TY - THES A1 - Funk, Natalja T1 - Das Sap47-Gen aus Drosophila melanogaster : Gezielte Mutagenisierung und Suche nach Interaktionspartnern T1 - The Sap47 gene of Drosophila melanogaster: mutagenesis and identification of interaction partners N2 - SAP47 ist ein Synapsenassoziiertes Protein von 47 kDa aus Drosophila melanogaster, das zu einer neuen Proteinfamilie gehört. Um eine Sap47 Mutante zu erzeugen wurden drei Methoden eingesetzt: Gezielte Mutagenese durch homologe Rekombination, RNA interference (RNAi) und Transposon Remobilisierung. Um einen Interaktionspartner für das SAP47 Protein zu identifizieren wurden ein Yeast-Two-Hybrid System und das "CytoTrap" Verfahren eingesetzt. N2 - SAP47 (synapse-associated protein of 47 kDA) of Drosophila melanogaster belongs to a novel protein family of unknown function. Three techniques were used for Sap47 mutagenesis: "gene targeting" by homologous recombination, RNA interference (RNAi) and Jump-out mutagenesis. A standard yeast-two-hybrid system and the "CytoTrap" assay were used to identify interaction partners for the SAP47 protein. KW - Taufliege KW - Molekulargenetik KW - Sap47 KW - Synapse KW - RNA interference KW - Gezeilte Mutagenese KW - Sap47 KW - synapse KW - RNA interference KW - gene targeting Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7667 ER - TY - THES A1 - Leibold, Christian T1 - Das Cystein String Protein von Drosophila melanogaster - Invivo-Funktionsanalyse verschiedener Proteindomänen am Modellsystem der larvalen neuromuskulären Synapse T1 - The Cysteine string protein of Drosophila melanogaster - Invivo-functional analysis of different protein domains using the larval neuromuscular junction as a model system N2 - Cystein String Proteine (CSPs) wurden als synaptische Vesikelproteine entdeckt. In Drosophila werden sie in den funktionellen Synapsen und sekretorischen Organellen aller Entwicklungsstufen exprimiert. Es konnte gezeigt werden, dass CSPs an der regulierten Neurotransmitterausschüttung beteiligt sind und mehrere, von Insekten bis zum Menschen konservierte Domänen besitzen: eine N-terminale Phosphorylierungsstelle der Protein Kinase A (PKA), eine J-Domäne mit 50%iger Homologie zum bakteriellen Chaperone-Protein DnaJ, eine Linker-Domäne, einen Cystein String aus elf aufeinander folgenden Cysteinen, die durch zwei Cystein-Paare flankiert werden und einen variableren C-Terminus. Es wurden Interaktionen mit den Proteinen HSC70, SGT, Syntaxin, Synaptobrevin/VAMP, verschiedenen Untereinheiten von G-Proteinen, Synaptotagmin, sowie spannungsabhängigen Ca2+-Kanälen beschrieben. csp-Nullmutanten CspU1 von Drosophila melanogaster zeigen einen temperatursensitiven Phänotyp, in dem adulte Fliegen von CspU1 reversibel bei 37°C innerhalb von drei Minuten paralysieren. An der neuromuskulären Synapse dritter Larven von CspU1 kann bei nicht-permissiver Temperatur von 32°C eine reversible Blockade der synaptischen Transmission beobachtet werden. In der vorliegenden Arbeit sollten mit Hilfe des larvalen Nerv-Muskel-Präparats dritter Larven elektrophysiologische Untersuchungen an verschiedenen csp-Mutanten durchgeführt werden. Hierdurch sollte die Bedeutung der einzelnen Domänen für die Funktion von csp weiter aufgeklärt werden. Am larvalen Nerv-Muskel-Präparat von Drosophila ist eine Arbeit auf Einzel-Zell-Niveau möglich. Die Segmentierung, die wiederkehrende Anordnung von Muskeln und innervierenden Motoneuronen, sowie das Vorkommen vieler auch im Gehirn von Drosophila lokalisierter synaptischer Proteine machen die larvale neuromuskuläre Synapse für die vorliegenden Fragestellungen. Wie in vielen anderen Arbeiten, wurden elektrophysiologische Messungen an dem Longitudinalmuskel 6 durchgeführt. Alle Messungen evozierter Muskelpotentiale (EJP) wurden, wenn nicht anders erwähnt, mit 0,2Hz Stimulusfrequenz durchgeführt. Die Reiz-Intensität wurde an jedes Präparat individuell angepasst und betrug das 2 ½ -fache des Initial-Schwellenwertes, bei dem ein vollständiges EJP ausgelöst wurde. Zunächst konnte der in der Literatur beschriebene larvale Block der synaptischen Transmitterausschüttung bei erhöhter Temperatur nicht reproduziert, jedoch durch Rückkreuzungen der Nullmutante CspU1 gegen den Wildtyp w1118 wiederhergestellt werden. Das „Rescue“-Konstrukt scDNA1, welches die Grundlage für alle weiteren mutierten Formen von csp darstellt, rettete den larvalen temperatursensitiven Phänotyp im csp-Nullmutantenhintergrund von CspU1 vollständig. Larvale Mutanten der Linie SSP, bei denen der Cystein String durch einen Serin String ausgetauscht worden war (Serine-string protein), zeigten in Übereinstimmung mit den adulten Fliegen den bekannten temperatursensitiven Phänotyp. Larvale Mutanten der Linie CLP (Cysteine-less protein) zeigten im Gegensatz zu adulten Tieren dieser Linie keinen temperatursensitiven Phänotyp, sondern ein wildtypisches Verhalten. Für die Mutante L∆8, die im Nullmutantenhintergrund von CspU1 roc ein in der Linker-Domäne um acht Aminosäuren verkürztes CSP-Protein exprimiert, wurden verschiedene elektrophysiologische Phänotypen beobachtet: Larven der X-chromosomalen Linie zeigten den bekannten temperaturabhängigen Block der synaptischen Transmission. Larven der Insertionslinie für das 3. Chromosom zeigten keine Temperatursensitivität, sondern wildtypisches Verhalten. In immunhistochemischen Untersuchungen konnte für die X-chromosomale Linie eine deutlich schwächere Expression des L∆8-Proteins beobachtet werden. Larven der Linie C∆27, die ein im C-terminalen Bereich von CSP um 27 Aminosäuren verkürztes CSP-Protein exprimieren, im Nullmutantenhintergrund CspU1 roc konnten anhand des Phänotyps in zwei Gruppen unterteilt werden. Unabhängig vom Insertionsort zeigte eine Gruppe den bekannten larvalen temperatursensitiven Phänotyp. Die zweite Gruppe zeigte auch bei erhöhter Temperatur wildtypisches Verhalten. Im zweiten Teil der Arbeit wurde versucht, eine neue Deletionsmutante für csp durch Remobilisierung einer P-Insertion (P#1617, flybase, Bloomington) im ersten Exon zu erzeugen, da in der Nullmutante CspU1 möglicherweise auch benachbarte Gene betroffen sind. Nach Überprüfung der erzeugten Mutanten durch Western und Southern Blot, immunhistochemische Experimente und elektrophysiologische Untersuchungen am Nerv-Muskel-Präparat 3. Larven konnte keine Deletionsmutante mit temperaturabhängigem Phänotyp isoliert werden, die ausschließlich csp betraf. N2 - Cysteine string proteins (CSPs) were detected as synaptic vesicle proteins. In Drosophila they are expressed in functional synapses and secretory organelles of all developmental stages. CSPs were shown to be involved in regulated neurotransmitter release and contain several domains, which are conserved from insects to man: N-terminal phosphorylation site for protein kinase A (PKA), “J”-domain with 50% homology to a bacterial chaperone-protein DnaJ, “linker”-domain, cysteine string consisting of eleven following cysteines, flanked by two pairs of cysteines and the more variable C-terminus. Interactions with the following proteins have been described: HSC70, SGT, Syntaxin, Synaptobrevin/VAMP, several subunits of G-proteins, Synaptotagmin, and voltage-dependent Ca2+-channels. Csp-null mutants (CspU1) of Drosophila melanogaster exhibit a temperature sensitive phenotype. Adult flies of CspU1 paralyse reversibly at 37°C within three minutes. At the neuromuscular junction of 3rd instar larvae of CspU1 a reversible blockade of synaptic transmission can be observed at non-permissive temperature of 32°C. Electrophysiological studies at the larval nerve-muscle-preparation of 3rd instar larvae of different csp-mutants were performed in this Ph.D. thesis in order to investigate the relevance of the different CSP domains for the function of csp. Using the larval nerve-muscle-preparation of Drosophila studies at single-cell-levels are possible. The clear segmentation, iterated position of the body wall muscles and localization of many proteins, which are also present in the brain, account for the larval neuromuscular junction as an ideal model-system for the study of synaptic transmission. As described in previous work, electrophysiological studies have been performed at longitudinal muscle 6. All recordings of evoked junction potentials (EJP) were performed with 0.2Hz