TY - THES A1 - Schmitt, Johannes T1 - Proteine der Kernhülle und deren Rolle bei der Umgestaltung des Zellkerns meiotischer und postmeiotischer Zellen von Säugern T1 - Proteins of the nuclear envelope and their role in the rearrangement of the nucleus in meiotic and post-meiotic mammalian cell N2 - Während der Spermatogenese finden erstaunliche Differenzierungsprozessen statt. Reguliert wird die Spermatogenese sowohl hormonell als auch durch Wechselwirkungen zwischen verschiedenen Zelltypen und der extrazellulärer Matrix. Unterteilt wird die Spermatogenese in drei funktionelle Einheiten. Die Proliferationsphase, die Meiose und die Spermiogenese. Im Laufe der Proliferationsphase gehen aus den Spermatogonien, Spermatocyten hervor, die die Meiose durchlaufen. Während der Prophase I der Meiose kommt es zur Reduktion und Rekombination des genetischen Materials, was mit charakteristischen und höchst dynamischen Bewegungsvorgängen der Telomere einhergeht. Auf die Meiose folgt die Spermiogenese, in der das genetische Material in seine „Transportform“ überführt wird und aus einer stationären, zellverbundenen Einheit ein mobiles autark funktionierendes Vehikel des genetischen Materials wird; das Spermium. Um das Verständnis dieser Vorgänge zu erweitern wurden in dieser Arbeit die Verteilungsmuster einiger Proteine in der Kernhülle von Zellen der Spermatogenese, in Hinblick auf ihre dynamische Umverteilung untersucht. Bei diesen Proteinen handelte es sich um die SUN-Domänen Proteine und das meiosespezifische Lamin C2. Die SUN-Domänen Proteine sind Teil des membrandurchspannenden LINC-Komplexes, der Komponenten des Nukleoplasma mit denen des Cytoplasma verbindet. In dieser Arbeit konnte gezeigt werden, dass die SUN-Domänen Proteine, Sun1 und Sun2 während der Meiose exprimiert werden, und an den Anheftungsplatten meiotischer Chromosomen lokalisieren und deren dynamisches Verteilungsmuster dem Verteilungsmuster der Telomere während der Prophase I der Meiose entsprechen. Dies deutet darauf hin, dass Sun1 und Sun2 eine tragende Rolle, während der koordinierten Bewegungsprozessen der Prophase I der Meiose spielen. In der Spermiogenese sind die SUN-Domänen Proteine, Sun1 und Sun3 vertreten. Dabei weist deren unterschiedliche Lokalisation an entgegengesetzten Zellpolen darauf hin, dass Sun1 und Sun3 möglicherweise unterschiedliche Funktionen bei der Umgestaltung des Spermienkopfes während der Spermiogenese erfüllen. Ein weiterer Schwerpunkt dieser Arbeit war die Etablierung einer Mauslinie um die Rolle von Lamin C2 in der Meiose untersuchen zu können. Hierzu wurde eine Lamin C2 Knock-out Studie begonnen. In ersten Untersuchungen der knock-out Tiere konnte eine Größenreduktion der Hoden beobachtet werden. Ebenso konnte ein Abbruch der Meiose vermerkt werden. Die Ergebnisse dieser Arbeit verdeutlichen, dass sowohl die SUN-Domänen Proteine, als auch Lamin C2, wichtige Rollen in dem komplexen Arrangement der Spermatogenese übernehmen. N2 - During spermatogenesis amazing differentiation processes take place. Spermatogenesis is regulated by hormones and crosstalk between several cell types and the extra cellular matrix. It can be divided in three functional processes: The proliferation phase, meiosis and spermiogenesis. In the course of the proliferation phase spermatogonia become spermatocytes, which then pass through meiosis. During prophase I of meiosis the reduction and the recombination of the genetic material take place, involving characteristic and highly dynamic movements of meiotic telomeres. Meiosis is followed by spermiogenesis, where the genetic material is converted to its “transport form”, thereby turning a static, tissue associated cell into a mobile, self-sufficient vehicle of the genetic material; the sperm. To expand the knowledge of these processes, the localisation of some proteins of the nuclear envelope of spermatogenetic cells were examined in this work, in order to discover their dynamic distribution pattern. These proteins are the SUN-domain proteins and the meiosis specific lamin C2. The SUN-domain proteins are part of the transmembrane LINC-complex, which connects nucleoplasmic and cytoplasmic components. This work shows, that the SUN-domain proteins Sun1 and Sun2 are expressed during meiosis, that they are located at the attachment sites of the meiotic telomeres, and that their localisation parallels the dynamic movements of the telomeres, which take place in meiotic prophase I. These results indicate that Sun1 and