TY - THES A1 - Hayen, Wiebke T1 - Determinanten der Tumorzellmigration T1 - Determinants of tumor cell migration N2 - Hyaluronsäure (HS) ist ein weit verbreitetes Glykosaminoglykan in der Extrazellulärmatrix vieler Gewebe und tritt in erhöhten Konzentrationen in der Umgebung solider Tumore auf. Es ist bekannt, daß HS die Zellmigration vieler Zellarten stimuliert. Im ersten Teil dieser Arbeit wurde die Rolle der HS in der Tumorzellmigration auf der Basis eines dreidimensionalen Fibringel-Systems, in welches Tumorzell-bedeckte Microcarrier eingebettet wurden, untersucht. Ein Vergleich zwischen zwei- und dreidimensionaler Migration unterverschiedenen Bedingungen ergab, daß die dreidimensionale Migration nicht von HS-spezifischen Oberflächenrezeptoren abhängt, sondern hauptsächlich von der Porosität der Matrix. In zweidimensionalen Systemen war die Migration durch Antikörper gegen den HS-Rezeptor CD44 inhibierbar, unter dreidimensionalen Bedingungen jedoch nicht. Zur Bestimmung der strukturellen Eigenschaften der Fibringele wurden spektrometrische Messungen, konfokale Mikroskopie, Kompaktionsmessungen und Flüssigkeitspermeation herangezogen. Eine weitere Lokalisation ergab ein intrazelluläres Auftreten von HS vorwiegend perinukleär mit dem Zytoskelett assoziiert. Ein direkter Einfluß auf die Aktinpolymerisation konnte ausgeschlossen werden. Im zweiten Teil der Arbeit wurde die direktionale Migration von Tumorzellen auf Endothelzellen sowohl in dreidimensionalen Fibringelsystemen als auch unter zweidimensionalen Bedingungen untersucht. Endothelzell-konditioniertes Medium wurde weiter aufgereinigt und es konnten massenspektrometrisch mehrere potentiell chemotaktisch aktive Moleküle im Medium bestimmt werden. N2 - Hyaluronic acid (HA) is a glycosaminoglycan which is ubiquitously present in the extracellular matrix of many tissues and increased concentrations are found in the environment of solid tumors. In the first part of this work the role of HA in tumor cell migration based on a three-dimensional fibrin gel-sytem was investigated. The comparison of two- and threedimensional migration resulted in the conclusion that threedimensional migration mainly depends on the porosity of the matrix and not on specific HA-receptors. The HA-induced migration could be inhibited under two-dimensional conditions by antibodies to the HA-receptor CD44 while in three-dimensional systems the migration was unaffected by these antibodies. The structural properties of the fibrin gels were analyzed by turbidity measurement, confocal microscopy, compaction assay and liquid permeation. Further experiments resulted in perinuclear localization of this macromolecule. A direct mechanical influence of HA on actin polymerization could not be detected. The second part of this work concentrated on the directional migration of tumor cells to endothelial cells. In three-dimensional cocultures of tumor cells and endothelial cells it was found that the tumor cells were chemotactically attracted by endothelial cells. This effect could be verified in two-dimensional Boyden chamber assays. Endothelial-derived conditioned medium was further purified and possible chemotaxins for tumor cell migration could be identified by mass spectrometry. KW - Tumorzelle KW - Zellmigration KW - Hyaluronsäure KW - Endothelzelle KW - Tumorzellmigration KW - Hyaluronsäure KW - Fibrin KW - Tumor cell migration KW - hyaluronic acid KW - fibrin Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1180784 ER - TY - THES A1 - Appelt-Menzel, Antje T1 - Etablierung und Qualifizierung eines humanen Blut-Hirn-Schranken-Modells unter Verwendung von induziert pluripotenten und multipotenten Stammzellen T1 - Establishment and qualification of a human blood-brain barrier model by use of human induced pluripotent stemm cells an multipotent stem cells N2 - Die Blut-Hirn-Schranke (BHS) stellt eine der dichtesten und wichtigsten Barrieren zwischen