stimulus frequency (if not described in a different way). Stimulus intensity was adjusted 2 ½ times to initial threshold for a complete EJP, individually for each preparation. In the beginning larval blockade of synaptic transmitter release as described in literature could not be reproduced. Backcrossing for 12 generations of CspU1 with w1118 could restore the temperature-dependent blockade of synaptic transmission in 3rd instar larvae. “Rescue”-construct scDNA1, which was further used as template for all mutated forms of CSP used in this study, completely rescued the larval temperature-sensitive phenotype in csp-null mutant background. Larval mutants of SSP (serine-string protein, serine-string replaces cysteine-string) showed the temperature-sensitive phenotype, as known from their adult flies. In contrast to their adult flies larval mutants of CLP (cysteine-less protein) showed no temperature-sensitive phenotype, but wild type-like behaviour. For the mutant L∆8 (deletion of eight conserved amino acids of linker domain) in null mutant background of CspU1 roc two different phenotypes could be observed: The X-chromosomal strain showed the known temperature-dependent blockade of synaptic transmission. In contrast, 3rd instar larvae of the strain with insertion on the 3rd chromosome showed no temperature sensitivity, but wild type-like behaviour. In immunhistochemical staining a weaker L∆8-protein expression could be observed for the X-chromosomal line. Due to their different phenotype and independent of insertion locus, larval C∆27-mutants could be divided into two groups. One group revealed the known larval temperature-sensitive phenotype. The second group showed also at elevated temperature wild type-like behaviour. In the second part of the current work a new mutant for csp should be created because of the possibility that additional genes are influenced in the null-mutant CspU1. Therefore a deletion in the csp-Locus should be created in a jump-out mutagenesis. In the strain P1617 (flybaase, Bloomington) the PZ-element, which is located in the non-translated region of the 1st exon of csp, was remobilized. Characterization of the jump-out mutants by western and southern blot analysis, immunhistochemical experiments and electrophysiological studies at nerve-muscle-preparations of 3rd instar larvae failed to isolate a jump-out mutant with described temperature-dependent phenotype and affection only of csp. KW - Taufliege KW - Cysteinderivate KW - Temperaturabhängigkeit KW - Drosophila KW - CSP KW - Synapse KW - temperatursensitiv KW - Drosophila KW - CSP KW - Synapse KW - temperature sensitive Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7481 ER - TY - THES A1 - Huber, Saskia T1 - Charakterisierung von SAP47 in Drosophila melanogaster und der dazugehörigen Proteinfamilie T1 - Characterization of SAP47 in Drosophila melanogaster and its protein familiy N2 - In der Arbeit wird ein synapsenassoziiertes Protein, das SAP47 und seine zugehörige Proteinfamilie charakterisiert. N2 - A synapse associated protein, SAP47, and its protein family is characterized. KW - Taufliege KW - Synapse KW - Proteine KW - Molekularbiologie KW - Drosophila KW - Synapse KW - SAP47 KW - BSD KW - Drosophila KW - synapse KW - SAP47 KW - BSD Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7777 ER - TY - THES A1 - Wagh, Dhananjay Anil T1 - "Bruchpilot" -molecular and functional characterization of a novel active zone protein at the Drosophila synapse T1 - "Bruchpilot" - Molekulare und funktionelle Charakterisierung eines neuen Proteins der aktiven Zone der Drosophila-Synapse N2 - Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission. This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca2+ induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process. Ca2+ induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca2+ channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones. Our group is primarily interested in characterizing the molecular architecture of the Drosophila synapse. Due to its powerful genetics and well-established behavioural assays Drosophila is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against Drosophila brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far. MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen. Synaptic architecture is well characterized in Drosophila at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene. In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates. For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (Gِttingen). A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named “bruchpilot” (brp) encoding the protein “Bruchpilot (BRP)” (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan). Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in Drosophila. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in Drosophila. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in Drosophila and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future. N2 - Die chemische Signalübertragung an Synapsen ist ein komplexer Prozess mit zentraler Bedeutung für die Funktion von Nervensystemen. Man nimmt an, dass er auf einem Zusammenspiel hunderter verschiedener Proteine beruht. Diverse Synopsenproteine haben sich für die Neurotransmission als relevant erwiesen und viele davon sind in der Evolution hoch konserviert, was einen universalen Mechanismus der Neurotransmission wahrscheinlich macht. Dieser Prozess ist in zahlreiche aufeinander folgende Schritte unterteilt, wie die Neurotransmitteraufnahme in Vesikel, den Transport von Vesikeln in die Nنhe von Calciumkanنlen, die Ausbildung einer Fusionspore zur Transmitterausschüttung und schlieكlich die Wiederaufnahme von Vesikeln durch Endozytose. Jeder dieser Teilschritte wird momentan gezielt erforscht und spielt für sich genommen eine zentrale Rolle für das Verstنndnis des gesamten Prozesses. Die Calcium-induzierte Transmitterausschüttung findet an spezialisierten Membranstrukturen der Synapsen statt, den aktiven Zonen. Diese sind hoch organisierte, elektronendichte Gitterstrukturen und bestehen aus verschiedenen Proteinen, die den synaptischen Vesikeln bei der Verlagerung in die Nنhe von Calciumkanنlen behilflich sind. Alle Proteinmodule, die für diese Prozesse nِtig sind, scheinen eng aneinandergereiht an den aktiven Zonen vorzuliegen. Nur von wenigen konnte bisher bei Vertebraten die Funktion an der aktiven Zone charakterisiert werden. Ein Fokus der Arbeitsgruppe, an der diese Doktorarbeit durchgeführt wurde, besteht in der Charakterisierung des molekularen Aufbaus der Synapse von Drosophila. Die Taufliege ist aufgrund eines reichen Angebots hِchsteffektiver genetischer Methoden und vielfنltiger Verhaltensparadigmen ein exzellentes Modellsystem, um die neuronale Signalübertragung zu untersuchen. Monoklonale Antikِrper (MAKs) aus einer Hybridomabank gegen das Drosophila Gehirn werden standardmنكig verwendet, um neue Gehirnproteine mittels der „reverse genetics“- Methode zu identifizieren. Dazu wird der entsprechende genetische Lokus charakterisiert und eine detaillierte Untersuchung der Proteinfunktion initiiert. Diese Vorgehensweise war besonders hilfreich bei der Identifizierung von Synapsenproteinen, die bei der „forward genetics“-Methode aufgrund des Fehlens eines beobachtbaren Phنnotyps übersehen würden. Proteine wie CSP, Synapsin und Sap47 wurden so gefunden und charakterisiert. I MAK nc82 stammt aus dieser Hybridomabank und wird in vielen Labors als allgemeiner Neuropilmarker aufgrund seiner hervorragenden Fنrbungseigenschaften in Gehirnprنparaten verwendet. Doppelfنrbungen der larvalen neuromuskulنren Synapse mit dem Antikِrper nc82 in Kombination mit anderen prن- und postsynaptischen Markern deuteten stark auf eine Lokalisierung des Antigens an der aktiven Zone hin. Die Synapsenarchitektur von Drosophila ist auf der ultrastrukturellen Ebene gut verstanden. Jedoch sind die molekularen Details vieler Synapsenkomponenten, besonders die der aktiven Zone, nicht bekannt. Die vermutete Lokalisierung des nc82 Antigens an der aktiven Zone war daher der Ansatzpunkt, eine biochemische Charakterisierung zu initiieren und das entsprechende Gen zu identifizieren. In der vorliegenden Arbeit wird durch 2-D Gelelektrophorese und Massenspektrometrie