Sun2 play a major role in the coordinated telomere movements during prophase I of meiosis. This work furthermore shows the specific expression of Sun1 and Sun3 during spermiogenesis. Their localisation at opposite poles of the spermatid head indicates discrete functions during the transformation of the sperm head, which takes place in this phase of spermatogenesis. Another focus of this work was the establishment of a lamin C2 knock out mouse line to analyse the role of lamin C2 in meiosis. Analysis of the knock out animals showed a reduction of testis-size in comparison to wild-type mice. Additionaly meiosis was aborted in lamin C2 deficient mice. In summary these results make evident, that the SUN-domain proteins, as well as the meiosis specific lamin C2 play an important role in the complex arrangements of spermiogenesis. KW - Meiose KW - Spermatogenese KW - Kernproteine KW - meiosis KW - spermatogenesis KW - nucleus Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31203 ER - TY - JOUR A1 - Goeb, Eva A1 - Schmitt, Johannes A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - Mammalian Sperm Head Formation Involves Different Polarization of Two Novel LINC Complexes N2 - Background: LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape. Findings: Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1g, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection / immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes. Conclusions: Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation, which in turn is a critical parameter for male fertility. KW - Sperma KW - LINC complexes Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68449 ER - TY - JOUR A1 - Alsheimer, Manfred A1 - Link, Jana A1 - Jahn, Daniel A1 - Schmitt, Johannes A1 - Göb, Eva A1 - Baar, Johannes A1 - Ortega, Sagrario A1 - Benavente, Ricardo T1 - The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse JF - PLoS Genetics N2 - The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level. KW - homologous chromosomes KW - homologous recombination KW - lamins KW - Oocytes KW - spermatocytes KW - synapsis KW - telomeres KW - testes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96285 ER - TY - JOUR A1 - Alsheimer, Manfred A1 - Link, Jana A1 - Leubner, Monika A1 - Schmitt, Johannes A1 - Göb, Eva A1 - Benavente, Ricardo A1 - Jeang, Kuan-Teh A1 - Xu, Rener T1 - Analysis of Meiosis in SUN1 Deficient Mice Reveals a Distinct Role of SUN2 in Mammalian Meiotic LINC Complex Formation and Function N2 - LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne/homology) domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE) attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun12/2 meiocytes attached telomeres retained the capacity to form bouquetlike clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun12/2 mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional. Author summary: Correct genome haploidization during meiosis requires tightly regulated chromosome movements that follow a highly conserved choreography during prophase I. Errors in these movements cause subsequent meiotic defects, which typically lead to infertility. At the beginning of meiotic prophase, chromosome ends are tethered to the nuclear envelope (NE). This attachment of telomeres appears to be mediated by well-conserved membrane spanning protein complexes within the NE (LINC complexes). In mouse meiosis, the two main LINC components SUN1 and SUN2 were independently described to localize at the sites of telomere attachment. While SUN1 has been demonstrated to be critical for meiotic telomere attachment, the precise role of SUN2 in this context, however, has been discussed controversially in the field. Our current study was targeted to determine the factual capacity of SUN2 in telomere attachment and chromosome movements in SUN1 deficient mice. Remarkably, although telomere attachment is impaired in the absence of SUN1, we could find a yet undescribed SUN1-independent telomere attachment, which presumably is mediated by SUN2 and KASH5. This SUN2 mediated telomere attachment is stable throughout prophase I and functional in moving telomeres within the NE. Thus, our results clearly indicate that SUN1 and SUN2, at least partially, fulfill redundant meiotic functions. KW - telomeres KW - spermatocytes KW - Oocytes KW - meiosis KW - protein domains KW - cytoskeleton KW - synapsis KW - homologous chromosomes Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111355 ER -