TY - JOUR A1 - Roth, Nicolas A1 - Doerfler, Inken A1 - Bässler, Claus A1 - Blaschke, Markus A1 - Bussler, Heinz A1 - Gossner, Martin M. A1 - Heideroth, Antje A1 - Thorn, Simon A1 - Weisser, Wolfgang W. A1 - Müller, Jörg T1 - Decadal effects of landscape-wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity JF - Diversity and Distributions N2 - Aim: European temperate forests have lost dead wood and the associated biodiversity owing to intensive management over centuries. Nowadays, some of these forests are being restored by enrichment with dead wood, but mostly only at stand scales. Here, we investigated effects of a seminal dead-wood enrichment strategy on saproxylic organisms at the landscape scale. Location: Temperate European beech forest in southern Germany. Methods: In a before-after control-impact design, we compared assemblages and gamma diversities of saproxylic organisms in strictly protected old-growth forest areas (reserves) and historically moderately and intensively managed forest areas before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Results: Before enrichment with dead wood, the gamma diversity of saproxylic organisms in historically intensively managed forest stands was significantly lower than in reserves and historically moderately managed forest stands; this difference disappeared after 10 years of dead-wood enrichment. The species composition of beetles in forest stands of the three historical management intensities differed before the enrichment strategy, but a decade thereafter, the species compositions of previously intensively logged and forest reserve plots were similar. However, the differences in fungal species composition between historical management categories before and after 10 years of enrichment persisted. Main conclusions: Our results demonstrate that intentional enrichment of dead wood at the landscape scale is a powerful tool for rapidly restoring saproxylic beetle communities and for restoring wood-inhabiting fungal communities, which need longer than a decade for complete restoration. We propose that a strategy of area-wide active restoration combined with some permanent strict refuges is a promising means of promoting the biodiversity of age-long intensively managed Central European beech forests. KW - dead-wood enrichment KW - integrative management strategy KW - land sharing KW - lowland beech forests KW - saproxylic organisms Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227061 VL - 25 IS - 3 ER - TY - JOUR A1 - Vogel, Sebastian A1 - Bussler, Heinz A1 - Finnberg, Sven A1 - Müller, Jörg A1 - Stengel, Elisa A1 - Thorn, Simon T1 - Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches JF - Insect Conservation and Diversity N2 - Tree species diversity is important to maintain saproxylic beetle diversity in managed forests. Yet, knowledge about the conservational importance of single tree species and implications for forest management and conservation practices are lacking. We exposed freshly cut branch‐bundles of 42 tree species, representing tree species native and non‐native to Europe, under sun‐exposed and shaded conditions for 1 year. Afterwards, communities of saproxylic beetles were reared ex situ for 2 years. We tested for the impact of tree species and sun exposure on alpha‐, beta‐, and gamma‐diversity as well as composition of saproxylic beetle communities. Furthermore, the number of colonised tree species by each saproxylic beetle species was determined. Tree species had a lower impact on saproxylic beetle communities compared to sun exposure. The diversity of saproxylic beetles varied strongly among tree species, with highest alpha‐ and gamma‐diversity found in Quercus petraea. Red‐listed saproxylic beetle species occurred ubiquitously among tree species. We found distinct differences in the community composition of broadleaved and coniferous tree species, native and non‐native tree species as well as sun‐exposed and shaded deadwood. Our study enhances the understanding of the importance of previously understudied and non‐native tree species for the diversity of saproxylic beetles. To improve conservation practices for saproxylic beetles and especially red‐listed species, we suggest a stronger incorporation of tree species diversity and sun exposure of into forest management strategies, including the enrichment of deadwood from native and with a specific focus on locally rare or silviculturally less important tree species. KW - deadwood KW - deadwood enrichment KW - decay KW - forest management KW - host specificity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218401 VL - 14 IS - 1 SP - 132 EP - 143 ER -