gezeigt, das das nc82 Antigen ein neues Protein der aktiven Zone ist, welches von einem komplexen Genlokus auf Chromosom 2R kodiert wird. Durch RT-PCR wurde gezeigt, dass die Exons von drei offenen Leserastern, die bisher als getrennte Gene annotiert wurden, ein Transkript von mindestens 5,5 kb Lنnge kodieren. Northern Blots ergaben ein deutliches Signal bei 11 kb und ein schwنcheres bei 2 kb. Das von dem 5,5 kb Transkript resultierende Protein ist hoch konserviert in der Gruppe der Insekten und weist an seiner N-terminalen Domنne eine signifikante Homologie zu den bisher beschriebenen Vertebratenproteinen der aktiven Zone ELKS/ERC/CAST auf. Bioinformatische Analysen sagen „coiled-coil“ Domنnen vorher, die über die gesamte Sequenz verteilt sind. Dies deutet stark auf eine Funktion bei der Organisation oder der Aufrechterhaltung der prنsynaptischen Struktur hin. Die groكe C-terminale Region ist zwar bei Insekten hoch konserviert, zeigt aber keine eindeutige Homologie zu Proteinen von Vertebraten. Für die Funktionsanalyse dieses Proteins wurden transgene Fliegen, die UAS-RNAi Konstrukte in ihrem Genom tragen und durch entsprechende GAL4-Linien getrieben werden kِnnen, freundlicherweise von der kollaborierenden Arbeitsgruppe von S. Sigrist (Gِttingen) zur Verfügung gestellt. Der pan-neuronale „knock-down“ des nc82 Antigens durch transgene RNAi-Expression führt zu embryonaler Letalitنt. Eine schwنchere RNAi-Expression führt bei adulten Fliegen zu Verhaltensdefekten, wie instabilem Flug und beeintrنchtigtem Laufverhalten. Aufgrund dieser Phنnotypen, die in den ersten „knock-down“ Studien beobachtet wurden, wurde das Gen „bruchpilot“ (brp) und das zugehِrige Protein „Bruchpilot“ (BRP) genannt. Die pan-neuronale, sowie die retinaspezifische Reduktion des Proteins führt zu einem Verlust der ON und OFF Transienten des Elektroretinogramms, was auf nichtfunktionelle Synapsen hindeutet. Die retinaspezifische Reduktion des Proteins hat eine Beeintrنchtigung der optomotorischen Reaktion zur Folge. Auكerdem scheint auf der ultrastrukturellen Ebene die Bildung der charakteristischen T-fِrmigen „ribbons“ der aktiven Zonen beeintrنchtigt zu sein, jedoch ohne signifikante Verنnderungen der Gesamtarchitektur der Synapse (in Kollaboration mit E. Asan). Von Basson, einem Protein der aktiven Zone bei Vertebraten, ist bekannt, dass es an der Anheftung der synaptischen „ribbons“ an den aktiven Zonen beteiligt ist. Es fungiert als Adapter zwischen RIBEYE und ELKS/ERC/CAST, zwei weiteren Proteinen der aktiven Zone. Die Mutation von Bassoon hat zur Folge, dass die synaptischen „ribbons“ frei im Zytoplasma treiben. Für Bassoon ist kein homologes Drosophila-Protein bekannt. Die Reduktion von BRP bedingt ebenfalls ein Fehlen befestigter „ribbons“ an der aktiven Zone. Dies kِnnte auf eine Art Adapterfunktion von BRP hindeuten. Jedoch hat das Fehlen von BRP zusنtzlich zum strukturellen Phنnotyp auch deutliche Verhaltensabnormalitنten und starke physiologische Beeintrنchtigungen zur Folge. Eine noch stنrkere Reduktion bedingt auكerdem embryonale Lethalitنt, wohingegen Mausmutanten ohne Bassoon lebensfنhig sind. Daraus ergibt sich, dass BRP eine weitere, wichtige Rolle wنhrend der Entwicklung und für die Funktion von Synapsen bei Drosophila und mِglicherweise auch bei anderen Insekten einnimmt. Es muss aber noch geklنrt werden, auf welche Weise BRP die synaptische Signalübertragung reguliert und welche anderen Proteine in diesem BRP-abhنngigen Pfad involviert sind. Derartige Studien werden mit Sicherheit in der Zukunft eine bedeutende Rolle spielen. KW - Taufliege KW - Synapse KW - Proteine KW - Molekulargenetik KW - Bruchpilot KW - Drosophila-Synapse KW - Bruchpilot KW - Drosophila synapse Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14989 ER - TY - THES A1 - Jauch, Mandy T1 - Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen T1 - The serine/arginine protein kinase 79D (SRPK79D) of Drosophila melanogaster and its role in the formation of active zones of synapses N2 - Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche – Aktive Zonen (AZs) genannt –, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie für den Prozess der Neurotransmitter-Ausschüttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein für die T-förmigen Bänder („T-Bars“) der präsynaptischen Aktiven Zonen. BRP ist notwendig für eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeinträchtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von Säugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolutionär hoch konservierte zweigeteilte Kinasedomäne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolutionär hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren gehören und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) führt zu auffälligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter Bänder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gewährleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antikörpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier möglichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Phänotyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer Überexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In Köpfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich verändert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der präsynaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf verändertes Spleißen der entsprechenden prä-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente für die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugfähigkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunfähigen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelfärbungen mit Antikörpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neurohämal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Ausschüttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose möglicherweise eine Rolle bei der Ausschüttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei Färbung gegen BRP weist keine deutlichen Veränderungen zum Wildtyp auf. N2 - Synapses as sites of communication between neurons contain specialized regions termed active zones (AZs) which are composed of a highly complex network of proteins comprising the exocytotic machinery for neurotransmitter release and vesicle recycling. In Drosophila the Bruchpilot (BRP) protein is an important building block of the T-shaped ribbons („T-bars“) at presynaptic active zones. By screening for mutations affecting the tissue distribution of Bruchpilot, a P-transposon insertion in the Srpk gene at the position 79D has been identified (Srpk79D, CG11489). This gene codes for a kinase which shows high homology to the mammalian family of serine/arginine protein kinases (SRPKs). Members of this family have an evolutionarily highly conserved bipartite kinase domain in common which is separated by a non-conserved spacer sequence. SRPKs phosphorylate SR proteins, an evolutionarily highly conserved family of serine/arginine-rich splicing factors that control the processes of constitutive and alternative splicing. Mutation of the Srpk79D gene caused by the P-element insertion (Srpk79DP1) or by a deletion in the gene (Srpk79DVN null mutant) leads to conspicuous accumulations of BRP in larval and adult axons. This thesis shows that these BRP accumulations at the ultrastructural level correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Using immuno electron microscopy, these accumulation were characterized as BRP immuno-reactive structures. To prevent the assembly of BRP containing agglomerates in axons and to maintain intact brain function the SRPK79D seems to be expressed only at low levels because the endogenous kinase was not detectable using various antibodies. It was shown in other thesis that the expression of the PB, PC or PF isoform of the four possible SRPK79D variants resulting from two alternative transcription start sites in exon one and three, respectively, and alternative splicing of exon seven is sufficient to rescue the phenotype of BRP accumulation in the Srpk79DVN null-mutant background. Cloning of the cDNA for the SRPK79D-PE isoform into a UAS vector has been started in order to characterize the ability of this isoform to rescue the BRP-phenotype. It seems as if the formation of axonal