TY - THES A1 - Wistlich, Laura T1 - NCO-sP(EO-stat-PO) as functional additive for biomaterials’ development T1 - NCO-sP(EO-stat-PO) als funktionale Additive für die Entwicklung von Biomaterialien N2 - The aim of this thesis was the application of the functional prepolymer NCO-sP(EO-stat-PO) for the development of new biomaterials. First, the influence of the star-shaped polymers on the mechanical properties of biocements and bone adhesives was investigated. 3-armed star-shaped macromers were used as an additive for a mineral bone cement, and the influence on the mechanical properties was studied. Additionally, a previously developed bone adhesive was examined regarding cytocompatibility. The second topic was the examination of novel functionalization steps which were performed on the surface of electrospun fibers modified with NCO-sP(EO-stat-PO). This established method of functionalizing electrospun meshes was advanced regarding the modification with proteins which was then demonstrated in a biological application. Two different kinds of antibodies were immobilized on the fiber surface in a consecutive manner and the influence of these proteins on the cell behavior was investigated. The final topic involved the quantification of surface-bound peptide sequences. By functionalization of the peptides with the UV-reactive molecule 2-mercaptopyridine it was possible to quantify this compound via UV measurements by cleavage of disulfide bridges and indirectly draw conclusions about the number of immobilized peptides. In the field of mineral biocements and bone adhesives, NCO-sP(EO-stat-PO) was able to influence the setting behavior and mechanical performance of mineral bone cements based on calcium phosphate chemistry. The addition of NCO-sP(EO-stat-PO) resulted in a pseudo-ductile fracture behavior due to the formation of a hydrogel network in the cement, which was then mineralized by nanosized hydroxyapatite crystals following cement setting. Accordingly, a commercially available aluminum silicate cement from civil engineering could be modified. In addition, it could be shown that the use of NCO-sP(EO-stat-PO) is beneficial for adjusting specific material properties of bone adhesives. Here, the crosslinking behavior of the prepolymer in an aqueous medium was exploited to form an interpenetrating network (IPN) together with a photochemically curing poly(ethylene glycol) dimethacrylate (PEGDMA) matrix. This could be used for the development of a bone adhesive with an improved adhesion to bone in a wet environment. The developed bone adhesive was further investigated in terms of possible influences of the initiator systems. In addition, the material system was tested for cytocompatibility by using different cell lines. Moreover, the preparation of electrospun fiber meshes via solution electrospinning consisting of poly(lactide-co-glycolide) (PLGA) as a backbone polymer and NCO-sP(EO-stat-PO) as functional additive is an established method for the application of the meshes as a replacement of the native extracellular matrix (ECM). In general, these fibers reveal diameters in the nanometer range, are protein and cell repellent due to the hydrophilic properties of the prepolymer and show a specific biofunctionalization by immobilization of peptide sequences. Here, the isocyanate groups presented on the fiber surface after electrospinning were used to carry out various functionalization steps, while retaining the properties of protein and cell repellency. The modification of the electrospun fibers involved the immobilization of analogs or antagonists of tumor necrosis factor (TNF) and the indirect detection of these by interaction with a light-producing enzyme. Here, a multimodal modification of the fiber surface with RGD to mediate cell adhesion and two different antibodies could be achieved. After culturing the cell line HT1080, the pro- or anti-inflammatory response of cells could be detected by IL-8 specific ELISA measurements. Furthermore, the quantification of molecules on the surface of electrospun fibers was investigated. It was tested whether the detection by means of super-resolution microscopy would be possible. Therefore, experiments were performed with short amino acid sequences such as RGD for quantification by fluorescence microscopy. Based on earlier results, in which a UV-spectrometrically active molecule was used to detect the quantification of RGD, it was shown that short peptides can also be quantified in a small scale on flat functional substrates (2D) such as NCO-sP(EO-stat-PO) hydrogel coatings, and modified electrospun fibers produced from PLGA and NCO-sP(EO-stat-PO) (3D). In addition, a collagen sequence was used to prove that a successful quantification can be carried out as well for longer peptide chains. These studies have revealed that NCO-sP(EO-stat-PO) can serve as a functional additive for many applications and should be considered for further studies on the development of novel biomaterials. The rapid crosslinking reaction, the resulting hydrogel formation and the biocompatibility are to be mentioned as positive properties, which makes the prepolymer interesting for future applications. N2 - Ziel der Arbeit war die Anwendung der funktionalen Präpolymere NCO-sP(EO-stat-PO) für die Entwicklung von neuen Biomaterialien. Als erstes wurde untersucht, welchen Einfluss die sternförmigen Polymere auf die mechanischen Eigenschaften von Biozementen und Knochenadhäsiven haben. Beispielsweise wurden 3-armige Macromere als Additive für einen mineralischen Knochenzement verwendet und dessen mechanische Eigenschaften untersucht. Außerdem wurde ein kürzlich entwickelter NCO-sP(EO-stat-PO) haltiger Knochenklebers auf Zytokompatibilität getestet. Ein zweites Kapitel