Blutzirkulation und Zentralnervensystem (ZNS) dar. Sie besteht aus spezialisierten Endothelzellen, welche die zerebralen Kapillaren auskleiden und durch sehr dichte Tight Junctions (TJs) miteinander verbunden sind. Weitere Komponenten der dynamischen Blut-Hirn-Schrankenbarriere stellen Perizyten, Astrozyten, Neurone und Mikrogliazellen dar, welche zusammen mit der extrazellulären Matrix der Basalmembran der Gehirnkapillaren und den zuvor genannten Endothelzellen ein komplexes regulatorisches System, die so genannte neurovaskuläre Einheit bilden (Hawkins und Davis 2005). Die Hauptfunktionen der BHS lassen sich in drei Untergruppen untergliedern, die physikalische, metabolische und Transport-Barriere (Neuhaus und Noe 2010). Hauptsächlich dient die BHS der Aufrechterhaltung der Homöostase des ZNS und dem Schutz vor neurotoxischen Substanzen sowie Pathogenen, wie Bakterien und Viren. Zudem ist sie auch für die Versorgung der Neuronen mit Nährstoffen und regulierenden Substanzen sowie den Efflux von Stoffwechselendprodukten des ZNS zurück ins Blut verantwortlich. Für die Entwicklung von Medikamenten zur Behandlung von neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Parkinson und Multiple Sklerose oder Gehirntumoren, stellt die Dichtigkeit der BHS gegenüber Substanzen und die hohe metabolische Aktivität der Endothelzellen aber ein großes Problem dar. Viele Medikamente sind nicht in der Lage in ausreichender Konzentration die BHS zu überwinden, um an ihren Wirkort zu gelangen oder werden vor dem Transport metabolisiert und die Wirksamkeit dadurch eingeschränkt. Weiterhin spielen auch Defekte der BHS eine entscheidende Rolle in der Beeinflussung der Pathogenese vieler ZNS-Erkrankungen. Aufgrund des hohen Bedarfs an geeigneten Testsystemen in der Grundlagen- sowie präklinischen Forschung für Medikamentenentwicklung und Infektionsstudien wurden eine Vielzahl unterschiedlicher BHS-Modelle entwickelt. Neben in silico-, azellulären in vitro- und in vivo-Modellen sind auch zahlreiche zellbasierte Modelle der BHS entwickelt worden. Standardisierte Modelle auf Basis immortalisierter Zelllinien jedoch weisen nur eine inhomogene TJ-Expression auf und verfügen meist über eine geringe Barriereintegrität, erfasst über transendotheliale elektrische Widerstände (TEER) unter 150 · cm2 (Deli et al. 2005). Im Vergleich dazu wurden in Tierexperimenten TEER-Werte von mehr als 1500 · cm2 an der BHS gemessen (Butt et al. 1990; Crone und Olesen 1982). Die Verfügbarkeit humaner primärer BHS-Zellen ist sehr limitiert und ihr Einsatz nicht nur im Hinblick auf ethische Aspekte bedenklich. Humane Gehirnzellen können z. B. aus Biopsie- oder Autopsiematerial von Patienten mit Epilepsie oder Gehirntumoren isoliert werden. Allerdings besteht hier das Risiko, dass die isolierten Zellen krankheitsbedingt verändert sind, was die Eigenschaften der BHS-Modelle erheblich beeinflussen kann. Eine Alternative, die diese Probleme umgeht, ist die Verwendung von humanen induziert pluripotenten Stammzellen (hiPSCs), um standardisierte humane BHS-Modelle unter reproduzierbaren Bedingungen bereitzustellen. Im Rahmen dieser Arbeit ist es gelungen, hiPSCs in vitro nach etablierten und standardisierten Methoden in Endothelzellen der BHS, neurale Stammzellen (hiPS-NSCs) sowie Astrozyten (hiPS-A) zu differenzieren (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013;Reinhardt et al. 2013) und zum Aufbau der Modelle einzusetzen. Die Endothelzellen wurden mit Hilfe protein- und genbasierter Nachweismethoden auf das Vorhandensein von endothelzellspezifischen TJ-Markern sowie spezifischen Transportern untersucht und funktionell charakterisiert. Die Kryokonservierung der hiPS-EC-Progenitoren, die im Rahmen der vorliegenden Arbeit entwickelt wurde, ermöglicht eine größere räumliche und zeitliche Flexibilität beim Arbeiten mit den stammzellbasierten Modellen sowie das Anlegen standardisierter Zellbanken. Weiterhin wurden