BRP agglomerates is not due to BRP overexpression in the affected neurons as was shown by reduced expression of the BRP protein in the Srpk79DVN null-mutant background which still leads to BRP agglomerates. The overall amount of Bruchpilot protein in adult heads of the Srpk79DVN null mutant is not clearly altered compared to wild type. No clear alteration was observed between Srpk79DVN null-mutant and wild-type flies comparing the expression of different presynaptic proteins like Synapsin, Synapse-associated protein of 47 kDa (Sap47), and Cysteine string protein (CSP). The experiment does not point towards altered splicing of the corresponding pre-mRNAs. Each of the seven known SR proteins of Drosophila is a potential target protein of the SRPK79D. Pan-neuronal knock-down experiments for the three SR proteins SC35, X16/9G8, and B52/SRp55 investigated in this thesis by RNA interference did not show an effect on the tissue distribution of BRP. It was shown that the Srpk79DVN null mutation has no additive effect on the knock-down of the BRP protein regarding the flight ability of the respective animals because the double mutants showed similar values of non-flyers as each of the single mutants with either null mutation of the Srpk79D gene or knock-down of BRP. Presumably, Bruchpilot and the SR protein kinase 79D are part of the same signaling pathway. Performing double fluorescence stainings with antibodies against BRP and the CAPA peptides it was shown that Bruchpilot is also present in the median and transverse nerve system (MeN/TVN) of Drosophila containing the neurohaemal organs. These organs are responsible for storage and release of neuropeptide hormones. In contrast to the larval segmental and intersegmental nerves of the Srpk79DVN null mutant which show characteristic BRP agglomerates, mutation of the Srpk79D gene does not affect the distribution of BRP in the axons of the Va neurons which form the MeN/TVN system. The staining pattern of BRP in these nerves does not show clear alterations in the Srpk79DVN null mutant compared to wild type. The finding that BRP is present in the median and transverse nerve system opens the field for speculation of a role for the Bruchpilot protein not only in the neurotransmitter exocytosis but also in the release of neuropeptides. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - Synapse KW - Genexpression KW - Aktive Zone KW - Serin/Arginin Proteinkinase KW - SRPK KW - Bruchpilot KW - Drosophila KW - Synapse KW - Motorische Endplatte KW - Nervenzelle KW - Neurotransmitter KW - active zone KW - serine/arginine protein kinase KW - SRPK KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53974 ER - TY - THES A1 - Halder, Partho T1 - Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library T1 - Identifikation und Charakterisierung von synaptischen Proteinen von Drosophila melanogaster mit Hilfe von monoklonalen Antikörpern der Würzburger Hybridoma-Bibliothek N2 - For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures. N2 - Für einen Großteil der Proteine, die im menschlichen Gehirn exprimiert werden, ist lediglich die Primärstruktur aus dem Genomprojekt bekannt. Proteine, die in der Evolution konserviert wurden, können in genetischen Modellsystemen wie Drosophila untersucht werden. In dieser Doktorarbeit werden monoklonale Antikörper (mAk) aus der Würzburger Hybridoma Bibliothek produziert und charakterisiert, mit dem Ziel, die erkannten Proteine zu identifizieren. Der mAk ab52 wurde als IgM typisiert, das auf Western Blots ein zytosolisches Protein von Mr ~110 kDa erkennt. Das Antigen wurde durch zwei-dimensionale Gelelektrophorese (2DE) als einzelner Fleck aufgelöst. Massenspektrometrische Analyse dieses Flecks identifizierte dass EPS-15 (epidermal growth factor receptor pathway substrate clone 15) als viel versprechenden Kandidaten. Da für einen anderen mAk aus der Bibliothek, aa2, bereits bekannt war, dass er EPS-15 erkennt, wurden die Western-Blot-Signale der beiden Antikörper nach 1D und 2D Trennungen von Kopfhomogenat verglichen. Die Ähnlichkeit der beiden Muster deuteten darauf hin, dass beide Antigene dasselbe Protein erkennen. Das Fehlen des Wildtyp-Signals in homozygoten Eps15 Mutanten in einem Western Blot mit mAk ab52 bestätigten schließlich, dass EPS-15 das Antigen zu mAk ab52 darstellt. Demnach erkennen beide mAk, aa2 und ab52, das Drosophila Homolog zu EPS-15. Da mAk aa2 ein IgG ist, dürfte er für Anwendungen wie Immunpräzipitation (IP) besser geeignet sein. Er wurde daher bereits bei der Developmental Studies Hybridoma Bank (DSHB) eingereicht, um ihn der ganzen Forschergemeinde leicht zugänglich zu machen. Der mAk na21 wurde ebenfalls als IgM typisiert. Er erkennt ein Membran assoziiertes Antigen von Mr ~10 kDa auf Western Blots. Aufgrund der Membranassoziierung des Proteins war es nicht möglich, es in 2DE aufzulösen und da es sich um ein IgM handelt, war eine Anreicherung des Antigens mittels IP nicht erfolgreich. Vorversuche zur biochemischen Reinigung des endogenen Proteins aus Gewebe waren Erfolg versprechend, konnten aber aus Zeitmangel nicht abgeschlossen werden. Daher erscheint eine biochemische Reinigung des Proteins für eine Identifikation durch Massenspektrometrie möglich. Eine Reihe weiterer mAk wurden hinsichtlich ihrer Färbemuster auf Gefrierschnitten und in Ganzpräparaten von Drosophila Gehirnen untersucht. Allerdings färbten viele dieser mAk sehr wenige Strukturen im Gehirn, so dass nur eine sehr begrenzte Menge an Protein als Startmaterial verfügbar wäre. Da diese Antikörper keine Signale auf Western Blots produzierten und daher eine Anreicherung des Antigens durch elektrophoretische Methoden ausschlossen, wurde keine Reinigung versucht. Andererseits macht die spezifische Lokalisation dieser Proteine sie hoch interessant für eine weitere Charakterisierung, da sie eine besonders spezialisierte Rolle in der Entwicklung oder für die Funktion von neuralen Schaltkreisen, in denen sie vorkommen, spielen könnten. Die Reinigung und Identifikation solcher Proteine mit niedrigem Expressionsniveau würde neue Methoden der Anreicherung der gefärbten Strukturen erfordern. KW - Taufliege KW - Synapse KW - Proteine KW - Monoklonaler Antikörper KW - synaptische Proteine KW - monoklonale Antikörper KW - Drosophila melanogaster KW - synaptic proteins KW - monoclonal antibodies Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67325 N1 - korrigierte Ausgabe der Arbeit aus dem Jahr 2022 unter: https://doi.org/10.25972/OPUS-27020 ER - TY - THES A1 - Schleyer, Michael T1 - Integrating past, present and future: mechanisms of a simple decision in larval Drosophila T1 - Vergangenheit, Gegenwart und Zukunft: Mechanismen einer einfachen Entscheidung von Drosophila-Larven N2 - Is behaviour response or action? In this Thesis I study this question regarding a rather simple organism, the larva of the fruit fly Drosophila melanogaster. Despite its numerically simple brain and limited behavioural repertoire, it is nevertheless capable to accomplish surprisingly complex tasks. After association of an odour and a rewarding or punishing reinforcement signal, the learnt odour is able to retrieve the formed memory trace. However, the activated memory trace is not automatically turned into learned behaviour: Appetitive memory traces are behaviourally expressed only in absence of the rewarding tastant whereas aversive memory traces are behaviourally expressed in the presence of the punishing tastant. The ‘decision’ whether to behaviourally express a memory trace or not relies on a quantitive comparison between memory trace and current situation: only if the memory trace (after odour-sugar training) predicts a stronger sugar reward than currently present, animals show appetitive conditioned behaviour. Learned appetitive behaviour is best seen as active search for food – being pointless in the presence of (enough) food. Learned aversive behaviour, in turn, can be seen as escape from a punishment – being pointless in absence of punishment. Importantly, appetitive and aversive memory traces can be formed and retrieved independent from each other but also can, under appriate circumstances, summate to jointly organise conditioned behaviour. In contrast to learned behaviour, innate olfactory behaviour is not influenced