beinhaltete die Modifikation von elektrogesponnenen Polymerfasern mit NCO-sP(EO-stat-PO) basierend auf einer etablierten Methode. Es wurde untersucht, welche weiteren Funktionalisierungen auf solchen Oberflächen vorgenommen werden können. Diese Modifizierungsschritte wurden in einer biologischen Anwendung demonstriert, indem verschiedene Antikörper aufeinanderfolgend auf der Faseroberfläche gebunden wurden. Der Einfluss dieser Proteine auf das Verhalten von Zellen auf diesen Oberflächen wurde untersucht. Als letztes wurde die Quantifizierung von oberflächengebundenen Peptidsequenzen demonstriert. Mittels Funktionalisierung der Peptide mit dem UV-reaktiven Molekül 2-Mercaptopyridin konnte durch Spaltung von Disulfidbrücken diese Verbindung UV-metrisch quantifiziert und indirekt Rückschlüsse auf die Anzahl der immobilisierten Peptide gezogen werden. Durch den Zusatz von NCO-sP(EO-stat-PO) konnten das Abbindeverhalten und die mechanischen Eigenschaften von mineralischen Calciumphosphat-Knochenzementen moduliert werden. Der Zusatz von 3-armigem, sternförmigem NCO-sP(EO-stat-PO) führte dabei zu einem pseudoduktilen Bruchverhalten durch Bildung eines Hydrogelnetzwerks im Zement, das anschließend durch die Zementreaktion mit nanoskaligem Hydroxylapatit mineralisiert wurde. Im Bereich mineralischer Knochenzemente und Adhäsive konnte gezeigt werden, dass NCO-sP(EO-stat-PO) zur Einstellung der Eigenschaften verwendet werden kann. Hierbei wurde dessen Quervernetzungsverhalten im wässrigen Medium ausgenutzt, um mit einer photochemisch härtenden Polyethylenglykoldimethakrylat (PEGDMA) Matrix interpenetrierende Netzwerke (IPNs) zu bilden. Diese konnten für die Entwicklung eines Knochenklebers mit verbesserter Haftung auf Knochen im feuchten Milieu genutzt werden. Das kürzlich entwickelte Knochenadhäsiv wurde im Hinblick auf den Einfluss des Initiatorsystems untersucht. Außerdem wurde die Zytokompatibilität des Materials anhand verschiedener Zelltypen getestet. Die Herstellung von elektrogesponnenen Faservliesen mittels Solution Electrospinning aus Polylactid-co-Glycolid (PLGA) als Gerüst-bildendem Polymer und NCO-sP(EO-stat-PO) als funktionalem Additiv ist eine etablierte Methode, um diese Vliese zur Nachbildung nativer Extrazellulär-Matrix anzuwenden. Die Fasern weisen einen Durchmesser im Nanometer-Bereich auf, sind proteinabweisend durch die hydrophilen Eigenschaften des Präpolymers und können durch Immobilisierung von Peptidsequenzen spezifisch biofunktionalisiert werden. Hierbei wurden die Isocyanate auf der Faseroberfläche genutzt, um verschiedenste Funktionalisierungsschritte unter Beibehaltung der protein- und zellabweisenden Eigenschaften auszuführen. Die Modifizierung der elektrogesponnenen Fasern beinhaltete die Immobilisierung von Analoga oder Antagonisten des Tumornekrosefaktors (TNF) sowie den indirekten Nachweis über eine Lichtreaktion. Hierbei konnte eine multimodale Modifizierung der Faseroberfläche mit RGD-Sequenzen zur Vermittlung der Zelladhäsion und zwei verschiedenen Antikörpern erreicht werden. Nach Kultivierung der Zelllinie HT1080 konnte die pro- oder antiinflammatorische Antwort der Zellen mittels IL-8 spezifischem ELISA nachgewiesen werden. Eine weitere Fragestellung war der Quantifizierung von Molekülen auf der Oberfläche von elektrogesponnen Fasern gewidmet. Es wurde getestet, ob ein Nachweis mittels hochauflösender Mikroskopie möglich ist. Hierzu wurden RGD-Sequenzen zur fluoreszenzmikroskopischen Quantifizierung verwendet. Basierend auf früheren Ergebnissen, bei denen für die Quantifizierung von RGD ein UV-aktives Molekül genutzt wurde, konnte gezeigt werden, dass sich kurze Peptide auch im kleinen Maßstab auf flachen Substraten (2D) wie Hydrogel-Beschichtungen aus NCO-sP(EO-stat-PO) als auch auf elektrogesponnenen Fasern aus PLGA und NCO-sP(EO-stat-PO) (3D) quantifizieren lassen. Außerdem wurde eine Kollagen-Sequenz als längere Peptidkette herangezogen, um auch hier eine erfolgreiche Quantifizierung zu beweisen. Es konnte gezeigt werden, dass NCO-sP(EO-stat-PO) als funktionales Additiv für viele Anwendungen dienen kann und für weitere Untersuchungen zur Entwicklung von Biomaterialien berücksichtigt werden sollte. Die schnelle Quervernetzungsreaktion, die resultierende Hydrogelbildung und die Biokompatibilität sind als positive Eigenschaften zu nennen, die das Präpolymer für zukünftige Anwendungen interessant macht. KW - Sternpolymere KW - Funktionalisierung KW - Isocyanate KW - surface functionalization KW - biomaterials KW - chemical crosslinking KW - bioceramics KW - electrospun fibers KW - Oberflächenfunktionalisierung KW - funktionale Präpolymere KW - Modifikation von Biokeramiken KW - Funktionalisierung von elektrogesponnenen Fasern Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178365 ER - TY - THES A1 - Wimmer, Katharina T1 - Analyse der Osteoklastendifferenzierung auf elektrochemisch abgeschiedenen strontiumdotierten Struvitschichten T1 - Differentiation of osteoclastic cells on electrochemically deposited strontium substituted struvite coatings N2 - Bei der Implantatversorgung von Patienten mit Osteoporose besteht weiterhin eine hohe Komplikationsrate vor allem durch aseptische Prothesenlockerungen. Eine vielversprechende Möglichkeit diese zu minimieren stellt eine Funktionalisierung der Implantate mit Strontium dar. Ziel der vorliegenden Arbeit war es dabei die Wirkung lokal verfügbaren Strontiums auf osteoklastäre und osteoblastäre Zellen zu untersuchen. Mittels elektrochemischer Abscheidung erfolgte die Beschichtung von Titanproben mit strontiumdotiertem Struvit, wobei sieben verschiedene Dotierkonzentrationen zwischen 6 µg und 487 µg Strontium pro Probe hergestellt wurden. Die Untersuchungen an osteoklastären RAW 264.7 Zellen erfolgten