TY - JOUR A1 - Keller, Daniela Barbara A1 - Schultz, Jörg T1 - Word Formation Is Aware of Morpheme Family Size N2 - Words are built from smaller meaning bearing parts, called morphemes. As one word can contain multiple morphemes, one morpheme can be present in different words. The number of distinct words a morpheme can be found in is its family size. Here we used Birth-Death-Innovation Models (BDIMs) to analyze the distribution of morpheme family sizes in English and German vocabulary over the last 200 years. Rather than just fitting to a probability distribution, these mechanistic models allow for the direct interpretation of identified parameters. Despite the complexity of language change, we indeed found that a specific variant of this pure stochastic model, the second order linear balanced BDIM, significantly fitted the observed distributions. In this model, birth and death rates are increased for smaller morpheme families. This finding indicates an influence of morpheme family sizes on vocabulary changes. This could be an effect of word formation, perception or both. On a more general level, we give an example on how mechanistic models can enable the identification of statistical trends in language change usually hidden by cultural influences. KW - linguistic morphology KW - language KW - death rates KW - psycholinguistics KW - chi square tests KW - vocabulary KW - birth rates KW - culture Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112848 ER - TY - JOUR A1 - Schultz, Jörg A1 - Baier, Herbert T1 - ISAAC - InterSpecies Analysing Application using Containers N2 - Background Information about genes, transcripts and proteins is spread over a wide variety of databases. Different tools have been developed using these databases to identify biological signals in gene lists from large scale analysis. Mostly, they search for enrichments of specific features. But, these tools do not allow an explorative walk through different views and to change the gene lists according to newly upcoming stories. Results To fill this niche, we have developed ISAAC, the InterSpecies Analysing Application using Containers. The central idea of this web based tool is to enable the analysis of sets of genes, transcripts and proteins under different biological viewpoints and to interactively modify these sets at any point of the analysis. Detailed history and snapshot information allows tracing each action. Furthermore, one can easily switch back to previous states and perform new analyses. Currently, sets can be viewed in the context of genomes, protein functions, protein interactions, pathways, regulation, diseases and drugs. Additionally, users can switch between species with an automatic, orthology based translation of existing gene sets. As todays research usually is performed in larger teams and consortia, ISAAC provides group based functionalities. Here, sets as well as results of analyses can be exchanged between members of groups. Conclusions ISAAC fills the gap between primary databases and tools for the analysis of large gene lists. With its highly modular, JavaEE based design, the implementation of new modules is straight forward. Furthermore, ISAAC comes with an extensive web-based administration interface including tools for the integration of third party data. Thus, a local installation is easily feasible. In summary, ISAAC is tailor made for highly explorative interactive analyses of gene, transcript and protein sets in a collaborative environment. KW - Teamwork KW - Gene sets KW - Explorative analyses KW - Cross-species analyses Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110124 ER -