TY - JOUR A1 - Marquardt, André A1 - Hartrampf, Philipp A1 - Kollmannsberger, Philip A1 - Solimando, Antonio G. A1 - Meierjohann, Svenja A1 - Kübler, Hubert A1 - Bargou, Ralf A1 - Schilling, Bastian A1 - Serfling, Sebastian E. A1 - Buck, Andreas A1 - Werner, Rudolf A. A1 - Lapa, Constantin A1 - Krebs, Markus T1 - Predicting microenvironment in CXCR4- and FAP-positive solid tumors — a pan-cancer machine learning workflow for theranostic target structures JF - Cancers N2 - (1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database — representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets. KW - machine learning KW - tumor microenvironment KW - immune infiltration KW - angiogenesis KW - mRNA KW - miRNA KW - transcriptome Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-305036 SN - 2072-6694 VL - 15 IS - 2 ER - TY - JOUR A1 - Lenschow, Christina A1 - Fuss, Carmina Teresa A1 - Kircher, Stefan A1 - Buck, Andreas A1 - Kickuth, Ralph A1 - Reibetanz, Joachim A1 - Wiegering, Armin A1 - Stenzinger, Albrecht A1 - Hübschmann, Daniel A1 - Germer, Christoph Thomas A1 - Fassnacht, Martin A1 - Fröhling, Stefan A1 - Schlegel, Nicolas A1 - Kroiss, Matthias T1 - Case Report: Abdominal Lymph Node Metastases of Parathyroid Carcinoma: Diagnostic Workup, Molecular Diagnosis, and Clinical Management JF - Frontiers in Endocrinology N2 - Parathyroid carcinoma (PC) is an orphan malignancy accounting for only ~1% of all cases with primary hyperparathyroidism. The localization of recurrent PC is of critical importance and can be exceedingly difficult to diagnose and sometimes futile when common sites of recurrence in the neck and chest cannot be confirmed. Here, we present the diagnostic workup, molecular analysis and multimodal therapy of a 46-year old woman with the extraordinary manifestation of abdominal lymph node metastases 12 years after primary diagnosis of PC. The patient was referred to our endocrine tumor center in 2016 with the aim to localize the tumor causative of symptomatic biochemical recurrence. In view of the extensive previous workup we decided to perform [18F]FDG-PET-CT. A pathological lymph node in the liver hilus showed slightly increased FDG-uptake and hence was suspected as site of recurrence. Selective venous sampling confirmed increased parathyroid hormone concentration in liver veins. Abdominal lymph node metastasis was resected and histopathological examination confirmed PC. Within four months, the patient experienced biochemical recurrence and based on high tumor mutational burden detected in the surgical specimen by whole exome sequencing the patient received immunotherapy with pembrolizumab that led to a biochemical response. Subsequent to disease progression repeated abdominal lymph node resection was performed in 10/2018, 01/2019 and in 01/2020. Up to now (12/2020) the patient is biochemically free of disease. In conclusion, a multimodal diagnostic approach and therapy in an interdisciplinary setting is needed for patients with rare endocrine tumors. Molecular analyses may inform additional treatment options including checkpoint inhibitors such as pembrolizumab. KW - parathyroid carcinoma KW - abdominal lymph node metastases KW - molecular diagnostics KW - repeated surgery KW - [18F]FDG-PET-CT KW - immune check inhibitor KW - pembrolizumab Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233362 SN - 1664-2392 VL - 12 ER - TY - JOUR A1 - Lückerath, Katharina A1 - Lapa, Constantin A1 - Spahmann, Annika A1 - Jörg, Gerhard A1 - Samnick, Samuel A1 - Rosenwald, Andreas A1 - Einsele, Herrmann A1 - Knop, Stefan A1 - Buck, Andreas T1 - Targeting Paraprotein Biosynthesis for Non-Invasive Characterization of Myeloma Biology N2 - Purpose Multiple myeloma is a hematologic malignancy originating from clonal plasma cells. Despite effective therapies, outcomes are highly variable suggesting marked disease heterogeneity. The role of functional imaging for therapeutic management of myeloma, such as positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG-PET), remains to be determined. Although some studies already suggested a prognostic value of 18F-FDG-PET, more specific tracers addressing hallmarks of myeloma biology, e.g. paraprotein biosynthesis, are needed. This study evaluated the amino acid tracers L-methyl-[11C]-methionine (11C-MET) and [18F]-fluoroethyl-L-tyrosine (18F-Fet) for their potential to image myeloma and to characterize tumor heterogeneity. Experimental Design To study the utility of 11C-MET, 18F-Fet and 18F-FDG for myeloma imaging, time activity curves were compared in various human myeloma cell lines (INA-6, MM1.S, OPM-2) and correlated to cell-biological characteristics, such as marker gene expression and immunoglobulin levels. Likewise, patient-derived CD138+ plasma cells were characterized regarding uptake and biomedical features. Results Using myeloma cell lines and patient-derived CD138+ plasma cells, we found that the relative uptake of 11C-MET exceeds that of 18F-FDG 1.5- to 5-fold and that of 18F-Fet 7- to 20-fold. Importantly, 11C-MET uptake significantly differed between cell types associated with worse prognosis (e.g. t(4;14) in OPM-2 cells) and indolent ones and correlated with intracellular immunoglobulin light chain and cell surface CD138 and CXCR4 levels. Direct comparison of radiotracer uptake in primary samples further validated the superiority of 11C-MET. Conclusion These data suggest that 11C-MET might be a versatile biomarker for myeloma superior to routine functional imaging with 18F-FDG regarding diagnosis, risk stratification, prognosis and discrimination of tumor subtypes. KW - Myelomas KW - Antibodies KW - Positron emission tomography KW - Myeloma cells KW - cell staining KW - lesions KW - biosynthesis KW - bone marrow cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111319 ER -