mittels Bestimmung von Zellzahl und -aktivität, verschiedener mikroskopischer Methoden sowie auf genetischer Ebene. Osteoblastäre MG63-Zellen wurden orientierend anhand von Zellzahl und Zellaktivität untersucht. Zellbiologisch konnte ein hemmender Einfluss von Strontium auf Differenzierung sowie Proliferation und Aktivität osteoklastärer Zellen gezeigt werden. Die Dotierkonzentration mit den günstigsten Eigenschaften war unter vorliegenden Versuchsbedingungen 487 µg Strontium pro Probe, da sich hierbei zudem eine erhaltene ostoblastäre Proliferation und Aktivität zeigte. N2 - Aseptic loosening of implants is still an issue especially for patients with osteoporosis. In order to minimize the risk of implant failure the functionalisation of implant surfaces with strontium is a promising technique. The aim of the present study was to investigate the effect of locally availible strontium on osteoclastic and osteoblastic cells. Electrochemically assisted deposition was used to provide strontium substituted struvite coatings on titanium surfaces. The strontium concentration ranged from 6 µg to 487 µg per sample. Growth of osteoclastic cells was investigated by the determination of cell number and cellular activity, as well as microscopical and transcriptional level studies. Osteoblasts were studied by determining cell number and cell activity. A general suppressing influence of strontium was observed on the differentiation and activity of osteoclasts. The most favourable properties were found for the highest strontium concentration under investigation, because additionally cell proliferation and activity of osteoblasts was not significantly affected. KW - Osteoblast KW - Strontium KW - Struvit KW - Galvanische Abscheidung KW - Osteoklastendifferenzierung KW - strontiumdotierte Struvitschichten Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191417 ER - TY - THES A1 - Wiesbeck, Christina T1 - Fabrication and characterization of NCO-sP(EO-stat-PO)- crosslinked and functionalized electrospun gelatin scaffolds for tissue engineering applications T1 - Herstellung und Charakterisierung von elektrogesponnenen Nanofasern aus Gelatine und NCO-sP(EO-stat-PO) für Tissue Engineering Anwendungen N2 - In Tissue Engineering, scaffolds composed of natural polymers often show a distinct lack in stability. The natural polymer gelatin is highly fragile under physiological conditions, nevertheless displaying a broad variety of favorable properties. The aim of this study was to fabricate electrospun gelatin nanofibers, in situ functionalized and stabilized during the spinning process with highly reactive star polymer NCO-sP(EO-stat-PO) (“sPEG”). A spinning protocol for homogenous, non-beaded, 500 to 1000 nm thick nanofibers from different ratios of gelatin and sPEG was successfully established. Fibers were subsequently characterized and tested with SEM imaging, tensile tests, water incubation, FTIR, EDX, and cell culture. It was shown that adding sPEG during the spinning process leads to an increase in visible fiber crosslinking, mechanical stability, and stability in water. The nanofibers were further shown to be biocompatible in cell culture with RAW 264.7 macrophages. N2 - Tissue Engineering Scaffolds aus natürlichen Polymeren zeigen häufig mangelnde Stabilität, insbesondere unter physiologischen Bedingungen. Das natürliche Polymer Gelatine besitzt einige sehr vorteilhafte Eigenschaften für die Anwendung bei der Produktion künstlicher Körpergewebe. Beim Einsatz im menschlichen Organismus ist die Gelatine durch ihre Wasserlöslichkeit höchst fragil. Das Ziel dieser Arbeit war die Herstellung von Nanofaser-Scaffolds aus Gelatine mittels Elektrospinning und deren in situ Stabilisierung durch das Sternpolymer NCO-sP(EO-stat-PO) („sPEG“). Zunächst wurde ein Spinningprotokoll zur Fabrikation homogener, glatter, 500 bis 1000 nm dicker Nanofasern in verschiedenen Verhältnissen von Gelatine und sPEG erarbeitet. Mittels REM Bildgebung, Zugversuchen, Wasserinkubationsversuchen, FTIR, EDX und Zellkultur wurden die Fasern untersucht und charakterisiert. Es konnte gezeigt werden, dass die Zugabe von sPEG während des Spinningprozesses zu einer sichtbaren Quervernetzung der Fasern, sowie zu einem Anstieg der mechanischen Festigkeit und der Wasserstabilität führt. Des Weiteren wurde die Biokompatibilität der Nanofasern in der Zellkultur mit RAW 264.7 Makrophagen belegt. KW - Tissue Engineering KW - Electrospinning KW - Gelatine KW - Polyethylenglykole KW - NCO-sP(EO-stat-PO) KW - sPEG KW - starPEG Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190988 ER - TY - JOUR A1 - Stuckensen, Kai A1 - Lamo-Espinosa, José M. A1 - Muiños-López, Emma A1 - Ripalda-Cemboráin, Purificación A1 - López-Martínez, Tania A1 - Iglesias, Elena A1 - Abizanda, Gloria A1 - Andreu, Ion A1 - Flandes-Iparraguirre, María A1 - Pons-Villanueva, Juan A1 - Elizalde, Reyes A1 - Nickel, Joachim A1 - Ewald, Andrea A1 - Gbureck, Uwe A1 - Prósper, Felipe A1 - Groll, Jürgen A1 - Granero-Moltó, Froilán T1 - Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP−2 and enhanced bone regeneration JF - Materials N2 - In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP–2, BMP–7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP–2. In vitro, both scaffolds presented similar mechanical properties, rhBMP–2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP–2 mediated bone healing. KW - rhBMP–2 KW - collagen sponge KW - cryostructured scaffolds KW - bone critical size defect Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195966 SN - 1996-1944 VL - 12 IS - 19 ER - TY - THES A1 - Schäfer [geb. Stichler], Simone T1 - Thiol-ene Cross-linked Poly(glycidol) / Hyaluronic Acid Based Hydrogels for 3D Bioprinting T1 - Thilo-En vernetzte Hydrogele basierend