TY - JOUR A1 - Popp, Sandy A1 - Schmitt-Böhrer, Angelika A1 - Langer, Simon A1 - Hofmann, Ulrich A1 - Hommers, Leif A1 - Schuh, Kai A1 - Frantz, Stefan A1 - Lesch, Klaus-Peter A1 - Frey, Anna T1 - 5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction JF - Journal of Clinical Medicine N2 - Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally naïve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (−/−) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT−/− mice with infarct sizes >30% experienced 100% mortality, while 50% of 5-HTT+/− and 37% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30%) 5-HTT−/− mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT−/− mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice. KW - chronic heart failure KW - myocardial infarction KW - serotonin transporter deficient mice KW - anxiety KW - depression KW - behavior KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242739 SN - 2077-0383 VL - 10 IS - 14 ER - TY - JOUR A1 - Morbach, Caroline A1 - Beyersdorf, Niklas A1 - Kerkau, Thomas A1 - Ramos, Gustavo A1 - Sahiti, Floran A1 - Albert, Judith A1 - Jahns, Roland A1 - Ertl, Georg A1 - Angermann, Christiane E. A1 - Frantz, Stefan A1 - Hofmann, Ulrich A1 - Störk, Stefan T1 - Adaptive anti-myocardial immune response following hospitalization for acute heart failure JF - ESC Heart Failure N2 - Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49%) female, and 24 (51%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45%) to F6 (n = 36, 77%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88%) compared with patients with reduced ejection fraction (n = 14, 61%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95% confidence interval 1.13–20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression. KW - adaptive immune response KW - acute heart failure KW - anti-myocardial KW - autoantibody KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258907 VL - 8 IS - 4 ER - TY - JOUR A1 - Delgobo, Murilo A1 - Heinrichs, Margarete A1 - Hapke, Nils A1 - Ashour, DiyaaElDin A1 - Appel, Marc A1 - Srivastava, Mugdha A1 - Heckel, Tobias A1 - Spyridopoulos, Ioakim A1 - Hofmann, Ulrich A1 - Frantz, Stefan A1 - Ramos, Gustavo Campos T1 - Terminally Differentiated CD4\(^+\) T Cells Promote Myocardial Inflammaging JF - Frontiers in Immunology N2 - The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4\(^+\) T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4\(^+\) T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4\(^+\) T cell compartment was primarily composed of naïve cells defined as CCR7\(^+\)CD45RO\(^-\). However, when transplanted into young lymphocyte-deficient mice, CD4\(^+\) T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7\(^-\) CD45RO\(^+\)) and terminally-differentiated phenotypes (CCR7\(^-\)CD45RO\(^-\)), as typically seen in elderly. Differentiated CD4\(^+\) T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4\(^+\) T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4\(^+\) T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice. KW - CD4+ T-cells KW - myocardial aging KW - inflammaging KW - NSG animals KW - immunosenescence KW - lymphocytes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229612 SN - 1664-3224 VL - 12 ER -