multipotente NSCs aus fetalen Gehirnbiopsien isoliert (fNSCs) und als Kontrollkulturen zu den hiPS-NSCs für den Aufbau von BHS-Modellen eingesetzt. Mit dem Ziel die in vivo-BHS bestmöglich zu imitieren und die Modelleigenschaften zu optimieren, wurde ein Set aus zehn unterschiedlichen BHS-Modellen basierend auf primären Zellen, hiPSCs und fNSCs analysiert. Der Aufbau der BHS-Modelle erfolgte unter Verwendung von Transwellsystemen. Durch die systematische Untersuchung des Einflusses der unterschiedlichen Zelltypen der neurovaskulären Einheit auf die Barriereintegrität und Genexpression des BHS-Endothels, konnten die Quadrupel-Kulturen mit Perizyten, Astrozyten und hiPS-NSCs als die Kultur mit den physiologischsten Eigenschaften identifiziert werden. Auf Grund der signifikant erhöhten TEER-Werte von bis zu 2500 · cm2 und einer um mindestens 1,5-fachen Steigerung der Genexpression BHSrelevanter Transporter und TJ-Moleküle gegenüber den Monokulturen, wurden diese Modelle für weiterführende Studien ausgewählt. Das Vorhandensein eines komplexen, in vivo-ähnlichen TJ-Netzwerkes, bestehend aus Occludin, Claudin 1, 3, 4 und 5, konnte mittels quantitativer Realtime-PCR, Western Blot sowie ultrastruktureller Analyse in der Gefrierbruch- und Raster-Elektronenmikroskopie nachgewiesen werden. Neben der Begrenzung der parazellulären Permeabilität, welche über die geringe Permeation von FITC-Dextran (4 kDa und 40 kDa), Fluoreszein und Lucifer Yellow nachgewiesen wurde, stellt die BHS ebenfalls eine Barriere für den transzellulären Transport von Substanzen dar. Eine Beurteilung der Modelle hinsichtlich der Qualifikation für die Nutzung im Wirkstoffscreening wurde mit Hilfe von Transportversuchen unter dem Einsatz von BHS-relevanten Referenzsubstanzen durchgeführt. Die Klassifikation der Testsubstanzen erfolgte analog ihrer Permeationsgeschwindigkeiten: Diazepam und Koffein gelten als schnell transportierte Wirkstoffe, Ibuprofen, Celecoxib und Diclofenac werden mit einer mittleren Geschwindigkeit über die BHS transportiert und Loratadin sowie Rhodamin 123 sind langsam permeierende Substanzen. Innerhalb der Versuche mit den Quadrupelkulturen wurde diese Reihenfolge bestätigt, lediglich für Koffein wurde ein signifikant niedrigerer Permeationskoeffizient verglichen mit der Monokultur erzielt. Der Einsatz der hiPSC-Technologie ermöglicht es zudem, aus einer Stammzelllinie große Mengen an humanen somatischen Zelltypen zu generieren und für gezielte Anwendungen bereitzustellen. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass mit Hilfe eines eigens für diese Zwecke konstruierten Rührreaktorsystems eine reproduzierbare Expansion der hiPSCs unter definierten Bedingungen ermöglicht wurde. Basierend auf dieser Grundlage ist nun ein Hochdurchsatz-Screening von Medikamenten denkbar. Die in dieser Arbeit präsentierten Daten belegen die Etablierung eines stammzellbasierten in vitro- Quadrupelmodels der humanen BHS, welches über in vivo-ähnliche Eigenschaften verfügt. Die Anforderungen, die an humane BHS-Modelle gestellt werden, wie die Reproduzierbarkeit der Ergebnisse, eine angemessene Charakterisierung, welche die Untersuchung der Permeabilität von Referenzsubstanzen einschließt, die Analyse der Expression von BHS-relevanten Transportermolekülen sowie die solide und physiologische Morphologie der Zellen, wurden erfüllt. Das etablierte BHS-Modell kann in der Pharmaindustrie für die Entwicklung von Medikamenten eingesetzt werden. Ausreichend qualifizierte Modelle können hier in der präklinischen Forschung genutzt werden, um Toxizitäts- und Transportstudien an neu entwickelten Substanzen durchzuführen und eine bessere in vitro-in vivo-Korrelation der Ergebnisse zu ermöglichen oder Mechanismen zu entwickeln, um die BHS-Barriere gezielt zu überwinden. N2 - The blood-brain barrier (BBB) presents one of the tightest and most important barriers between the blood circulation and the central nervous