auf Poly(glyzidolen) und Hyaluronsäure für das 3D-Biodrucken N2 - The aim of the work was the development of thiol-ene cross-linked hydrogels based on functionalized poly(glycidol)s (PG) and hyaluronic acid (HA) for extrusion based 3D bioprinting. Additionally, the functionalization of the synthesized PG with peptides and the suitability of these polymers for physically cross-linked gels were investigated, in a proof of principle study in order to demonstrate the versatile use of PG polymers in hydrogel development. First, the precursor polymers of the different hydrogel systems were synthesized. For thiol-ene cross-linked hydogels, linear allyl-functionalized PG (P(AGE-co-G)) and three different thiol-(SH-)functionalized polymers, ester-containing PG-SH (PG SHec), ester-free PG-SH (PG-SHef) and HA-SH were synthesized and analysed, The degree of functionalization of these polymers was adjustable. For physically cross-linked hydrogels, peptide-functionalized PG (P(peptide-co-G)), was synthesized through polymer analogue thiol-ene modification of P(AGE-co-G). Subsequently, thiol-ene cross-linked hydrogels were prepared with the synthesized thiol- and allyl-functionalized polymers. Depending on the origin of the used polymers, two different systems were obtained: on the one hand synthetic hydrogels consisting of PG-SHec/ef and P(AGE-co-G) and on the other hand hybrid gels, consisting of HA-SH and P(AGE-co-G). In synthetic gels, the degradability of the gels was determined by the applied PG-SH. The use of PG-SHec resulted in hydrolytically degradable hydrogels, whereas the cross-linking with PG-SHef resulted in non-degradable gels. The physical properties of these different hydrogel systems were determined by swelling, mechanical and diffusion studies and subsequently compared among each other. In swelling studies the differences of degradable and non-degradable synthetic hydrogels as well as the differences of synthetic compared to hybrid hydrogels were demonstrated. Next, the stiffness and the swelling ratios (SR) of the established hydrogel systems were examined in dependency of different parameters, such as incubation time, polymer concentration and UV irradiation. In general, these measurements revealed the same trends for synthetic and hybrid hydrogels: an increased polymer concentration as well as prolonged UV irradiation led to an increased network density. Moreover, it was demonstrated that the incorporation of additional non-bound HMW HA hampered the hydrogel cross-linking resulting in gels with decreased stiffness and increased SR. This effect was strongly dependent on the amount of additional HMW HA. The diffusion of different molecular weight fluorescein isothiocyanate-dextran (FITC-dextran) through hybrid hydrogels (with/without HMW HA) gave information about the mesh size of these gels. The smallest FITC-dextran (4 kDa) completely diffused through both hydrogel systems within the first week, whereas only 55 % of 40 kDa and 5-10 % HMW FITC-dextrans (500 kDa and 2 MDa) could diffuse through the networks. The applicability of synthetic and hybrid hydrogels for cartilage regeneration purpose was investigated through by biological examinations. It was proven that both gels support the survival of embedded human mesenchymal stromal cells (hMSCs) (21/28 d in vitro culture), however, the chondrogenic differentiation was significantly improved in hybrid hydrogels compared to synthetic gels. The addition of non-bound HMW HA resulted in a slightly less distinct chondrogenesis. Lastly the printability of the established hydrogel systems was examined. Therefore, the viscoelastic properties of the hydrogel solutions were adjusted by incorporation of non-bound HMW HA. Both systems could be successfully printed with high resolution and high shape fidelity. The introduction of the double printing approach with reinforcing PCL allowed printing of hydrogel solutions with lower viscosities. As a consequence, the amount of additional HMW HA necessary for printing could be reduced allowing successful printing of hybrid hydrogel solutions with embedded cells. It was demonstrated that the integrated cells survived the printing process with high viability measured after 21 d. Moreover, by this reinforcing technique, robust hydrogel-containing constructs were fabricated. In addition to thiol-ene cross-linked hydrogels, hydrogel cross-linking via ionic interactions was investigated with a hybrid hydrogel based on HMW HA and peptide-functionalized PG. Rheological measurements revealed an increase in the viscosity of a 2 wt.% HMW HA solution by the addition of peptide-functionalized PG. The increase in viscosity could be attributed to the ionic interactions between the positively charge PG and the negatively charge HMW HA. In conclusion, throughout this thesis thiol-ene chemistry and PG were introduced as promising cross-linking reaction and polymer precursor for the field of biofabrication. Furthermore, the differences of hybrid and synthetic hydrogels as well as chemically and physically cross-linked hydrogels were demonstrated. Moreover, the double printing approach was demonstrated to be a promising tool for the fabrication of robust hydrogel-containing constructs. It opens the possibility of printing hydrogels that were not printable yet, due to too low viscosities. N2 - Ziel der Arbeit war die Entwicklung von Thiol-En-vernetzten Hydrogelen basierend auf funktionalisierten Poly(glyzidolen) (PG) und Hyaluronsäure (HA) für das extrusionsbasierte 3D-Biodrucken. Um die vielseitigen Anwendungsmöglichkeiten von PG-Polymeren für die Hydrogelentwicklung zu zeigen, wurde darüber hinaus, in einer Proof-of-Principle-Studie, PG mit Peptiden funktionalisiert und die Eignung dieser Polymere für die