TY - THES A1 - Kurz, Andreas T1 - Correlative live and fixed cell superresolution microscopy T1 - Korrelative hochauflösende Mikroskopie an lebenden und fixierten Zellen N2 - Over the last decade life sciences have made an enormous leap forward. The development of complex analytical instruments, in particular in fluorescence microscopy, has played a decisive role in this. Scientist can now rely on a wide range of imaging techniques that offer different advantages in terms of optical resolution, recording speed or living cell compatibility. With the help of these modern microscopy techniques, multi-protein complexes can be resolved, membrane receptors can be counted, cellular pathways analysed or the internalisation of receptors can be tracked. However, there is currently no universal technique for comprehensive experiment execution that includes dynamic process capture and super resolution imaging on the same target object. In this work, I built a microscope that combines two complementary imaging techniques and enables correlative experiments in living and fixed cells. With an image scanning based laser spot confocal microscope, fast dynamics in several colors with low photodamage of the cells can be recorded. This novel system also has an improved resolution of 170 nm and was thoroughly characterized in this work. The complementary technique is based on single molecule localization microscopy, which can achieve a structural resolution down to 20-30 nm. Furthermore I implemented a microfluidic pump that allows direct interaction with the sample placed on the microscope. Numerous processes such as living cell staining, living cell fixation, immunostaining and buffer exchange can be observed and performed directly on the same cell. Thus, dynamic processes of a cell can be frozen and the structures of interest can be stained and analysed with high-resolution microscopy. Furthermore, I have equipped the detection path of the single molecule technique with an adaptive optical element. With the help of a deformable mirror, imaging functions can be shaped and information on the 3D position of the individual molecules can be extracted. N2 - Im letzten Jahrzehnt hat der Bereich der Lebenswissenschaften einen enormen Sprung nach vorne gemacht. Maßgeblich dafür waren die Entwicklung von komplexen Analysegeräten insbesondere in der Fluoreszenz Mikroskopie. Die Anwender können nun auf eine Vielzahl von Bildgebungstechniken zurückgreifen die unterschiedliche Vorzüge hinsichtlich optischer Auflösung, Aufnahmegeschwindigkeit oder Lebend Zell Kompatibilität bieten. Mithilfe dieser modernen Mikroskopietechniken lassen sich beispielsweise Multiproteinkomplexe auflösen, Membranrezeptoren zählen, zelluläre Signalwege analysieren oder die Internalisierung von Rezeptoren verfolgen. Für eine umfassende Experimentdurchführung, die Erfassung dynamischer Prozesse sowie superhochauflösende Bildgebung an ein und demselben Zielobjekt beinhalten, gibt es derzeit keine einheitliche Technik. In dieser Arbeit habe ich ein Mikroskop aufgebaut, das zwei komplementäre Bildgebungstechniken vereint und korrelative Experimente von lebend zu fixierten Zellen ermöglicht. Mit einem Image Scanning basierten Konfokal Mikroskop können schnelle Dynamiken in mehreren Farben mit geringer Photoschädigung der Zellen aufgenommen werden. Dieses neuartige System weist zudem eine Auflösungsverbesserung von 170 nm auf und wurde im Rahmen der Arbeit ausführlich charakterisiert. Die komplementäre Technik basiert auf der Einzel-Molekül Lokalisations Mikroskopie, mit der sich eine strukturelle Auflösung von bis zu 20 nm erreichen lässt. Desweiteren habe ich eine Mikrofluidpumpe implementiert, die eine direkte Interaktion mit der auf dem Mikroskop platzierten Probe erlaubt. Zahlreiche Prozesse wie Lebend-Zell Färbung, Lebend-Zell Fixierung, Immuno-Färbung und Puffertausch können damit direkt an der gleichen Zelle beobachtet und durchgeführt werden. So können dynamische Prozesse einer Zelle sozusagen eingefroren werden und die Strukturen von Interesse gefärbt und mit höchstauflösender Mikroskopie analysiert werden. Desweiteren habe ich den Detektionspfad der Einzel-Molekül Technik mit einem adaptiven optischen Element ausgestattet. Mithilfe eines deformierbaren Spiegels lässt sich so Abbildungsfunktion formen und Information zur 3D Position der einzelnen Moleküle gewinnen. