TY - JOUR A1 - Siegl, Christine A1 - Prusty, Bhupesh K. A1 - Karunakaran, Karthika A1 - Wischhusen, Jörg A1 - Rudel, Thomas T1 - Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection JF - Cell Reports N2 - Obligate intracellular bacteria depend entirely on nutrients from the host cell for their reproduction. Here, we show that obligate intracellular Chlamydia downregulate the central tumor suppressor p53 in human cells. This reduction of p53 levels is mediated by the PI3K-Akt signaling pathway, activation of HDM2, and subsequent proteasomal degradation of p53. The stabilization of p53 in human cells severely impaired chlamydial development and caused the loss of infectious particle formation. DNA-damage-induced p53 interfered with chlamydial development through downregulation of the pentose phosphate pathway (PPP). Increased expression of the PPP key enzyme glucose-6-phosphate dehydrogenase rescued the inhibition of chlamydial growth induced by DNA damage or stabilized p53. Thus, downregulation of p53 is a key event in the chlamydial life cycle that reprograms the host cell to create a metabolic environment supportive of chlamydial growth. KW - chlamydia trachomatis KW - tumor Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118200 SN - 2211-1247 VL - 9 IS - 3 ER - TY - JOUR A1 - Heydarian, Motaharehsadat A1 - Schweinlin, Matthias A1 - Schwarz, Thomas A1 - Rawal, Ravisha A1 - Walles, Heike A1 - Metzger, Marco A1 - Rudel, Thomas A1 - Kozjak-Pavlovic, Vera T1 - Triple co-culture and perfusion bioreactor for studying the interaction between Neisseria gonorrhoeae and neutrophils: A novel 3D tissue model for bacterial infection and immunity JF - Journal of Tissue Engineering N2 - Gonorrhea, a sexually transmitted disease caused by the bacteria Neisseria gonorrhoeae, is characterized by a large number of neutrophils recruited to the site of infection. Therefore, proper modeling of the N. gonorrhoeae interaction with neutrophils is very important for investigating and understanding the mechanisms that gonococci use to evade the immune response. We have used a combination of a unique human 3D tissue model together with a dynamic culture system to study neutrophil transmigration to the site of N. gonorrhoeae infection. The triple co-culture model consisted of epithelial cells (T84 human colorectal carcinoma cells), human primary dermal fibroblasts, and human umbilical vein endothelial cells on a biological scaffold (SIS). After the infection of the tissue model with N. gonorrhoeae, we introduced primary human neutrophils to the endothelial side of the model using a perfusion-based bioreactor system. By this approach, we were able to demonstrate the activation and transmigration of neutrophils across the 3D tissue model and their recruitment to the site of infection. In summary, the triple co-culture model supplemented by neutrophils represents a promising tool for investigating N. gonorrhoeae and other bacterial infections and interactions with the innate immunity cells under conditions closely resembling the native tissue environment. KW - Triple co-culture KW - biomimetic 3D tissue model KW - Neisseria gonorrhoeae KW - perfusion-based bioreactor system KW - neutrophil transmigration Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259032 VL - 12 ER - TY - JOUR A1 - Remmele, Christian W. A1 - Xian, Yibo A1 - Albrecht, Marco A1 - Faulstich, Michaela A1 - Fraunholz, Martin A1 - Heinrichs, Elisabeth A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Reinhardt, Richard A1 - Rudel, Thomas T1 - Transcriptional landscape and essential genes of Neisseria gonorrhoeae N2 - The WHO has recently classified Neisseria gonorrhoeae as a super-bacterium due to the rapid spread of antibiotic resistant derivatives and an overall dramatic increase in infection incidences. Genome sequencing has identified potential genes, however, little is known about the transcriptional organization and the presence of non-coding RNAs in gonococci. We performed RNA sequencing to define the transcriptome and the transcriptional start sites of all gonococcal genes and operons. Numerous new transcripts including 253 potentially non-coding RNAs transcribed from intergenic regions or antisense to coding genes were identified. Strikingly, strong antisense transcription was detected for the phase-variable opa