by gustatory processing and vice versa. Thus, innate olfactory and gustatory behaviour is rather rigid and reflexive in nature, being executed almost regardless of other environmental cues. I suggest a behavioural circuit-model of chemosensory behaviour and the ‘decision’ process whether to behaviourally express a memory trace or not. This model reflects known components of the larval chemobehavioural circuit and provides clear hypotheses about the kinds of architecture to look for in the currently unknown parts of this circuit. The second chapter deals with gustatory perception and processing (especially of bitter substances). Quinine, the bitter tastant in tonic water and bitter lemon, is aversive for larvae, suppresses feeding behaviour and can act as aversive reinforcer in learning experiments. However, all three examined behaviours differ in their dose-effect dynamics, suggesting different molecular and cellular processing streams at some level. Innate choice behaviour, thought to be relatively reflexive and hard-wired, nevertheless can be influenced by the gustatory context. That is, attraction toward sweet tastants is decreased in presence of bitter tastants. The extent of this inhibitory effect depends on the concentration of both sweet and bitter tastant. Importantly, sweet tastants differ in their sensitivity to bitter interference, indicating a stimulus-specific mechanism. The molecular and cellular processes underlying the inhibitory effect of bitter tastants are unknown, but the behavioural results presented here provide a framework to further investigate interactions of gustatory processing streams. N2 - Ist Verhalten Aktion oder Reaktion? In dieser Arbeit widme ich mich dieser Frage anhand eines recht einfachen Organismus, der Larve der Taufliege Drosophila melanogaster. Trotz ihres nur aus wenigen Tausend Nervenzellen bestehenden Gehirns und begrenzten Verhaltensrepertoires ist sie dennoch zu überraschend komplexem Verhalten fähig. Nach der Assoziation eines Duftes mit einem belohnenden oder bestrafenden Geschmacksstoff ist der gelernte Duft in der Lage, die gebildete Gedächtnisspur abzurufen. Diese aktivierte Gedächtnisspur wird jedoch nicht automatisch in Verhalten übersetzt: Appetitive Gedächtnisspuren führen nur in Abwesenheit des belohnenden Geschmacks zu erlerntem Verhalten, während aversive Gedächtnisspuren nur in Anwesenheit des bestrafenden Geschmacks in erlerntem Verhalten münden. Die „Entscheidung“, eine Gedächtnisspur in Verhalten zu übersetzen oder nicht, beruht auf einem quantitativen Vergleich zwischen der Gedächtnisspur und der aktuellen Situation: Nur wenn die Gedächtnisspur (nach einem Duft-Zucker-Training) eine größere Zuckerbelohnung vorhersagt als gegewärtig vorhanden, zeigen die Tiere appetitives erlerntes Verhalten. Solches Verhalten kann man am besten als aktive Suche nach Nahrung interpretieren, die in Gegenwart von (ausreichend) Nahrung sinnlos ist. Aversives erlerntes Verhalten andererseits kann als Flucht vor einer Bestrafung verstanden werden – und in Abwesenheit einer Bestrafung gibt es nichts, wovor man fliehen könnte. Appetitive und aversive Gedächtnisspuren können unabhängig voneinander gebildet und abgerufen werden, können unter den richtigen Umständen aber auch gemeinsam erlerntes Verhalten organisieren. Im Gegensatz zu erlerntem Verhalten wird angeborenes olfaktorisches Verhalten nicht durch das Geschmackssystem beinflusst – und umgekehrt. Angeborenes Verhalten erscheint also relativ starr und reflexhaft und läuft größtenteils unbeeinflusst von anderen Umwelteinflüssen ab. Schließlich entwerfe ich ein auf Verhalten basierendes Schaltkreismodell des chemosensorischen Systems der Larve und der „Entscheidung“, eine Gedächtnisspur in Verhalten umzusetzen oder nicht. Dieses Modell stellt bekannte Komponenten des Systems dar und macht klare Vorhersagen über die Architektur, die bisher noch unbekannte Komponenten haben sollten. Das zweite Kapitel der Arbeit behandelt die Wahrnehmung und Verarbeitung von (hauptsächlich bitteren) Geschmacksstoffen. Chinin, der bittere Geschmack in Getränken wie Bitter Lemon, wirkt abstoßend auf Larven, unterdrückt ihr Fressverhalten und kann in Lernexperimenten als Bestrafung wirken. Allerdings unterscheiden sich alle drei untersuchten Verhalten in der Dynamik ihrer Dosis-Wirkungskurven, was unterschiedliche molekulare und zelluläre Wirkungsweisen nahe legt. Angeborenes Wahlverhalten, das als reflexhaft und starr gilt, kann dennoch durch den gustatorischen Kontext beeinflusst werden. Das bedeutet, die Anwesenheit eines Bitterstoffes ist in der Lage, die angeborene Präferenz von Larven für süße Geschmackstoffen zu unterdrücken. Dieser inhibitorische Effekt hängt sowohl von der Konzentration der süßen als auch der bitteren Substanz ab. Was noch wichtiger ist: Die verschiedenen Zucker sind unterschiedlich anfällig für die Störung durch Bitterstoffe, was auf einen Stimulus-spezifischen Mechanismus hindeutet. Die genauen molekularen und zellulären Prozesse, die diesem inhibitorischen Effekt von Bitterstofen zugrunde liegen, sind noch nicht bekannt, die hier präsentierten Ergebnisse bieten aber einen geeigneten Rahmen für weitergehende Untersuchungen der Interaktionen zwischen verschiedenen Teilen des Geschmacksapparates. KW - Lernen KW - Taufliege KW - Geschmackssinn KW - Geruchssinn KW - Sinnesphysiologie KW - Learning KW - Memory KW - Drosophila KW - Decision-making KW - Olfactory KW - Entscheidung KW - Synapse KW - Gedächtnis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78923 ER - TY - THES A1 - Ljaschenko, Dmitrij T1 - Hebbian plasticity at neuromuscular synapses of Drosophila T1 - Hebbsche Plastizität an den neuromuskulären Synapsen in Drosophila melanogaster N2 - Synaptic plasticity determines the development of functional neural circuits. It is widely accepted as the mechanism behind learning and memory. Among different forms of synaptic plasticity, Hebbian plasticity describes an activity-induced change in synaptic strength, caused by correlated pre- and postsynaptic activity. Additionally, Hebbian plasticity is characterised by input specificity, which means it takes place only at synapses, which participate in activity. Because of its correlative nature, Hebbian plasticity suggests itself as a mechanism behind associative learning. Although it is commonly assumed that synaptic plasticity is closely linked to synaptic activity during development, the mechanistic understanding of this coupling is far from complete. In the present study channelrhodopsin-2 was used to evoke activity in vivo, at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation led to increased incorporation of GluR-IIA-type glutamate receptors into postsynaptic receptor fields, thus boosting postsynaptic sensitivity. This phenomenon is input-specific. Conversely, GluR-IIA was rapidly removed from synapses at which neurotransmitter release failed to evoke substantial postsynaptic depolarisation. This mechanism might be responsible to tame uncontrolled receptor field growth. Combining these results with developmental GluR-IIA dynamics leads to a comprehensive physiological concept, where Hebbian plasticity guides growth of postsynaptic receptor fields and sparse transmitter release stabilises receptor fields by preventing overgrowth. Additionally, a novel mechanism of retrograde signaling was discovered, where direct postsynaptic channelrhodopsin-2 based stimulation, without involvement of presynaptic neurotransmitter release, leads to presynaptic depression. This phenomenon is reminiscent of a known retrograde homeostatic mechanism, of inverted polarity, where neurotransmitter release is upregulated, upon reduction of postsynaptic sensitivity. N2 - Das Phänomen der synaptischen Plastizität bestimmt die Entwicklung funktionaler neuronaler Schaltkreise. Die meisten Neurowissenschaftler betrachten synaptische Plastizität als die neuronal Grundlage von Lernen und Gedächtnis. Es gibt viele Ausprägungsarten synaptischer Plastizität, eine davon ist die sogenannte Hebb’sche Plastizität. Diese ist definiert durch eine aktivitätsinduzierte, langanhaltende Veränderung der Stärke einer synaptischen Verbindung, verursacht durch korrelative Aktivierung der Prä- und der Postsynapse. Zusätzlich ist die Ausbreitung