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - Image-Scanning Microscope KW - Correlative microscopy KW - Adaptive Optics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199455 ER - TY - RPRT A1 - Groß, Lennart T1 - Advices derived from troubleshooting a sensor-based adaptive optics direct stochastic optical reconstruction microscope T1 - Hinweise aus der Fehleranalyse eines Mikroskops mit direkter stochastischer optischer Rekonstruktion und sensorgestützter adaptiver Optik N2 - One rarely finds practical guidelines for the implementation of complex optical setups. Here, we aim to provide technical details on the decision making of building and revising a custom sensor-based adaptive optics (AO) direct stochastic optical reconstruction microscope (dSTORM) to provide practical assistance in setting up or troubleshooting similar devices. The foundation of this report is an instrument constructed as part of a master's thesis in 2021, which was built for deep tissue imaging. The setup is presented in the following way: (1) An optical and mechanical overview of the system at the beginning of this internship is given. (2) The optical components are described in detail in the order at which the light passes through, highlighting their working principle and implementation in the system. The optical component include (2A) a focus on even sample illumination, (2B) restoring telecentricity when working with commercial microscope bodies, (2C) the AO elements, namely the deformable mirror (DM) and the wavefront sensor, and their integration, and (2D) the separation of wavefront and image capture using fluorescent beads and a dichroic mirror. After addressing the limitations of the existing setup, modification options are derived. The modifications include the implementation of adjustment only light paths to improve system stability and revise the degrees of freedom of the components and changes in lens choices to meet the specifications of the AO components. Last, the capabilities of the modified setup are presented and discussed: (1) First, we enable epifluorescence imaging of bead samples through 180 µm unstained murine hippocampal tissue with wavefront error correction of ~ 90 %. Point spread function, wavefront shape and Zernike decomposition of bead samples are presented. (2) Second, we move from epifluorescent to dSTORM imaging of tubulin stained primary mouse hippocampal cells, which are imaged through up to 180 µm of unstained murine hippocampal tissue. We show that full width at half maximum (FWHM) of prominent features can be reduced in size by nearly a magnitude from uncorrected epiflourescence images to dSTORM images corrected by the adaptive optics. We present dSTORM localization count and FWHM of prominent features as as a function of imaging depth. N2 - Praktische Leitlinien für die Implementierung komplexer optischer Systeme sind selten zu finden. Hier wollen wir technische Details zur Entscheidungsfindung beim Bau und der Überarbeitung eines maßgefertigten Mikroskops mit sensorgestützter adaptiver Optik (AO) und direkter stochastischer optischer Rekonstruktion (dSTORM) bereitstellen, um praktische Hilfestellung bei der Einrichtung oder Fehlerbehebung ähnlicher Geräte zu geben. Grundlage dieses Berichts ist ein Instrument, das im Rahmen einer Masterarbeit im Jahr 2021 für die Abbildung von tiefem Gewebe gebaut wurde. Der Aufbau wird wie folgt dargestellt: (1) Es wird ein optischer und mechanischer Überblick über das System zu Beginn dieses Praktikums gegeben. (2) Die optischen Komponenten werden in der Reihenfolge, in der das Licht sie durchläuft, detailliert beschrieben und ihre Funktionsweise und Umsetzung im System hervorgehoben. Zu den optischen Komponenten gehören (2A) ein Fokus auf gleichmäßige Probenausleuchtung, (2B) die Wiederherstellung der Telezentrizität bei der Arbeit mit handelsüblichen Mikroskopkörpern, (2C) die AO-Elemente, nämlich der deformierbare Spiegel (DM) und der Wellenfrontsensor, und deren Integration, sowie (2D) die Trennung von Wellenfront- und Bilderfassung mittels fluoreszierender Beads und einem dichroitischen Spiegel. Nachdem die Einschränkungen des bestehenden Aufbaus angesprochen wurden, werden Modifikationsmöglichkeiten abgeleitet. Die Modifikationen umfassen die Implementierung von Justage-Lichtpfaden, um die Systemstabilität zu verbessern und die Freiheitsgrade der Komponenten zu überarbeiten, sowie Änderungen bei der Auswahl der Linsen, um die Spezifikationen der AO-Komponenten zu erfüllen. Abschließend werden die Ergebnisse des modifizierten Aufbaus vorgestellt und diskutiert: (1) Zunächst ermöglichen wir die Epifluoreszenz-Abbildung von Bead-Proben durch 180 µm ungefärbtes Hippocampus-Gewebe der Maus mit einer Wellenfront-Fehlerkorrektur von ~ 90 %. Es werden Punktspreizungsfunktion, Wellenfrontform und Zernike-Zerlegung von Bead-Proben vorgestellt. (2) Zweitens gehen wir von der Epifluoreszenz zur dSTORM-Bildgebung von Tubulin-gefärbten primären Hippocampuszellen der Maus über, die durch bis zu 180 µm ungefärbtes Hippocampusgewebe der Maus abgebildet werden. Wir zeigen, dass die Halbwertsbreite (Full Width at Half Maximum, FWHM) auffälliger Merkmale von unkorrigierten Epifloureszenz-Bildern zu dSTORM-Bildern, die durch die adaptive Optik korrigiert wurden, um fast eine Größenordnung reduziert werden kann. Wir präsentieren die Anzahl der dSTORM-Lokalisierungen und die FWHM auffälliger Merkmale als Funktion der Abbildungstiefe. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - Adaptive Optics KW - Single Molecule Localization Microscopy KW - dSTORM Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289951 ER -