genes coding for a family of adhesins and invasins in pathogenic Neisseria, that may have regulatory functions. Based on the defined transcriptional start sites, promoter motifs were identified. We further generated and sequenced a high density Tn5 transposon library to predict a core of 827 gonococcal essential genes, 133 of which have no known function. Our combined RNA-Seq and Tn-Seq approach establishes a detailed map of gonococcal genes and defines the first core set of essential gonococcal genes. KW - Neisseria gonorrhoeae Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113676 ER - TY - JOUR A1 - Albrecht, Marco A1 - Sharma, Cynthia M. A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Reinhardt, Richard A1 - Vogel, Jörg A1 - Rudel, Thomas T1 - The Transcriptional Landscape of Chlamydia pneumoniae N2 - Background: Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Results: Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for cotranscription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. Conclusions: The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen. KW - Chlamydia pneumoniae Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69116 ER - TY - JOUR A1 - Kunz, Tobias C. A1 - Rühling, Marcel A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kozjak-Pavlovic, Vera A1 - Rudel, Thomas A1 - Fraunholz, Martin T1 - The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy JF - Frontiers in Cellular and Infection Microbiology N2 - Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy. KW - high-resolution imaging KW - endosomes KW - autophagosomes KW - host-pathogen interaction KW - expansion microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232292 SN - 2235-2988 VL - 11 ER - TY - JOUR A1 - Auer, Daniela A1 - Hügelschäffer, Sophie D. A1 - Fischer, Annette B. A1 - Rudel, Thomas T1 - The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion JF - Cellular Microbiology N2 - Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1‐deficient Chlamydia . Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface. KW - autophagy KW - Cdu1 KW - ChlaDUB1 KW - Chlamydia trachomatis KW - DUB KW - Golgi KW - xenophagy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208675 VL - 22 IS - 5 ER - TY - JOUR A1 - Blättner, Sebastian A1 - Das, Sudip A1 - Paprotka, Kerstin A1 - Eilers, Ursula A1 - Krischke, Markus A1 - Kretschmer, Dorothee A1 - Remmele, Christian W. A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schuelein-Voelk, Christina A1 - Hertlein, Tobias A1 - Mueller, Martin J. A1 - Huettel, Bruno A1 - Reinhardt, Richard A1 - Ohlsen, Knut A1 - Rudel, Thomas A1 - Fraunholz, Martin J. T1 - Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes JF - PLoS Pathogens N2 - Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. KW - cell death KW - cytotoxicity KW - Staphylococcus aureus KW - host cells KW - neutrophils KW - macrophages KW - transposable elements KW - epithelial cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180380 VL - 12 IS - 9 ER - TY - JOUR A1 - Volceanov, Larisa A1 - Herbst, Katharina A1 - Biniossek, Martin A1 - Schilling, Oliver A1 - Haller, Dirk A1 - Nölke, Thilo A1 - Subbarayal, Prema A1 - Rudel, Thomas A1 - Zieger, Barbara A1 - Häcker, Georg T1 - Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion JF - MBIO N2 - Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. IMPORTANCE Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell. KW - mammalian septins KW - host-cells KW - binding KW - proteins KW - organization KW - cytoskeleton KW - cytokinesis KW - mechanisms KW - expression KW - protease Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115421 SN - 2150-7511 VL - 5 IS - 5 ER - TY - JOUR A1 - Kozjak‑Pavlovic, Vera A1 - Ott, Christine A1 - Utech, Mandy A1 - Goetz, Monika A1 - Rudel, Thomas T1 - Requirements for the import of neisserial Omp85 into the outer membrane of human mitochondria JF - Bioscience Reports N2 - β-Barrel proteins are present only in the outer membranes of Gram-negative bacteria, chloroplasts and mitochondria. Fungal mitochondria were shown to readily import and assemble bacterial β-barrel proteins, but human mitochondria exhibit certain selectivity. Whereas enterobacterial β-barrel proteins are not imported, neisserial ones are. Of those, solely neisserial Omp85 is integrated into the outer membrane of