der Hebb’sche Plastizität synapsenspezifisch, d.h. nur die Synapsen, die an der korrelativen Aktivierung teilnehmen, erfahren auch die Veränderung. Das Wachstumssignal breitet sich also nicht auf benachbarte Synapsen aus. Der korrelative Wesenszug der Hebb’schen Plastizität macht sie zu einem naheliegenden zellulären Mechanismus assoziativen Lernens. Es wird angenommen, dass synaptische Aktivität und synaptische Plastizität während der Entwicklung neuronaler Schaltkreise eng gekoppelt sind. Das mechanistische Verständnis dieser Kopplung ist jedoch weitgehend unverstanden. In der vorliegenden Arbeit wurde das lichtaktivierbare Kanalrhodopsin-2 verwendet, um Aktivität an der glutamatergen neuromuskulären Synapse in der lebenden, sich frei bewegenden, Drosophila melanogaster Larve auszulösen. Wenn die Prä- und die Postsynapse korrelativ aktiviert wurden, führte dies zur verstärkten Integration von Glutamatrezeptoren des GluR-IIA Typs in die postsynaptischen Rezeptorfelder, was in einer Erhöhung der postsynaptischer Empfindlichkeit mündete. Dieses Platizitätsphänomen wurde als synapsenspezifisch identifiziert und damit als Hebb’sch. Im Gegenzug, wurde der gleiche Rezeptortyp entfernt, wenn Neurotransmitterfreisetzung nicht zu einer erheblichen Depolarisation der Postsynapse führte. Dieser Mechanismus könnte für die Kontrolle des Rezeptorfeldwachstums verantwortlich sein. Es wurde ein physiologisches Modell erarbeitet, bei dem Hebb’sche Plastizität das Wachstum postsynaptischer Rezeptorfelder während der Entwicklung leitet und sporadische, nicht synchronisierte Neurotransmitterfreisetzung die Rezeptorfeldgröße stabilisiert, indem sie das Wachstum Dieser begrenzt. Zusätzlich wurde eine neue Modalität der synaptischen Plastizität an der neuromuskulären Synapse entdeckt: Ein retrograder Signalweg wird aktiviert wenn die postsynaptische Seite, unter Umgehung der Präsynapse, direkt, lichtinduziert aktiviert wird. Dieser Signalweg führt zur präsynaptischen Depression. Das Phänomen erinnert stark an einen bereits bekannten retrograden homöostatischen Mechanismus, reziproker Polarität, bei dem Neurotransmitter Freisetzung hochreguliert wird, wenn die Empfindlichkeit der Postsynapse verringert wird. KW - Synapse KW - Hebbian plasticity KW - synapse KW - Drosophila KW - Plastizität KW - Hebbsche Lernregel KW - Taufliege Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90465 ER - TY - THES A1 - Scholz, Nicole T1 - Genetic analyses of sensory and motoneuron physiology in Drosophila melanogaster T1 - Genetische Analyse sensorischer und motoneuronaler Physiologie in Drosophila melanogaster N2 - During my PhD I studied two principal biological aspects employing Drosophila melanogaster. Therefore, this study is divided into Part I and II. Part I: Bruchpilot and Complexin interact to regulate synaptic vesicle tethering to the active zone cytomatrix At the presynaptic active zone (AZ) synaptic vesicles (SVs) are often physically linked to an electron-dense cytomatrix – a process referred to as “SV tethering”. This process serves to concentrate SVs in close proximity to their release sites before contacting the SNARE complex for subsequent fusion (Hallermann and Silver, 2013). In Drosophila, the AZ protein Bruchpilot (BRP) is part of the proteinous cytomatrix at which SVs accumulate (Kittel et al., 2006b; Wagh et al., 2006; Fouquet et al., 2009). Intriguingly, truncation of only 1% of the C-terminal region of BRP results in a severe defect in SV tethering to this AZ scaffold (hence named brpnude; Hallermann et al., 2010b). Consistent with these findings, cell-specific overexpression of a C-terminal BRP fragment, named mBRPC-tip (corresponds to 1% absent in brpnude; m = mobile) phenocopied the brpnude mutant in behavioral and functional experiments. These data indicate that mBRPC-tip suffices to saturate putative SV binding sites, which induced a functional tethering deficit at motoneuronal AZs. However, the molecular identity of the BRP complement to tether SVs to the presynaptic AZ scaffold remains unknown. Moreover, within larval motoneurons membrane-attached C-terminal portions of BRP were sufficient to tether SVs to sites outside of the AZ. Based on this finding a genetic screen was designed to identify BRP interactors in vivo. This screen identified Complexin (CPX), which is known to inhibit spontaneous SV fusion and to enhance stimulus evoked SV release (Huntwork and Littleton, 2007; Cho et al., 2010; Martin et al., 2011). However, so far CPX has not been associated with a function upstream of priming/docking and release of SVs. This work provides morphological and functional evidence, which suggests that CPX promotes recruitment of SVs to the AZ and thereby curtails synaptic short-term depression. Together, the presented findings indicate a functional interaction between BRP and CPX at Drosophila AZs. Part II: The Adhesion-GPCR Latrophilin/CIRL shapes mechanosensation The calcium independent receptor of α-latrotoxin (CIRL), also named Latrophilin, represents a prototypic Adhesion class G-protein coupled-receptor (aGPCR). Initially, Latrophilin was identified based on its capacity to bind the α-component of latrotoxin (α-LTX; Davletov et al., 1996; Krasnoperov et al., 1996), which triggers massive exocytotic activity from neurons of the peripheral nervous system (Scheer et al., 1984; Umbach et al., 1998; Orlova et al., 2000). As a result Latrophilin is considered to play a role in synaptic transmission. Later on, Latrophilins have been associated with other biological processes including tissue polarity (Langenhan et al., 2009), fertility (Prömel et al., 2012) and synaptogenesis (Silva et al., 2011). However, thus far its subcellular localization and the identity of endogenous ligands, two aspects crucial for the comprehension of Latrophilin’s in vivo function, remain enigmatic. Drosophila contains only one latrophilin homolog, named dCirl, whose function has not been investigated thus far. This study demonstrates abundant dCirl expression throughout the nervous system of Drosophila larvae. dCirlKO animals are viable and display no defects in development and neuronal differentiation. However, dCirl appears to influence the dimension of the postsynaptic sub-synaptic reticulum (SSR), which was accompanied by an increase in the postsynaptic Discs-large abundance (DLG). In contrast, morphological and functional properties of presynaptic motoneurons were not compromised by the removal of dCirl. Instead, dCirl is required for the perception of mechanical challenges (acoustic-, tactile- and proprioceptive stimuli) through specialized mechanosensory devices, chordotonal organs (Eberl, 1999). The data indicate that dCirl modulates the sensitivity of chordotonal neurons towards mechanical stimulation and thereby adjusts their input-output relation. Genetic interaction analyses suggest that adaption of the molecular mechanotransduction machinery by dCirl may underlie this process. Together, these results uncover an unexpected function of Latrophilin/dCIRL in mechanosensation and imply general modulatory roles of aGPCR in mechanoception. N2 - In dieser These wurden zwei grundlegende biologische Aspekte mittels Drosophila melanogaster untersucht, weshalb diese in zwei Teile gegliedert ist. TeiL I: Die Interaktion von Bruchpilot und Complexin vermittelt die Anbindung von synaptischen Vesikeln an die Zytomatrix der aktiven Zone Oft findet man an aktiven Zonen (AZ) von Präsynapsen elektronendichte Matrices, welche meist in physischem Kontakt mit synaptischen Vesikeln (SV) stehen. Dieser als „SV Tethering“ bezeichnete Prozess dient der Anreicherung SV in der unmittelbaren Nähe ihrer Freisetzungszonen, noch bevor diese mit dem SNARE Komplex interagieren, um mit der präsynapti-schen Plasmamembran zu fusionieren (Hallermann und Silver, 2013). In der Taufliege Drosophila melanogaster bildet das AZ Protein Bruchpilot (BRP) Protrusionen, um welche SV akkumulieren (Kittel et al., 2006b; Wagh et al., 2006; Fouquet et al., 2009). Interessan-terweise resultiert bereits eine minimale Verkürzung von BRP (1% der Gesamtlänge) am C-terminalen Ende in einem schwerwiegenden Anbindedefekt von SV, der mit einem Funkti-onsverlust dieser Synapsen einhergeht (brpnude; Hallermann et al., 2010b). Entsprechend