Herstellung von physikalisch vernetzten Gelen untersucht. Zunächst wurden die Vorläuferpolymere für die verschiedenen Hydrogelsysteme synthetisiert. Für die Thiol-En-vernetzten Hydrogele wurde lineares Allyl-funktionalisiertes PG (P(AGE-co-G)) und drei verschiedene Thiol-(SH )funktionalisierte Polymere, Ester haltiges PG-SH (PG-SHec), Ester freies PG SH (PG-SHef) und HA-SH synthetisiert und analysiert. Dabei war der Funktionalisierungsgrad dieser Polymere einstellbar. Für physikalisch vernetzte Hydrogele wurde Peptid-funktionalisierte PGs (P(Peptid co-G)) mittels polymeranaloger Thiol-En-Modifikation von P(AGE-co-G) synthetisiert. Anschließend wurden Thiol-En-vernetzte Hydrogele auf Basis der synthetisierten Thiol- und Allyl-funktionalisierten Polymeren hergestellt. Je nach Ursprung der verwendeten Polymere wurden zwei verschiedene Systeme erhalten: einerseits synthetische Hydrogele bestehend aus PG-SHec/ef und P(AGE-co-G) und andererseits hybride Gele, bestehend aus HA-SH und P(AGE-co-G). Bei den synthetischen Gelen wurde die Abbaubarkeit der Gele durch das verwendete PG-SH bestimmt. Die Verwendung von PG-SHec resultierte in hydrolytisch abbaubaren Hydrogelen, während die Vernetzung mit PG-SHef zu nicht abbaubaren Gelen führte. Die physikalischen Eigenschaften der verschiedenen Hydrogelsysteme wurden mittels Quell-, mechanischen und Diffusionsexperimenten bestimmt und anschließend miteinander verglichen. Die Quellungsstudien zeigten die Unterschiede von abbaubaren und nicht abbaubaren synthetischen Hydrogelen, sowie die Unterschiede von synthetischen gegenüber hybriden Hydrogelen. Als nächstes wurden die Steifigkeit und das Quellverhältnis (SR) der etablierten Hydrogelsysteme in Abhängigkeit von verschiedenen Parametern wie Inkubationszeit, Polymerkonzentration und UV-Bestrahlung untersucht. Im Allgemeinen zeigten diese Messungen für synthetische und hybride Hydrogele die gleichen Trends: eine erhöhte Polymerkonzentration sowie eine verlängerte UV-Bestrahlung führten zu einer erhöhten Netzwerkdichte. Darüber hinaus wurde gezeigt, dass das Einbringen zusätzlicher, nicht gebundener HMW HA die Hydrogelvernetzung behinderte, was zu Gelen mit verringerter Steifigkeit und erhöhtem SR führte. Dieser Effekt war stark abhängig von der Menge an zusätzlich eingebrachter HMW HA. Die Diffusion von Fluorescein-Isothiocyanat-Dextran (FITC-Dextran) mit unterschiedlichem Molekulargewichten durch hybride Hydrogele (mit/ohne HMW HA) lieferte Informationen über die Maschengröße dieser Gele. Das kleinste FITC-Dextran (4 kDa) diffundierte innerhalb der ersten Woche vollständig durch beide Hydrogelsysteme, während nur 55 % der 40 kDa und 5-10 % HMW FITC-Dextrane (500 kDa und 2 MDa) durch die Netzwerke diffundieren konnten. Die Anwendbarkeit von synthetischen und hybriden Hydrogelen für Knorpelregenerationszwecke wurde durch biologische Experimente untersucht. Es wurde bewiesen, dass beide Gele das Überleben von eingebetteten humanen mesenchymalen Stromazellen (hMSCs) unterstützen (21/28 d in vitro Kultur), jedoch war die chondrogene Differenzierung in hybriden Hydrogelen im Vergleich zu synthetischen Gelen signifikant verbessert. Die Zugabe von nicht gebundenem HMW HA führte zu einer etwas weniger ausgeprägten Chondrogenese. Zuletzt wurde die Druckbarkeit der etablierten Hydrogelsysteme untersucht. Dafür wurden die viskoelastischen Eigenschaften der Hydrogellösungen durch das Einbringen von nicht gebundener HMW HA eingestellt. Beide Systeme konnten erfolgreich mit hoher Auflösung und hoher Formgenauigkeit gedruckt werden. Die Einführung des Doppeldruck-Konzeptes mit verstärkendem PCL ermöglichte das Drucken von Hydrogellösungen mit niedrigeren Viskositäten. Infolgedessen konnte die für den Druck notwendige Menge an HMW HA reduziert und hybride Hydrogellösungen mit eingebetteten Zellen erfolgreich gedruckt werden. Es wurde gezeigt, dass die integrierten Zellen den Druckprozess mit hoher Vitalität überlebten (gemessen nach 21 d). Darüber hinaus wurden mit dieser Verstärkungstechnik robuste Hydrogel-enthaltende Konstrukte hergestellt. Zusätzlich zu den Thiol-En-vernetzten Hydrogelen wurde die Hydrogelvernetzung mittels elektrostatischen Wechselwirkungen mit einem hybriden Gel auf der Basis von HMW HA und Peptid-funktionalisiertem PG untersucht. Rheologische Messungen ergaben eine Erhöhung der Viskosität einer 2 wt.% HMW HA Lösungen durch die Zugabe von Peptid-funktionalisiertem PG. Der Viskositätsanstieg konnte auf die elektrostatischen Wechselwirkungen zwischen dem positiv geladenen PG und der negativ geladenen HMW HA zurückgeführt werden. Zusammenfassend wurde in dieser Arbeit die Thiol-En-Chemie und PG als vielversprechende Vernetzungsreaktion bzw. Polymervorstufe für die Biofabrikation eingeführt. Des Weiteren wurden die Unterschiede von hybriden und synthetischen Hydrogelen sowie von chemisch und physikalisch vernetzten Hydrogelen aufgezeigt. Darüber hinaus wurde gezeigt, dass das Doppeldruck-Konzept eine vielversprechende Methode für die Herstellung von robusten Hydrogel-enthaltenden Konstrukten ist. Es eröffnet die Möglichkeit, Hydrogele zu drucken, die aufgrund zu geringer Viskositäten bis jetzt nicht druckbar waren. KW - Hyaluronsäure KW - thiol-ene KW - Hyaluronic Acid KW - poly(glycidol) KW - hydrogels KW - Hydrogel KW - Glycidol KW - 3D-Druck KW - 3D printing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174713 ER - TY - INPR A1 - Schaefer, Natascha A1 - Janzen, Dieter A1 - Bakirci, Ezgi A1 - Hrynevich, Andrei A1 - Dalton, Paul D. A1 - Villmann, Carmen T1 - 3D Electrophysiological Measurements on Cells Embedded within Fiber-Reinforced Matrigel T2 - Advanced Healthcare Materials N2 - 2D electrophysiology is often used to determine the electrical properties of neurons, while in the