system (CNS). The BBB consists of specialized endothelial cells, which line the cerebral capillaries and are connected through very dense tight junctions (TJs). Together with pericytes, astrocytes, neurons, microglial cells and the extracellular matrix of the basal membrane of the brain capillaries, they form a dynamic and complex regulatory system, the so-called neurovascular unit (Hawkins and Davis 2005). The main functions of the BBB can be divided into three subgroups, the physical-, metabolic- and transport-barrier (Neuhaus and Noe 2010). The BBB mainly serves to maintain the homeostasis of the CNS and for protection against neurotoxical substances and pathogens, such as bacteria and viruses. Moreover, the BBB ensures the supply of neurons with nutrients and regulatory substances. Furthermore, it is responsible for the efflux of CNS metabolism waste products. For the development of drugs applied for the treatment of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis or even brain tumors, the tightness of the BBB models towards substances and the high metabolic activity of the endothelial cells pose a problem. Numerous drugs cannot overcome the BBB in sufficient enough concentration to reach the target location or they are metabolized before transportation and thus become less effective. Moreover, defects of the BBB play a decisive role in the manipulation of the pathogenesis of numerous CNS diseases. Due to the high demand for test systems in basic and preclinical research of drug development and infection studies, a range of different BBB models have been developed. Besides the in silico, acellular in vitro and in vivo models, numerous cell-based BBB models have been developed. However, standardized models based on immortalized cell lines show only inhomogeneous TJ expression and possess low barrier integrity which is detected through transendothelial electrical resistance (TEER) below 150 · cm2 (Deli et al. 2005). In comparison, the TEER values in animal tests reached more than 1500 · cm2 at the BBB (Butt et al. 1990; Crone and Olesen 1982). The availability of human primary BBB cells is highly limited. Moreover, using human primary BBB cells is an extremely serious matter, not only in respect of ethical aspects. Human brain cells can, for instance, be isolated from biopsy or autopsy material obtained from patients suffering epilepsy or brain cancer. However, there is the risk that the isolated cells are altered due to disease, which may significantly change the features of the BBB models. An alternative to avoid such problems and to provide standardized human BBB models by the use of reproducible conditions, is the application of human induced pluripotent stem cells (hiPSCs). In this context, it has been successful to differentiate hiPSCs in vitro – under established and reproducible methods – into endothelial cells of the BBB (hiPS-ECs), neural stem cells (hiPS-NSCs) as well as astrocytes (hiPS-A) (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013; Reinhardt et al. 2013) and to use them for model establishment. The endothelial cells were examined for the existence and the functionality of endothelial-specific markers as well as specific transporters by protein- and gene-based methods. Within this work, the croypreservation of hiPS-EC progenitors was established. This will allow an increase of the spatial and temporal flexibility while working with the stem cell based models as well as the establishment of standardized cell banks. Furthermore, multipotent NSCs, isolated from fetal brain biopsies (fNSCs), were used as a control population for hiPSC-NSCs and for BBB modelling. In order to imitate the in vivo BBB in the best possible way and to optimize model characteristics, a set of ten different BBB models based on primary cells, hiPSCs and fNSCs was analyzed. Model establishment was done by the use of transwell systems. By the systematically analysis