diesem Vorbefund resultierte die gewebespezifische Überexpression eines C-terminalen BRP Fragments - mBRPC-tip (entspricht dem fehlenden Fragment der brpnude Mu-tante; m = mobil) - sowohl in Verhaltens- als auch funktionellen Analysen in einer Phänoko-pie der brpnude Mutante. Dies deutet daraufhin, dass mBRPC-tip vermeintliche vesikuläre Interaktionspartner blockiert und so die Anreicherung von SV an motoneuronalen AZ verhindert, was ähnlich wie in brpnude Mutanten zu einem funktionellen Tethering-Defekt führt. Die molekulare Identität eines BRP Partners zur Anreicherung von SV an der Zytomatrix der AZ wurde bisher nicht beschrieben. Weiterhin zeigt diese Arbeit, dass membrangebundene C-terminale BRP Anteile genügen, um SV an Positionen außerhalb von AZ zu binden. Basierend auf diesem Befund wurde ein gene-tischer in vivo Screen zur Identifikation von BRP Interaktoren entwickelt. Dieser Screen identifizierte Complexin (CPX), ein Protein, dessen hemmende beziehungsweise fördernde Wirkung auf die spontane und reizinduzierte Vesikelfusion bekannt ist (Huntwork und Littleton, 2007; Cho et al., 2010; Martin et al., 2011). CPX wurde bisher nicht mit einer Funktion ober-halb von Vesikelpriming und -fusion in Verbindung gebracht. Diese Studie dokumentiert strukturelle und funktionelle Hinweise, die darauf hindeuten, dass CPX mit BRP interagiert, um Vesikelakkumulation an AZ zu fördern und dadurch synaptischer Kurzzeit-Depression entgegen zu wirken. Teil II: Adhäsions-GPCR Latrophilin/CIRL moduliert die Wahrnehmung mechanischer Reize Der Kalzium-unabhängige Rezeptor für α-Latrotoxin (CIRL), oder Latrophilin, ist ein prototypischer Rezeptor der Adhäsions G-Protein gekoppelten Klasse (aGPCR). Identifiziert wurde Latrophilin ursprünglich aufgrund seiner Fähigkeit die α-Komponente von Latrotoxin (α-LTX) zu binden (Davletov et al., 1996; Krasnoperov et al., 1996), welches seine Wirkung am peripheren Nervensystem entfaltet und dort übermäßige Transmitterausschüttung an neuronalen Endigungen induziert (Scheer et al., 1984; Umbach et al., 1998; Orlova et al., 2000). Basierend auf diesem Effekt wurde Latrophilin eine Rolle bei der synaptischen Transmission zugesprochen. Später wurden Latrophiline mit weiteren biologischen Prozessen in Zusammenhang gebracht, darunter Gewebepolarität (Langenhan et al., 2009), Fertilität (Prömel et al., 2012) und Synaptogenese (Silva et al., 2011). Allerdings blieb sowohl die subzelluläre Lokalisation als auch die Identität endogener Liganden, zwei Schlüsselaspekte im Verständnis der in vivo Funktion von Latrophilinen bisher rätselhaft. Drosophila besitzt lediglich ein latrophilin Homolog, dCirl, dessen Funktion bisher nicht untersucht wurde. Diese Arbeit zeigt, dass dCirl in weiten Teilen des larvalen Nervensystems von Drosophila exprimiert ist. dCirl knock-out Mutanten sind lebensfähig und weisen keine Störungen in der Entwicklung und neuronalen Differenzierung auf. Allerdings schien dCirl Einfluss auf die Ausdehnung des postsynaptischen subsynaptischen Retikulums (SSR) zu nehmen, was mit einer erhöhten Menge an Discs-large (DLG) assoziiert war. Die morphologischen und funktionellen Eigenschaften präsynaptischer Motoneurone der Fliegenlarve hingegen, waren durch den Verlust von dCirl funktionell weitestgehend unbeeinträchtigt. Vielmehr ist dCirl notwendig für die Wahrnehmung mechanischer Reize (akustische-, taktile und propriozeptive) durch spezialisierte Vorrichtungen - Chordotonalorgane (Eberl, 1999). Die Befunde deuten daraufhin, dass dCirl die Sensitivität der Chordotonalneurone gegenüber mechanischen Reizen moduliert und dadurch das Input-Output Verhältnis einstellt. Adaptation der molekularen Mechanotransduktionsmaschinerie durch dCirl könnte die molekulare Grundlage für diesen Prozess darstellen, eine Hypothese die durch genetische Interaktionsanalysen gestützt wird. Schlussfolglich enthüllen die experimentellen Befunde dieser These eine unerwartete Funktion von Latrophilin/dCirl bei der Mechanoperzeption und implizieren eine generelle modula-torische Rolle für aGPCR bei der Wahrnehmung mechanischer Reize. KW - Drosophila KW - Synapse KW - GPCR KW - synaptic vesicle tethering KW - active zone KW - Complexin KW - Bruchpilot KW - Adhesion-GPCR KW - Latrophilin KW - mechanosensing Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123249 ER - TY - THES A1 - Markert, Sebastian Matthias T1 - Enriching the understanding of synaptic architecture from single synapses to networks with advanced imaging techniques T1 - Vertiefung des Verständnisses synaptischer Architektur von der einzelnen Synapse bis zum Netzwerk mit modernsten bildgebenden Verfahren N2 - Because of its complexity and intricacy, studying the nervous system is often challenging. Fortunately, the small nematode roundworm Caenorhabditis elegans is well established as a model system for basic neurobiological research. The C. elegans model is also the only organism with a supposedly complete connectome, an organism-wide map of synaptic connectivity resolved by electron microscopy, which provides some understanding of how the nervous system works as a whole. However, the number of available data-sets is small and the connectome contains errors and gaps. One example of this concerns electrical synapses. Electrical synapses are formed by gap junctions and difficult to map due to their often ambiguous morphology in electron micrographs, leading to misclassification or omission. On the other hand, chemical synapses are more easily mapped, but many aspects of their mode of operation remain elusive and their role in the C. elegans connectome is oversimplified. A comprehensive understanding of signal transduction of neurons between each other and other cells will be indispensable for a comprehensive understanding of the nervous system. In this thesis, I approach these challenges with a combination of advanced light and electron microscopy techniques. First, this thesis describes a strategy to increase synaptic specificity in connectomics. Specifically, I classify gap junctions with a high degree of confidence. To achieve this, I utilized array tomography (AT). In this thesis, AT is adapted for high-pressure freezing to optimize for structure preservation and for super-resolution light microscopy; in this manner, I aim to bridge the gap between light and electron microscopy resolutions. I call this adaptation super-resolution array tomography (srAT). The srAT approach made it possible to clearly identify and map gap junctions with high precision and accuracy. The results from this study showcased the feasibility of incorporating electrical synapses into connectomes in a systematic manner, and subsequent studies have used srAT for other models and questions. As mentioned above, the C. elegans connectomic model suffers from a shortage of datasets. For most larval stages, including the special dauer larval stage, connectome data is completely missing up to now. To obtain the first partial connectome data-set of the C. elegans dauer larva, we used focused ion-beam scanning electron microscopy (FIB-SEM). This technique offers an excellent axial resolution and is useful for acquiring large volumes for connectomics. Together with our collaborators, I acquired several data-sets which enable the analysis of dauer stage-specific “re-wiring” of the nervous system and thus offer valuable insights into connectome plasticity/variability. While chemical synapses are easy to map relative to electrical synapses, signal transduction via chemical transmitters requires a large number of different proteins and molecular processes acting in conjunction in a highly constricted space. Because of the small spatial scale of the synapse, investigating protein function requires very high resolution, which electron tomography provides. I analyzed electron tomograms of a worm-line with a mutant synaptic protein, the serine/threonine kinase SAD-1, and found remarkable alterations in several architectural features. My results confirm and re-contextualize previous findings and provide new insight into the functions of this protein at the chemical synapse. Finally, I investigated the effectiveness of our methods on “malfunctioning,” synapses, using an amyotrophic lateral sclerosis (ALS) model. In the putative synaptopathy ALS, the