brain, neurons form extensive 3D networks. Thus, performing electrophysiology in a 3D environment provides a closer situation to the physiological condition and serves as a useful tool for various applications in the field of neuroscience. In this study, we established 3D electrophysiology within a fiber-reinforced matrix to enable fast readouts from transfected cells, which are often used as model systems for 2D electrophysiology. Using melt electrowriting (MEW) of scaffolds to reinforce Matrigel, we performed 3D electrophysiology on a glycine receptor-transfected Ltk-11 mouse fibroblast cell line. The glycine receptor is an inhibitory ion channel associated when mutated with impaired neuromotor behaviour. The average thickness of the MEW scaffold was 141.4 ± 5.7µm, using 9.7 ± 0.2µm diameter fibers, and square pore spacings of 100 µm, 200 µm and 400 µm. We demonstrate, for the first time, the electrophysiological characterization of glycine receptor-transfected cells with respect to agonist efficacy and potency in a 3D matrix. With the MEW scaffold reinforcement not interfering with the electrophysiology measurement, this approach can now be further adapted and developed for different kinds of neuronal cultures to study and understand pathological mechanisms under disease conditions. KW - 3D cultures Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244194 ER - TY - JOUR A1 - Rödel, Michaela A1 - Teßmar, Jörg A1 - Groll, Jürgen A1 - Gbureck, Uwe T1 - Tough and Elastic alpha-Tricalcium Phosphate Cement Composites with Degradable PEG-Based Cross-Linker JF - Materials N2 - Dual setting cements composed of an in situ forming hydrogel and a reactive mineral phase combine high compressive strength of the cement with sufficient ductility and bending strength of the polymeric network. Previous studies were focused on the modification with non-degradable hydrogels based on 2-hydroxyethyl methacrylate (HEMA). Here, we describe the synthesis of suitable triblock degradable poly(ethylene glycol)-poly(lactide) (PEG-PLLA) cross-linker to improve the resorption capacity of such composites. A study with four different formulations was established. As reference, pure hydroxyapatite (HA) cements and composites with 40 wt% HEMA in the liquid cement phase were produced. Furthermore, HEMA was modified with 10 wt% of PEG-PLLA cross-linker or a test series containing only 25% cross-linker was chosen for composites with a fully degradable polymeric phase. Hence, we developed suitable systems with increased elasticity and 5-6 times higher toughn ess values in comparison to pure inorganic cement matrix. Furthermore, conversion rate from alpha-tricalcium phosphate (alpha-TCP) to HA was still about 90% for all composite formulations, whereas crystal size decreased. Based on this material development and advancement for a dual setting system, we managed to overcome the drawback of brittleness for pure calcium phosphate cements. KW - dual setting system KW - bending strength KW - calcium phosphate cement KW - composite material KW - HEMA KW - hydroxyapatite KW - free radical polymerization Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226437 VL - 12 IS - 53 ER - TY - THES A1 - Rödel, Michaela T1 - Development of Dual Setting Cement Systems as Composite Biomaterials with Ductile Properties T1 - Entwicklung dual härtender Zemente als Komposit-Biomaterialien mit duktilen Eigenschaften N2 - Synthetic bone replacement materials have their application in non-load bearing defects with the function of (re-)construction or substitution of bone. This tissue itself represents a biological composite material based on mineralized collagen fibrils and combines the mechanical strength of the mineral with the ductility of the organic matrix. By mimicking these outstanding properties with polymer-cement-composites, an imitation of bone is feasible. A promising approach for such replacement materials are dual setting systems, which are generated by dissolution-precipitation reaction with cement setting in parallel to polymerization and gelation of the organic phase forming a coherent hydrogel network. Hereby, the high brittleness of the pure inorganic network was shifted to a more ductile and elastic behavior. The aim of this thesis was focused on the development of different dual setting systems to modify pure calcium phosphate cements’ (CPCs’) mechanical performance by incorporation of a hydrogel matrix. A dual setting system based on hydroxyapatite (HA) and cross-linked 2-hydroxyethyl methacrylate (HEMA) via radical polymerization was advanced by homogenous incorporation of a degradable cross-linker composed of poly(ethylene glycol) (PEG) as well as poly(lactic acid) (PLA) with reactive terminal methacrylate functionalities (PEG-PLLA-DMA). By integration of this high molecular weight structure in the HEMA-hydrogel network, a significant increase in energy absorption (toughness) under 4-point bending testing was observed. An addition of only 10 wt% hydrogel precursor (referred to the liquid phase) resulted in a duplication of stress over a period of 8 days. Additionally, the calculated elasticity was positively affected and up to six times higher compared to pure HA. With a constantly applied force during compressive strength testing, a deformation and thus strain levels of about 10 % were reached immediately after preparation. For higher degradability, the system was modified in a second approach regarding organic as well as inorganic phase. The latter component was changed by brushite forming cement that is resorbable in vivo due to solubility processes. This CPC was combined with a hydrogel based on PEG-PLLA-DMA and other dimethacrylated PEGs with different molecular weights and concentrations. Hereby, new