of the influence of the different neurovascular unit cell types on barrier integrity and on endothelial cell gene expression, the quadruple culture with pericytes, astrocytes and hiPS-NSCs was identified demonstrating the most physiological properties. Due to the significant increase of TEER results up to 2500 · cm2 as well as the at least 1.5-fold increase in gene expression of BBB relevant transporter and TJ markers compared to the mono-cultures, this model was selected for further studies. The presence of a complex in vivo-like TJ network, based on occludin, claudin 1, 3, 4 and 5 was detected by quantitative reale time PCR, Western blot analyses as well as on ultrastructural level by freeze fracture electron microscopy and transmission electron microscopy. Beside the limitation of the paracellular permeability, proven by the low permeation of FITC dextran (4 kDa and 40 kDa), fluorescein and Lucifer yellow, the BBB represents also a barrier for transcellular transported substances. A model evaluation, to assess the models qualification to be used for drug screenings, was proven by transport studies based on BBB relevant reference substances. The classification of the test substances was made analog their permeation rates: diazepam and caffeine are classified as fast, ibuprofen, celecoxib and diclofenac as medium, and loratadine and rhodamine 123 as slow permeating substances. Within our tests, this ranking based on literature data could be confirmed by using the quadruple-culture models, only caffeine was transported with a significantly decreased permeation coefficient compared to the mono-cultures. Furthermore, the implementation of the hiPSC technology allows the generation of a large quantity of human somatic cell types form only one single stem cell line and their provision for specific applications. Within this work it was shown, that by the use of an in-house constructed stirred tank bio-reactor, providing defined culture conditions, a reproducible expansion of hiPSCs was enabled. On this basis, a high throughput drug screening might be possible. The data presented within this work demonstrate the establishment of a stem cell based in vitro quadruple-model of the human BBB with in vivo-like characteristics. All minimal requirements for human BBB modeling, including the reproducibility of the results, adequate characterization with regard on the permeability of reference components, expression of BBB transporters as well as the robust and physiological morphology are fulfilled. The established BBB model can be used in pharmaceutical drug development. In preclinical research adequate qualified models are asked for toxicity and transport studies with new developed substances in order to allow a better in vitro-in vivo correlation of the results. Moreover, the model can be used to develop mechanisms to selectively overcome the barrier. KW - Blut-Hirn-Schranke KW - Stammzelle KW - Zelldifferenzierung KW - In vitro KW - Endothelzelle KW - induziert pluripotente Stammzelle KW - multipotente Stammzelle KW - in vitro Modell KW - Neurovaskuläre Einheit KW - Neurale Stammzellen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134646 ER - TY - THES A1 - Tulke, Moritz T1 - Grundlegende Arbeiten zum bio-artifiziellen renalen Tubulus aus ko-kultivierten adipozytären mesenchymalen Stammzellen und Endothelzellen auf einer synthetischen Kapillarmembran T1 - Fundamental work on a bio-artificial renal tubule consisting of co-cultivated adipose-derived mesenchymal stem cells and endothelial cells on a synthetic capillary membrane N2 - Mit fortschreitender chronischer Niereninsuffizienz kommt es zur Akkumulation von Urämietoxinen und im Endstadium unbehandelt zum Tod im sogenannten Urämischen Syndrom. Die Blutreinigung erfolgt bei der am häufigsten verwendeten Form der Nierenersatztherapie, der Hämodialyse, nur unzureichend. Die Folge ist eine erhöhte Morbidität und Mortalität