mitochondria. In this study, we wanted to identify the signal that targets neisserial β-barrel proteins to mitochondria. We exchanged parts of neisserial Omp85 and PorB with their Escherichia coli homologues BamA and OmpC. For PorB, we could show that its C-terminal quarter can direct OmpC to mitochondria. In the case of Omp85, we could identify several amino acids of the C-terminal β-sorting signal as crucial for mitochondrial targeting. Additionally, we found that at least two POTRA (polypeptide-transport associated) domains and not only the β-sorting signal of Omp85 are needed for its membrane integration and function in human mitochondria. We conclude that the signal that directs neisserial β-barrel proteins to mitochondria is not conserved between these proteins. Furthermore, a linear mitochondrial targeting signal probably does not exist. It is possible that the secondary structure of β-barrel proteins plays a role in directing these proteins to mitochondria. KW - β-barrel KW - mitochondrion KW - Omp85 KW - PorB KW - POTRA domain Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96381 ER - TY - JOUR A1 - Rudel, Thomas A1 - Krohne, George A1 - Prusty, Bhupesh K. T1 - Reactivation of Chromosomally Integrated Human Herpesvirus-6 by Telomeric Circle Formation N2 - More than 95% of the human population is infected with human herpesvirus-6 (HHV-6) during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6). In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle) formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR). Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation. Author Summary: Human herpesviruses (HHVs) can reside in a lifelong non-infectious state displaying limited activity in their host and protected from immune responses. One possible way by which HHV-6 achieves this state is by integrating into the telomeric ends of human chromosomes, which are highly repetitive sequences that protect the ends of chromosomes from damage. Various stress conditions can reactivate latent HHV-6 thus increasing the severity of multiple human disorders. Recently, we have identified Chlamydia infection as a natural cause of latent HHV-6 reactivation. Here, we have sought to elucidate the molecular mechanism of HHV-6 reactivation. HHV-6 efficiently utilizes the well-organized telomere maintenance machinery of the host cell to exit from its inactive state and initiate replication to form new viral DNA. We provide experimental evidence that the shortening of telomeres, as a consequence of interference with telomere maintenance, triggers the release of the integrated virus from the chromosome. Our data provide a mechanistic basis to understand HHV-6 reactivation scenarios, which in light of the high prevalence of HHV-6 infection and the possibility of chromosomal integration of other common viruses like HHV-7 have important medical consequences for several million people worldwide. KW - chlamydia infection KW - circular DNA KW - telomeres KW - polymerase chain reaction KW - DNA electrophoresis KW - chromosomes KW - southern hybridization KW - DNA hybridization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111380 ER - TY - JOUR A1 - Herweg, Jo-Ana A1 - Hansmeier, Nicole A1 - Otto, Andreas A1 - Geffken, Anna C. A1 - Subbarayal, Prema A1 - Prusty, Bhupesh K. A1 - Becher, Dörte A1 - Hensel, Michael A1 - Schaible, Ulrich E. A1 - Rudel, Thomas A1 - Hilbi, Hubert T1 - Purification and proteomics of pathogen-modified vacuoles and membranes JF - Frontiers in Cellular and Infection Microbiology N2 - Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. KW - spectrometry-based proteomics KW - Mycobacterium tuberculosis KW - Chlamydia KW - Salmonella KW - bacterium Legionella pneumophila KW - endocytic multivesicular bodies KW - phagosome maturation arrest KW - III secretion system KW - endoplasmic reticulum KW - Chlamydia trachomatis KW - Simkania negevensis KW - intracellular bacteria KW - host pathogen interactions KW - immuno-magnetic purification KW - Legionella KW - Mycobacterium KW - Simkania KW - pathogen vacuole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151823 VL - 5 IS - 48 ER - TY - JOUR A1 - Sievers, Claudia A1 - Billig, Gwendolyn A1 - Gottschalk, Kathleen A1 - Rudel, Thomas T1 - Prohibitins Are Required for Cancer Cell Proliferation and Adhesion N2 - Prohibitin 1 (PHB1) is a highly conserved protein that together with its homologue prohibitin 2 (PHB2) mainly localizes to the inner mitochondrial membrane. Although it was originally identified by its ability to inhibit G1/S progression in human fibroblasts, its role as tumor suppressor is debated. To determine the function of prohibitins in maintaining cell homeostasis, we generated cancer cell lines expressing prohibitin-directed shRNAs. We show that prohibitin proteins are necessary for the proliferation of cancer cells. Down-regulation of prohibitin expression drastically reduced the rate of cell division. Furthermore, mitochondrial morphology was not affected, but loss of prohibitins did lead to the degradation of the fusion protein OPA1 and, in certain cancer cell lines, to a reduced capability to exhibit anchorage-independent growth. These cancer cells also exhibited reduced adhesion to the extracellular matrix. Taken together, these observations suggest prohibitins play a crucial role in adhesion processes in the cell and thereby sustaining cancer cell propagation and survival. KW - Krebs Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68548 ER - TY - JOUR A1 - Rudel, Thomas A1 - Faulstich, Michaela A1 - Böttcher, Jan-Peter A1 - Meyer, Thomas F. A1 - Fraunholz, Martin T1 - Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-Dependent Host Cell Signaling JF - PLoS Pathogens N2 - Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorBIA, in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorBIA-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection. KW - antibodies KW - bacterial pathogens KW - cell membranes KW - intracellular pathogens KW - neisseria gonorrhoeae KW - phosphates KW - phosphorylation KW - pili and fimbriae Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96679 ER - TY - JOUR A1 - Eisenreich, Wolfgang A1 - Rudel, Thomas A1 - Heesemann, Jürgen A1 - Goebel, Werner T1 - Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective JF - Frontiers in Cellular and Infection Microbiology N2 - Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state. KW - persistence KW - mechanisms of persister formation KW - intracellular bacterial pathogens KW - stress conditions KW - ATP-DnaA complex KW - DNA replication initiation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222348 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Prusty, Bhupesh K. A1 - Chowdhury, Suvagata R. A1 - Gulve, Nitish A1 - Rudel, Thomas T1 - Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity JF - Frontiers in Cellular and Infection Microbiology N2 - Obligate intracellular pathogenic Chlamydia trachomatis express several serine proteases whose roles in chlamydial development and pathogenicity are not completely understood. The chlamydial protease CPAF is expressed during the replicative phase of the chlamydial developmental cycle and is secreted into the lumen of the Chlamydia-containing vacuole called inclusion. How the secreted protease is activated in the inclusion lumen is currently not fully understood. We have identified human serine peptidase inhibitor PI15 as a potential host factor involved in the regulation of CPAF activation. Silencing expression as well as over expression of PI15 affected normal development of Chlamydia. PI15 was transported into the chlamydial inclusion lumen where it co-localized with CPAF aggregates. We show that PI15 binds to the CPAF zymogen and potentially induces CPAF protease activity at low concentrations. However, at high concentrations PI15 inhibits CPAF activity possibly by blocking its protease domain. Our findings shed light on a new aspect of chlamydial host co-evolution which involves the recruitment of host cell proteins into the inclusion to control the activation of bacterial proteases like CPAF that are important for the normal development of Chlamydia. KW - chlamydia KW - CPAF activation KW - peptidase inhibitor PI15 KW - chlamydial inclusion KW - chlamydia serine proteases Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196918 SN - 2235-2988 VL - 8 IS - 183 ER - TY - JOUR A1 - Götz, Ralph A1 - Kunz, Tobias C. A1 - Fink, Julian A1 - Solger, Franziska A1 - Schlegel, Jan A1 - Seibel, Jürgen A1 - Kozjak-Pavlovic, Vera A1 - Rudel, Thomas A1 - Sauer, Markus T1 - Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy JF - Nature Communications N2 - Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4x to 10x expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 +/- 7.7nm. Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy. KW - nanoscale imaging KW - bacterial infection KW - sphingolipid expansion microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231248 VL - 11 ER - TY - JOUR A1 - Rudel, Thomas A1 - Mehlitz, Adrian T1 - Modulation of host signaling and cellular responses by Chlamydia JF - Cell Communication and Signaling N2 - Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation. KW - Chlamydia KW - Invasion KW - Inclusion KW - Type III secretion KW - Tarp KW - Inc KW - Signaling KW - Trafficking Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97225 UR - http://www.biosignaling.com/content/11/1/90 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Winkler, Ann-Cathrin A1 - Liang, Chunguang A1 - Boyny, Aziza A1 - Ade, Carsten P. A1 - Dandekar, Thomas A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus Perturbs the Host Cell Ca\(^{2+}\) Homeostasis To Promote Cell Death JF - mBio N2 - The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca\(^{2+}\) increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca\(^{2+}\) concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca\(^{2+}\) rise led to an increase in mitochondrial Ca\(^{2+}\) concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca\(^{2+}\) homeostasis and induces cytoplasmic Ca\(^{2+}\) overload, which results in both apoptotic and necrotic cell death in parallel or succession. IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca\(^{2+}\) overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca\(^{2+}\) homeostasis." KW - Staphylococcus aureus KW - calcium signaling pathway KW - cell death KW - facultatively intracellular pathogens Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231448 VL - 11 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Boyny, Aziza A1 - Hertlein, Tobias A1 - Sroka, Aneta A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kessie, David A1 - Mehling, Helene A1 - Potempa, Jan A1 - Ohlsen, Knut A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A. KW - Staphylococcus aureus KW - Staphylococcal infection KW - host cells KW - HeLa cells KW - cytotoxicity KW - intracellular pathogens KW - apoptosis KW - epithelial cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263908 VL - 17 IS - 9 ER - TY - JOUR A1 - Nadella, Vinod A1 - Mohanty, Aparna A1 - Sharma, Lalita A1 - Yellaboina, Sailu A1 - Mollenkopf, Hans-Joachim A1 - Mazumdar, Varadendra Balaji A1 - Palaparthi, Ramesh A1 - Mylavarapu, Madhavi B. A1 - Maurya, Radheshyam A1 - Kurukuti, Sreenivasulu A1 - Rudel, Thomas A1 - Prakash, Hridayesh T1 - Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses JF - Frontiers in Immunology N2 - Apoptosis is a physiological cell death process essential for development, tissue homeostasis, and for immune defense of multicellular animals. Inhibitors of apoptosis proteins (IAPs) regulate apoptosis in response to various cellular assaults. Using both genetic and pharmacological approaches we demonstrate here that the IAPs not only support opportunistic survival of intracellular human pathogens like Chlamydia pneumoniae but also control plasticity of iNOS+ M1 macrophage during the course of infection and render them refractory for immune stimulation. Treatment of Th1 primed macrophages with birinapant (IAP-specific antagonist) inhibited NO generation and relevant proteins involved in innate immune signaling. Accordingly, birinapant promoted hypoxia, angiogenesis, and tumor-induced M2 polarization of iNOS+ M1 macrophages. Interestingly, birinapant-driven changes in immune signaling were accompanied with changes in the expression of various proteins involved in the metabolism, and thus revealing the new role of IAPs in immune metabolic reprogramming in committed macrophages. Taken together, our study reveals the significance of IAP targeting approaches (Smac mimetic compounds) for the management of infectious and inflammatory diseases relying on macrophage plasticity. KW - apoptosis KW - macrophages immunobiology KW - inflammation mediators KW - polarization KW - infection KW - hypothalamus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197484 SN - 1664-3224 VL - 8 IS - 1792 ER -