder zwischen Bienenpopulationen auf den Klimawandel erklären. Dies könnte ebenfalls Folgen für Bienen-Pflanzen Interaktionen haben und das weitere Bestehen von Bienenpopulationen gefährden. Falls, durch den Klimawandel bedingt, Pflanzenarten ihre Phänologie nicht in Einklang mit der Phänologie der Bienen verschieben, dann könnten Bienen zeitliche Fehlabstimmungen mit ihren Wirtspflanzen erleben. Da Bienen keine einzige Kompensationsmaßnahme aufzeigen, die erfolgreich Fitnessverlusten entgegenwirken konnte, wären in einem solchen Fall die Folgen für Frühlingsbienenarten fatal. Darüber hinaus konnte ich feststellen, dass Frühlingsbienen einen bestimmten Starttag im Jahr beachten, vor dessen Erreichen sie keine Temperatursummen bilden, unabhängig von der aktuellen Temperatur. Ich schlage deshalb vor, dass weitere Studien ebenfalls einen solchen Starttag in Temperatursummen-Modelle einbauen sollten, um die Genauigkeit zur Berechnung des Bienenschlupfes weiter zu verbessern. Obwohl meine retrospektive Vorhersage zum verfrühten Bienenschlupf ziemlich genau den Ergebnissen von verschiedenen Studien zu den phänologischen Verschiebungen von Pflanzenarten entspricht, schlagen wir vor, dass zusätzliche Untersuchungen konzipiert werden müssen um präzisere Aussagen über die Folgen des Klimawandels auf die Synchronisation der Bienen-Pflanzen-Interaktionen liefern zu können. KW - wild bees KW - timing KW - fitness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161565 ER - TY - JOUR A1 - Scheib, Ulrike A1 - Broser, Matthias A1 - Constantin, Oana M. A1 - Yang, Shang A1 - Gao, Shiqiang A1 - Mukherjee, Shatanik A1 - Stehfest, Katja A1 - Nagel, Georg A1 - Gee, Christine E. A1 - Hegemann, Peter T1 - Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain JF - Nature Communications N2 - The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsinguanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio > 1000. After light excitation the putative signaling state forms with tau = 31 ms and decays with tau = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 angstrom) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light. KW - Enzymes KW - Molecular biophysics KW - Molecular neuroscience KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228517 VL - 9 ER -