TY - JOUR A1 - Ruf, Franziska A1 - Fraunholz, Martin A1 - Öchsner, Konrad A1 - Kaderschabeck, Johann A1 - Wegener, Christian T1 - WEclMon - A simple and robust camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural conditions JF - PLoS ONE N2 - Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems. We describe a novel open eclosion monitoring system (WEclMon) that allows the puparia to come into direct contact with light, temperature and humidity. We demonstrate that the system can be used both in the laboratory and outdoors, and shows a performance similar to commercial closed funnel-type monitors. Data analysis is semi-automated based on a macro toolset for the open imaging software Fiji. Due to its open design, the WEclMon is also well suited for optogenetic experiments. A small screen to identify putative neuroendocrine signals mediating time from the central clock to initiate eclosion showed that optogenetic activation of ETH-, EH and myosuppressin neurons can induce precocious eclosion. Genetic ablation of myosuppressin-expressing neurons did, however, not affect eclosion rhythmicity. KW - chronobiology KW - infrared radiation KW - light pulses KW - molting KW - Drosophila melanogaster KW - optogenetics KW - eclosion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170755 VL - 12 IS - 6 ER - TY - JOUR A1 - Lamaze, Angelique A1 - Öztürk-Çolak, Arzu A1 - Fischer, Robin A1 - Peschel, Nicolai A1 - Koh, Kyunghee A1 - Jepson, James E. C. T1 - Regulation of sleep plasticity by a thermo-sensitive circuit in Drosophila JF - Scientific Reports N2 - Sleep is a highly conserved and essential behaviour in many species, including the fruit fly Drosophila melanogaster. In the wild, sensory signalling encoding environmental information must be integrated with sleep drive to ensure that sleep is not initiated during detrimental conditions. However, the molecular and circuit mechanisms by which sleep timing is modulated by the environment are unclear. Here we introduce a novel behavioural paradigm to study this issue. We show that in male fruit flies, onset of the daytime siesta is delayed by ambient temperatures above 29°C. We term this effect Prolonged Morning Wakefulness (PMW). We show that signalling through the TrpA1 thermo-sensor is required for PMW, and that TrpA1 specifically impacts siesta onset, but not night sleep onset, in response to elevated temperatures. We identify two critical TrpA1-expressing circuits and show that both contact DN1p clock neurons, the output of which is also required for PMW. Finally, we identify the circadian blue-light photoreceptor CRYPTOCHROME as a molecular regulator of PMW, and propose a model in which the Drosophila nervous system integrates information encoding temperature, light, and time to dynamically control when sleep is initiated. Our results provide a platform to investigate how environmental inputs co-ordinately regulate sleep plasticity. KW - Circadian rhythms and sleep KW - Genetics KW - Drosophila melanogaster Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181146 VL - 7 ER - TY - JOUR A1 - Ruppert, Manuela A1 - Franz, Mirjam A1 - Saratis, Anastasios A1 - Escarcena, Laura Velo A1 - Hendrich, Oliver A1 - Gooi, Li Ming A1 - Schwenkert, Isabell A1 - Klebes, Ansgar A1 - Scholz, Henrike T1 - Hangover links nuclear RNA signaling to cAMP regulation via the phosphodiesterase 4d ortholog dunce JF - Cell Reports N2 - The hangover gene defines a cellular stress pathway that is required for rapid ethanol tolerance in Drosophila melanogaster. To understand how cellular stress changes neuronal function, we analyzed Hangover function on a cellular and neuronal level. We provide evidence that Hangover acts as a nuclear RNA binding protein and we identified the phosphodiesterase 4d ortholog dunce as a target RNA. We generated a transcript-specific dunce mutant that is impaired not only in ethanol tolerance but also in the cellular stress response. At the neuronal level, Dunce and Hangover are required in the same neuron pair to regulate experience-dependent motor output. Within these neurons, two cyclic AMP (cAMP)-dependent mechanisms balance the degree of tolerance. The balance is achieved by feedback regulation of Hangover and dunce transcript levels. This study provides insight into how nuclear Hangover/RNA signaling is linked to the cytoplasmic regulation of cAMP levels and results in neuronal adaptation and behavioral changes. KW - biology KW - hangover KW - dunce KW - Dunce isoforms KW - PDE4d KW - cellular stress KW - alcohol tolerance KW - Drosophila melanogaster Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171950 VL - 18 IS - 2 ER -