der betroffenen Patienten. Bei der Hämodialyse werden nur Urämietoxine bis zu einer Größe von 20 kDa über die im Dialysator eingesetzten Hohlfaserdialysemembranen diffusiv und konvektiv semiselektiv nach Größenausschluss entfernt. Proteingebundene Urämietoxine, deren effektive Größe durch die Bindung an Transportproteine wie beispielsweise Albumin die Trennschärfe der Dialysemembranen übersteigt, werden retiniert. In-vivo werden proteingebundene Urämietoxine im proximalen Tubulus, einem Teil des tubulären Systems des Nephrons, sekretorisch eliminiert. Im Rahmen der vorliegenden Promotionsarbeit wurden die ersten Entwicklungsschritte auf dem Weg zu einem sogenannten bio-artifiziellen Tubulus evaluiert. Der angedachte biohybride Filter sollte aus einer Ko-Kultur funktionaler humaner proximaler Tubuluszellen und humaner Endothelzellen (HUVEC) auf synthetischen Hohlfasermembranen bestehen und könnte während der Hämodialyse als zusätzlicher Reinigungsschritt angewendet werden, um unter anderem proteingebundene Urämietoxine effektiv durch aktiven Transport aus dem Blut der Patienten zu entfernen. Die Differenzierung der proximalen Tubuluszellen erfolgte dabei aus adulten adipozytären mesenchymalen Stammzellen (ASC), deren Herkunft eine spätere autologe Behandlung ermöglicht. Die Ko-Kultur mit Endothelzellen wurde zur potentiellen Steigerung der Sekretion proteingebundener Urämietoxine verwendet. In der vorliegenden Arbeit konnten ASCs durch eine Kombination der löslichen Differenzierungsfaktoren All-Trans-Retinoinsäure (ATRA), Aktivin A und BMP-7 erfolgreich in Zytokeratin 18-exprimierende Zellen differenziert werden, wodurch die erwünschte epitheliale Differenzierung bestätigt wurde. Die Expression funktionaler Proteine, wie das für den Wassertransport relevante Aquaporin 1 oder auch der Na+-/K+-ATPase, konnte in dieser Arbeit bereits vor der Differenzierung nachgewiesen werden. Im nächsten Schritt wurde erfolgreich gezeigt, dass eine simultane, qualitativ hochwertige Ko-Kultur von ASCs und HUVECs auf der mit dem extrazellulären Matrixprotein Fibronektin modifizierten Innen- bzw. Außenseite von synthetischen Hohlfasermembranen aus Polypropylen bzw. Polyethersulfon möglich ist. Die Viabilität beider Zelltypen wurde dabei durch die Verwendung eines für die Ko-Kultur entwickelten Nährmediums erreicht, in welchem die Proliferation von ASCs bei gleichzeitiger Aufrechterhaltung ihrer Stammzelleigenschaften deutlich erhöht war. Die in dieser Arbeit erzielten Ergebnisse stellen eine aussichtsreiche Basis für einen bio-artifiziellen renalen Tubulus dar. Weitere Entwicklungsschritte, wie die Differenzierung der ASCs zu proximalen Tubuluszellen im 3D-Bioreaktor einschließlich ihrer funktionalen Charakterisierung anhand Tubulusepithel-spezifischer Transporter, sind erforderlich, be-vor erste funktionale Experimente vor dem „Upscaling“ auf klinisch verwendbare Module möglich sind. N2 - Progressing chronic kidney disease results in the accumulation of uremic toxins and, if left untreated in end-stage kidney disease, death due to the developing uremic syndrome. The most common renal replacement therapy is hemodialysis. It is a life-prolonging therapy but only delivering inadequate blood purification, which is associated with excess morbidity and mortality of the patients. In hemodialysis, only uremic toxins with a molecular size of up to 20 kDa are removed by diffusion or convection. Solutes are eliminated by semi-selective size exclusion across a hollow fiber dialysis membrane in a dialyzer. Binding of certain uremic toxins to carrier proteins, such as albumin, results in an increased effective size, which excludes them from passing through dialysis membranes. In the native kidney, these protein-bound uremic toxins are eliminated from blood by secretory transport in the proximal tubule, a specific part of the tubular filtration apparatus of the nephron. The present doctoral thesis