mechanisms of motor neuron death are mostly unknown. However, mutations in the gene FUS (Fused in Sarcoma) are one known cause of the disease. The expression of the mutated human FUS in C. elegans was recently shown to produce an ALS-like phenotype in the worms, rendering C. elegans an attractive disease model for ALS. Together with our collaboration partners, I applied both srAT and electron tomography methods to “ALS worms” and found effects on vesicle docking. These findings help to explain electrophysiological recordings that revealed a decrease in frequency of mini excitatory synaptic currents, but not amplitudes, in ALS worms compared to controls. In addition, synaptic endosomes appeared larger and contained electron-dense filaments in our tomograms. These results substantiate the idea that mutated FUS impairs vesicle docking and also offer new insights into further molecular mechanisms of disease development in FUS-dependent ALS. Furthermore, we demonstrated the broader applicability of our methods by successfully using them on cultured mouse motor neurons. Overall, using the C. elegans model and a combination of light and electron microscopy methods, this thesis helps to elucidate the structure and function of neuronal synapses, towards the aim of obtaining a comprehensive model of the nervous system. N2 - Das Nervensystem ist ein definierendes Merkmal aller Tiere, unter anderem verantwortlich für Sinneswahrnehmung, Bewegung und „höhere“ Hirnfunktionen. Wegen dessen Komplexität und Feingliedrigkeit stellt das Erforschen des Nervensystems oft eine Herausforderung dar. Jedoch ist der kleine Fadenwurm Caenorhabditis elegans als Modellsystem für neurobiologische Grundlagenforschung gut etabliert. Erbesitzt eines der kleinsten und unveränderlichsten bekannten Nervensysteme. C.elegans ist auch das einzige Modell, für das ein annähernd vollständiges Konnektom vorliegt, eine durch Elektronenmikroskopie erstellte Karte der synaptischen Verbindungen eines gesamten Organismus, die Einblicke in die Funktionsweise des Nervensystems als Ganzes erlaubt. Allerdings ist die Anzahl der verfügbaren Datensätze gering und das Konnektom enthält Fehler und Lücken. Davon sind beispielsweise elektrische Synapsen betroffen. Elektrische Synapsen werden von Gap Junctions gebildet und sind auf Grund ihrer oft uneindeutigen Morphologie in elektronenmikroskopischen Aufnahmen schwierig zu kartieren, was dazu führt, dass einige falsch klassifiziert oder übersehen werden. Chemische Synapsen sind dagegen einfacher zu kartieren, aber viele Aspekte ihrer Funktionsweise sind schwer zu erfassen und ihre Rolle im Konnektom von C.elegans ist daher zu vereinfacht dargestellt. Ein umfassendes Verständnis der Signaltransduktion von Neuronen untereinander und zu anderen Zellen wird Voraussetzung für ein vollständiges Erfassen des Nervensystems sein. In der vorliegenden Arbeit gehe ich diese Herausforderungen mithilfe einer Kombination aus modernsten licht- und elektronenmikroskopischen Verfahren an. Zunächst beschreibt diese Arbeit eine Strategie, um die synaptische Spezifität in der Konnektomik zu erhöhen, indem ich Gap Junctions mit einem hohen Maß an Genauigkeit klassifiziere. Um dies zu erreichen, nutzte ich array tomography (AT), eine Technik, die Licht- und Elektronenmikrokopie miteinander korreliert. In dieser Arbeit wird AT adaptiert für Hochdruckgefrierung, um die Strukturerhaltung zu optimieren, sowie für ultrahochauflösende Lichtmikroskopie; so wird die Kluft zwischen den Auflösungsbereichen von Licht- und Elektronenmikroskopie überbrückt. Diese Adaption nenne ich super-resolution array tomography (srAT). Der srATAnsatz machte es möglich, Gap Junctions mit hoher Präzision und Genauigkeit klar zu identifizieren. Für diese Arbeit konzentrierte ich mich dabei auf Gap Junctions des retrovesikulären Ganglions von C.elegans. Die Ergebnisse dieser Studie veranschaulichen, wie es möglich wäre, elektrische Synapsen systematisch in Konnektome aufzunehmen. Nachfolgende Studien haben srAT auch auf andere Modelle und Fragestellungen angewandt ... KW - Caenorhabditis elegans KW - Synapse KW - Elektronenmikroskopie KW - Myatrophische Lateralsklerose KW - connectomics KW - focused ion-beam scanning electron microscopy KW - super-resolution array tomography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189935 ER - TY - BOOK A1 - Halder, Partho T1 - Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library T1 - Identifikation und Charakterisierung von synaptischen Proteinen von Drosophila melanogaster mit Hilfe von monoklonalen Antikörpern der Würzburger Hybridoma-Bibliothek N2 - For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave 99 promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures. N2 - Für einen Großteil der Proteine, die im menschlichen Gehirn exprimiert werden, ist lediglich die Primärstruktur aus dem Genomprojekt bekannt. Proteine, die in der Evolution konserviert wurden, können in genetischen Modellsystemen wie Drosophila untersucht werden. In dieser Doktorarbeit werden monoklonale Antikörper (mAk) aus der Würzburger Hybridoma Bibliothek produziert und charakterisiert, mit dem Ziel, die erkannten Proteine zu identifizieren. Der mAk ab52 wurde als IgM typisiert, das auf Western Blots ein zytosolisches Protein von Mr ~110 kDa erkennt. Das Antigen wurde durch zwei-dimensionale Gelelektrophorese (2DE) als einzelner Fleck aufgelöst. Massenspektrometrische Analyse dieses Flecks identifizierte dass EPS-15 (epidermal growth factor receptor pathway substrate clone 15) als viel versprechenden Kandidaten. Da für einen anderen mAk aus der Bibliothek, aa2, bereits bekannt war, dass er EPS-15 erkennt, wurden die Western-Blot-Signale der beiden Antikörper nach 1D und 2D Trennungen von Kopfhomogenat verglichen. Die Ähnlichkeit der beiden Muster deuteten darauf hin, dass beide Antigene dasselbe Protein erkennen. Das Fehlen des Wildtyp-Signals in homozygoten Eps15 Mutanten in einem Western Blot mit mAk ab52 bestätigten schließlich, dass EPS-15 das Antigen zu mAk ab52 darstellt. Demnach erkennen beide mAk, aa2 und ab52, das Drosophila Homolog zu EPS- 15. Da mAk aa2 ein IgG ist, dürfte er für Anwendungen wie Immunpräzipitation (IP) besser geeignet sein. Er wurde daher bereits bei der Developmental Studies Hybridoma Bank (DSHB) eingereicht, um ihn der ganzen Forschergemeinde leicht zugänglich zu machen. Der mAk na21 wurde ebenfalls als IgM typisiert. Er erkennt ein Membran assoziiertes Antigen von Mr ~10 kDa auf Western Blots. Aufgrund der Membranassoziierung des Proteins war es nicht möglich, es in 2DE aufzulösen und 101 da es sich um ein IgM handelt, war eine Anreicherung des Antigens mittels IP nicht erfolgreich. Vorversuche zur biochemischen Reinigung des endogenen Proteins aus Gewebe waren Erfolg versprechend, konnten aber aus Zeitmangel nicht abgeschlossen werden. Daher erscheint eine biochemische Reinigung des Proteins für eine Identifikation durch Massenspektrometrie möglich. Eine Reihe weiterer mAk wurden hinsichtlich ihrer Färbemuster auf Gefrierschnitten und in Ganzpräparaten von Drosophila Gehirnen untersucht. Allerdings färbten viele dieser mAk sehr wenige Strukturen im Gehirn, so dass nur eine sehr begrenzte Menge an Protein als Startmaterial verfügbar wäre. Da diese Antikörper keine Signale auf Western Blots produzierten und daher eine Anreicherung des Antigens durch elektrophoretische Methoden ausschlossen, wurde keine Reinigung versucht. Andererseits macht die spezifische Lokalisation dieser Proteine sie hoch interessant für eine weitere Charakterisierung, da sie eine besonders spezialisierte Rolle in der Entwicklung oder für die Funktion von neuralen Schaltkreisen, in denen sie vorkommen, spielen könnten. Die Reinigung und Identifikation solcher Proteine mit niedrigem Expressionsniveau würde neue Methoden der Anreicherung der gefärbten Strukturen erfordern. KW - synaptic proteins KW - Taufliege KW - Synapse KW - Proteine KW - Monoklonaler Antikörper KW - synaptische Proteine KW - monoklonale Antikörper KW - Drosophila melanogaster KW - monoclonal antibodies Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270205 N1 - ursprüngliche Originalausgabe der Dissertation erschienen am 19.01.2012 unter: https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-67325 ER -