reaction conditions were created including a shift to acidic conditions. On this ground, the challenge was to find a new radical initiator system. Suitable candidates were ascorbic acid and hydrogen peroxide. that started the polymerization and successful gelation in this environment. These highly flexible dual set composites showed a very high ductility with an overall low strength compared to HA-based models. After removal of the applied force during compressive strength testing, a complete shape recovery was observed for the samples containing the highest polymeric amount (50 wt%) of PEG-PLLA-DMA. Regarding phase distribution in the constructs, a homogenously incorporated hydrogel network was demonstrated in a decalcifying study with ethylenediaminetetraacetic acid. Intact, coherent hydrogels remained after dissolution of the inorganic phase via calcium ion complexation. In a third approach, the synthetic hydrogel matrix of the previously described system was replaced by the natural biopolymer gelatin. Simultaneously to brushite formation, physical as well as chemical cross-linking by the compound genipin was performed in the dual setting materials. Thanks to the incorporation of gelatin, elasticity increased significantly, in which concentrations up to 10.0 w/v% resulted in a certain cohesion of samples after compressive strength testing. They did not dissociate in little pieces but remained intact cuboid specimens though having cracks or fissures. Furthermore, the drug release of two active pharmaceutical ingredients (vancomycin and rifampicin) was investigated over a time frame of 5 weeks. The release exponent was determined according to Korsmeyer-Peppas with n = 0.5 which corresponds to the drug liberation model of Higuchi. A sustained release was observed for the antibiotic vancomycin encapsulated in composites with a gelatin concentration of 10.0 w/v% and a powder-to-liquid ratio of 2.5 g/mL. With respect to these developments of different dual setting systems, three novel approaches were successfully established by polymerization of monomers and cross-linking of precursors forming an incorporated, homogenous hydrogel matrix in a calcium phosphate network. All studies showed an essential transfer of mechanical performance in direction of flexibility and bendability. N2 - Synthetische Knochenersatzmaterialien finden ihre Anwendung im Bereich nicht lasttragender Defekte zum Wiederaufbau und Ersatz von defekter oder verlorener Knochensubstanz. Diese stellt aufgrund ihres Aufbaus aus mineralisierten Kollagen-Fibrillen selbst ein biologisches Komposit-Material dar, welches die mechanische Festigkeit des Minerals mit der Duktilität der organischen Matrix kombiniert. Eine Nachahmung dieser herausragenden Eigenschaften des Knochens wird im Sinne eines Ersatzmaterials durch geeignete Polymer-Zement-Komposite ermöglicht. Ein vielversprechender Ansatz für solche Komposite sind hierbei dual härtende Systeme, bei denen die Lösungs-Fällungs-Reaktion der Zementbildung parallel zur Polymerisation oder Gelierung der organischen Phase zu einem kohärenten Hydrogelnetzwerk abläuft. Die hohe Sprödigkeit und Bruchanfälligkeit rein anorganischer Netzwerke sollte dabei durch die Integration elastischer Polymerkomponenten hin zu mehr Flexibilität und Elastizität modifiziert werden. In der vorliegenden Arbeit wurden verschiedene dual härtende Hybrid-Materialien entwickelt, um etablierte Calciumphosphatzemente durch Einbringen von zusätzlicher Hydrogel-Matrizes bezüglich ihrer mechanischen Eigenschaften zu modifizieren. In ein dual härtendes System aus Hydroxylapatit (HA) und radikalisch vernetztem 2-Hydroxyethlymethacrylat (HEMA), wurde ein abbaubarer Cross-linker aus Polyethylenglykol (PEG) und Polymilchsäure (PLA)-Einheiten homogen inkorporiert, der mittels einer Reaktion der terminalen Methacrylatfunktionen (PEG-PLLA-DMA) zur Ausbildung der Vernetzungen führte und mittels PLLA hydrolytisch labile Esterbindungen ins System integrierte. Durch Einbringen dieser hochmolekularen Polymere in das engmaschige HEMA-Hydrogelnetzwerk kam es zu einer signifikanten Erhöhung der Energieaufnahme des Konstruktes unter 4-Punkt-Biegebelastung im Vergleich zum bereits etablierten System. Durch Zusatz von 10 Gew% hochmolekularem Hydrogel Präkursor (bezogen auf die flüssige Phase) konnte über einen Zeitraum von acht Tagen ein zweifach höherer Bruchwiderstand erhalten werden, verbunden mit einer bis zu sechsfach höheren Elastizität gegenüber reinem HA Zement. Zur Steigerung der Bioabbaubarkeit wurde in einem zweiten Ansatz durch Austausch der anorganischen Komponente mit einem in vivo leichter resorbierbaren Bruschit Zement das dual härtende System modifiziert. Dabei wurden dimethacrylierte PEGs verschiedener Molekulargewichte in unterschiedlichen Konzentrationen mit dem Zementpulver kombiniert. Die Reaktionsbedingungen im sauren Milieu erforderten den Austausch des radikalischen Initiator-Systems, wobei sich eine Kombination aus Ascorbinsäure und Wasserstoffperoxid als geeignet erwies. Die so erhaltenen dual härtenden Komposite zeigten eine sehr hohe Duktilität und Flexibilität bei insgesamt niedriger Festigkeit im Vergleich zu HA-basierenden Systemen. So fand im Druckversuch eine vollständige Relaxation zu den Ausgangsabmessungen des Prüfkörpers bei einem hohen Polymeranteil an PEG-PLLA-DMA (50 Gew%) statt. Die homogene Verteilung der inkorporierten Polymerphase wurde mittels Decalcifizierung durch Ethylendiamintetraessigsäure bewiesen. Hierbei wurden durchgängige Hydrogele nach Herauslösen der anorganischen Phase durch Komplexierung von Calcium-Ionen erhalten. Abschließend wurde die auf synthetischen Polymeren basierende Hydrogel-Matrix durch das natürliche Biopolymer Gelatine ersetzt. Neben der