evaluated the first steps towards a so-called bio-artificial tubule. The intended biohybrid filter was supposed to consist of a co-culture of functional human proximal tubule cells and human endothelial cells on synthetic hollow fiber membranes. In its final form, it would be implemented during hemodialysis as an additional purification step to more efficiently remove protein-bound uremic toxins from the patients’ blood by active transport. The proximal tubule cells were differentiated from adipose-derived mesenchymal stem cells, which facilitates a later autologous treatment. The co-culture with endothelial cells should further promote the expression of transporters for organic anions and, thereby, potentially increase the secretion of protein-bound uremic toxins. In the present study, the differentiation from ASCs to a CK18-expression lineage, which confirmed successful epithelial differentiation, was induced by a combination of the soluble differentiation factors all-trans-retinoic acid, activin A and BMP-7. The expression of functional proteins, i.e., of aquaporin 1, which is relevant for water transport, and Na+-/K+-ATPase, was shown already before differentiation. Additionally, the present work demon-strated a high-quality co-culture of ASCs and HUVECs on the inner- and outer membrane surfaces of synthetic polypropylene- or polyethersulfone-based hollow fiber membranes, which initially were surface-modified with the extracellular matrix protein fibronectin. The viability of both cell types was thereby ensured by the application of a specific co-culture medium, which further increased the proliferation of ASCs intensely while maintaining their stem-cell character. The results of the present approach represent a promising basis for a bio-artificial renal tubule. The further development requires the differentiation of ASCs into proximal tubule cells on the 3D-bioreactor membrane and their characterization by verifying tubulusepithel-specific transporters. Finally, subsequent functional experiments have to precede an upscaling to clinically applicable modules. KW - Hohlfaserreaktor KW - Stammzelle KW - Endothelzelle KW - Adipozytäre mesenchymale Stammzelle KW - Bio-artifizieller Tubulus KW - Ko-Kultur Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216896 ER - TY - THES A1 - Krones, David T1 - The Role of Acid Sphingomyelinase in \(Staphylococcus\) \(aureus\) Infection of Endothelial Cells T1 - Die Rolle der sauren Sphingomyelinase bei \(Staphylococcus\) \(aureus\) Infektionen von Endothelzellen N2 - Staphylococcus aureus is a human bacterial pathogen responsible for a variety of diseases including bacterial pneumonia and sepsis. Recent studies provided an explanation, how S. aureus and its exotoxins contribute to the degradation of endothelial junction proteins and damage lung tissue [4]. Previous findings were indicating an involvement of acid sphingomyelinase (ASM) activity in cell barrier degradation [5]. In the presented study the impact of singular virulence factors, such as staphylococcal α-toxin, on in vitro cell barrier integrity as well as their ability to elicit an activation of ASM were investigated. Experiments with bacterial supernatants performed on human endothelial cells demonstrated a rapid dissociation after treatment, whereas murine endothelial cells were rather resistant against cell barrier degradation. Furthermore, amongst all tested staphylococcal toxins it was found that only α-toxin had a significant impact on endothelial junction proteins and ASM activity. Ablation of this single toxin was sufficient to protect endothelial cells from cell barrier degradation and activation of ASM was absent. In this process it was verified, that α-toxin induces a recruitment of intracellular ASM, which is accompanied by rapid and oscillating changes in cytoplasmic Ca2+ concentration and an increased exposure of Lysosomal associated membrane protein 1 (LAMP1) on the cell surface. Recruitment of lysosomal ASM is associated, among other aspects, to plasma membrane repair and was previously described to be involved with distinct pathogens as well as other pore forming toxins (PFT). However, with these findings a novel feature for α-toxin has been revealed, indicating that the staphylococcal PFT is able to elicit a similar process to previously described plasma membrane repair mechanisms. Increased exposure and intake of surface membrane markers questioned the involvement of ASM activity in S. aureus internalization by non-professional phagocytes such as endothelial cells. By modifying ASM expression pattern as well as application of inhibitors it was possible to reduce the intracellular bacterial count. Thus, a direct connection between ASM activity and S. aureus infection mechanisms was observed, therefore this study exemplifies how S. aureus is able to exploit the host cell sphingolipid metabolism as well as benefit of it for invasion into non-professional phagocytic cells N2 - Staphylococcus aureus ist ein bakterieller Erreger, der für eine Vielzahl von Erkrankungen des Menschen verantwortlich ist, darunter bakterielle Lungenentzündung und Sepsis. Neuere Studien konnten einen Ansatz dafür liefern, wie S. aureus und seine Exotoxine zur Degradation von endothelialen Verbindungsproteinen beitragen und das Lungengewebe schädigen. Weitere Befunde weisen auf eine Beteiligung der sauren Sphingomyelinase (ASM) bei der Degradation der Zellbarriere hin. In der vorliegenden Studie soll der Einfluss einzelner Virulenzfaktoren, wie z. B. Staphylokokkus α-Toxin, auf die Integrität der Zellbarriere in vitro sowie deren Fähigkeit, eine Aktivierung der ASM hervorzurufen, untersucht werden.Experimente mit bakteriellen Überständen die an humanen Endothelzellen durchgeführt wurden, zeigten eine rasche Dissoziation nach Behandlung, während murine Endothelzellen vorwiegend resistent gegen eine Degradation der Zellbarriere waren. Darüber hinaus wurde unter allen getesteten Staphylokokken-Toxinen festgestellt, dass nur α-Toxin einen signifikanten Einfluss auf endotheliale Verbindungssproteine und ASM-Aktivität hat. Die genetische Ablation des Toxins alleine reichte aus, um Endothelzellen vor einer Degradation der Zellbarriere zu schützen, und die Aktivierung von ASM blieb aus. Dabei konnte nachgewiesen werden, dass α-Toxin eine Rekrutierung von intrazellulärem ASM induziert, die mit schnellen oszillierenden Veränderungen der zytoplasmatischen Ca2+-Konzentration und einer erhöhten Exposition von Lysosome associated membrane protein 1 (LAMP1) an der Zelloberfläche einhergeht. Die Rekrutierung lysosomaler ASM ist u.a. mit der Reparatur von Plasmamembran assoziiert und wurde bereits im Zusammenhang mit verschiedenen Pathogenen sowie anderer porenbildende Toxine (PFT) beschrieben. Mit diesen Befunden konnte jedoch eine neue Eigenschaft für α-Toxin beschrieben werden, die darauf hindeutet, dass das Staphylokokken-PFT einen ähnlichen Prozess auslösen kann wie zuvor beschriebene Plasmamembran-Reparaturmechanismen. Die vermehrte Exposition und Aufnahme von Oberflächenmembranmerkmalen stellte die Beteiligung der ASM-Aktivität an der Internalisierung von S. aureus durch nicht-professionelle Phagozyten wie Endothelzellen in Frage. Durch Modifikation des ASM-Expressionsmusters sowie Applikation von Inhibitoren war es möglich, die intrazelluläre Keimzahl zu reduzieren. Somit konnte ein direkter Zusammenhang zwischen ASM-Aktivität und den Infektionsmechanismen von S. aureus beobachtet werden. Diese Studie verdeutlicht somit, wie S. aureus den Sphingolipid-Stoffwechsel der Wirtszelle ausnutzen und für die Invasion in nicht-professionelle phagozytische Zellen nutzen kann KW - Staphylococcus aureus KW - Endothelzelle KW - Endothelial cells KW - Acid Sphingomyelinase KW - Plasma membrane repair Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290492 ER -