Bruschit-bildenden Zement-Reaktion wurde das Polymernetzwerk sowohl durch eine physikalische Gelierung als auch eine chemische Vernetzung mit Genipin stabilisiert. Durch die zusätzliche organische Phase wurden die Eigenschaften des Zementes hinsichtlich Elastizität erhöht, wobei bei einer Gelatine-Konzentration von 10,0 Gew% eine erneute Kohäsion der Prüfkörper nach mechanischer Druckbelastung beobachtet werden konnte. Diese zerfielen nicht in einzelne Teile, sondern wurden trotz Auftreten von Rissen als weitestgehend intakte Quader zusammengehalten. Weiterhin wurde die Wirkstoff-Freisetzung zweier antibiotisch aktiver Substanzen (Vancomycin und Rifampicin) über einen Zeitraum von fünf Wochen untersucht. Mittels Bestimmung des Freisetzungsexponenten nach Korsmeyer-Peppas konnte eine verzögerte Wirkstoffliberation für das Antibiotikum Vancomycin gemäß Wurzel-t-Kinetik (Higuchi-Modell) mit n = 0,5 für ein Pulverflüssigkeitsverhältnis von 2,5 g/mL bei einer Gelatinekonzentration von 10,0 Gew% erhalten werden. Im Hinblick auf die Entwicklung verschiedener Formulierungen als dual härtende Systeme wurden in der vorliegenden Arbeit drei Varianten etabliert, die durch Polymerisation von Monomeren beziehungsweise Hydrogel-Präkursoren zu einer inkorporierten, homogenen Hydrogel-Matrix im Calciumphosphatnetzwerk führten. Bei allen Ansätzen wurde ein wesentlicher Transfer der mechanischen Eigenschaften in Richtung Flexibilität und Biegsamkeit erzielt. KW - Calciumphosphate KW - Knochenzement KW - Hydrogel KW - Dual setting system KW - Ceramic polymer composite KW - Calciumphosphatzemente Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-182776 ER - TY - JOUR A1 - Robinson, Thomas M. A1 - Hutmacher, Dietmar W. A1 - Dalton, Paul D. T1 - The next frontier in melt electrospinning: taming the jet JF - Advanced Functional Materials N2 - There is a specialized niche for the electrohydrodynamic jetting of melts, from biomedical products to filtration and soft matter applications. The next frontier includes optics, microfluidics, flexible electronic devices, and soft network composites in biomaterial science and soft robotics. The recent emphasis on reproducibly direct‐writing continual molten jets has enabled a spectrum of contemporary microscale 3D objects to be fabricated. One strong suit of melt processing is the capacity for the jet to solidify rapidly into a fiber, thus fixing a particular structure into position. The ability to direct‐write complex and multiscaled architectures and structures has greatly contributed to a large number of recent studies, explicitly, toward fiber–hydrogel composites and fugitive inks, and has expanded into several biomedical applications such as cartilage, skin, periosteum, and cardiovascular tissue engineering. Following the footsteps of a publication that summarized melt electrowriting literature up to 2015, the most recent literature from then until now is reviewed to provide a continuous and comprehensive timeline that demonstrates the latest advances as well as new perspectives for this emerging technology. KW - 3D printing KW - additive manufacturing KW - eletrhydrodynamic KW - melt electrospinning writing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204819 VL - 29 ER - TY - JOUR A1 - No, Young Jung A1 - Holzmeister, Ib A1 - Lu, Zufu A1 - Prajapati, Shubham A1 - Shi, Jeffrey A1 - Gbureck, Uwe A1 - Zreiqat, Hala T1 - Effect of Baghdadite Substitution on the Physicochemical Properties of Brushite Cements JF - Materials N2 - Brushite cements have been clinically used for irregular bone defect filling applications, and various strategies have been previously reported to modify and improve their physicochemical properties such as strength and injectability. However, strategies to address other limitations of brushite cements such as low radiopacity or acidity without negatively impacting mechanical strength have not yet been reported. In this study, we report the effect of substituting the beta-tricalcium phosphate reactant in brushite cement with baghdadite (Ca\(_3\)ZrSi\(_2\)O\(_9\)), a bioactive zirconium-doped calcium silicate ceramic, at various concentrations (0, 5, 10, 20, 30, 50, and 100 wt%) on the properties of the final brushite cement product. X-ray diffraction profiles indicate the dissolution of baghdadite during the cement reaction, without affecting the crystal structure of the precipitated brushite. EDX analysis shows that calcium is homogeneously distributed within the cement matrix, while zirconium and silicon form cluster-like aggregates with sizes ranging from few microns to more than 50 µm. X-ray images and µ-CT analysis indicate enhanced radiopacity with increased incorporation of baghdadite into brushite cement, with nearly a doubling of the aluminium equivalent thickness at 50 wt% baghdadite substitution. At the same time, compressive strength of brushite cement increased from 12.9 ± 3.1 MPa to 21.1 ± 4.1 MPa with 10 wt% baghdadite substitution. Culture medium conditioned with powdered brushite cement approached closer to physiological pH values when the cement is incorporated with increasing amounts of baghdadite (pH = 6.47 for pure brushite, pH = 7.02 for brushite with 20 wt% baghdadite substitution). Baghdadite substitution also influenced the ionic content in the culture medium, and subsequently affected the proliferative activity of primary human osteoblasts in vitro. This study indicates that baghdadite is a beneficial additive to enhance the radiopacity, mechanical performance and cytocompatibility of brushite cement KW - baghdadite KW - calcium phosphate cement KW - radiopacity KW - setting reaction KW - mechanical performance Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196980 SN - 1996-1944 VL - 12 IS - 10 ER -