TY - JOUR A1 - Rubio-Cosials, Anna A1 - Schulz, Eike C. A1 - Lambertsen, Lotte A1 - Smyshlyaev, Georgy A1 - Rojas-Cordova, Carlos A1 - Forslund, Kristoffer A1 - Karaca, Ezgi A1 - Bebel, Aleksandra A1 - Bork, Peer A1 - Barabas, Orsolya T1 - Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance JF - Cell N2 - Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes. KW - DNA complex KW - crystallography KW - Tn1549 transposon KW - Tn916-like transposon family KW - conjugative transposition KW - tyrosine recombinase KW - antibiotic resistance KW - gene transfer KW - vancomycin KW - multidrug-resistant bacteria Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227085 VL - 173 IS - 1 ER - TY - JOUR A1 - Reis, Helena A1 - Schwebs, Marie A1 - Dietz, Sabrina A1 - Janzen, Christian J. A1 - Butter, Falk T1 - TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes JF - Nucleic Acids Research N2 - During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation. KW - Gene Regulation KW - Chromatin and Epigenetics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225180 VL - 46 IS - 6 ER - TY - JOUR A1 - Ribitsch, Iris A1 - Peham, Christian A1 - Ade, Nicole A1 - Duerr, Julia A1 - Handschuh, Stephan A1 - Schramel, Johannes Peter A1 - Vogl, Claus A1 - Walles, Heike A1 - Egerbacher, Monika A1 - Jenner, Florian T1 - Structure-Function relationships of equine menisci JF - PLoS ONE N2 - Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site-and depth-specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site-and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field. KW - Human Medial Meniscus KW - Articular-Cartilage KW - Biomechanical Properties KW - Compressive Properties KW - Human Knee KW - Collagen KW - Injuries KW - Models KW - Repair KW - Osteoarthritis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225214 VL - 13 IS - 3 ER - TY - JOUR A1 - Scheib, Ulrike A1 - Broser, Matthias A1 - Constantin, Oana M. A1 - Yang, Shang A1 - Gao, Shiqiang A1 - Mukherjee, Shatanik A1 - Stehfest, Katja A1 - Nagel, Georg A1 - Gee, Christine E. A1 - Hegemann, Peter T1 - Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain JF - Nature Communications N2 - The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsinguanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio > 1000. After light excitation the putative signaling state forms with tau = 31 ms and decays with tau = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 angstrom) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light. KW - Enzymes KW - Molecular biophysics KW - Molecular neuroscience KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228517 VL - 9 ER - TY - JOUR A1 - Schenk, Mariela A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Holzschuh, Andrea T1 - Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees JF - PeerJ N2 - Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees (Osmia cornuta and O. bicornis), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change. KW - Wild bees KW - Timing KW - Fitness KW - Hibernation KW - Climate change KW - Mechanistic model KW - Osmia KW - Body weight KW - Body size KW - Pollinators Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228544 VL - 6 ER - TY - JOUR A1 - Schenk, Mariela A1 - Krauss, Jochen A1 - Holzschuh, Andrea T1 - Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees JF - Journal of Animal Ecology N2 - 1. Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. 2. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. 3. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3days and (iii) a mismatch of 6days, with bees occurring earlier than flowers in the latter two cases. 4. A mismatch of 6days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3days as under perfect synchronization. However, O.cornuta decreased the number of female offspring, whereas O.bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O.bicornis. 5. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources. KW - conditional sex allocation KW - emergence KW - mitigation strategies KW - mutualism KW - phenological shift KW - pollination KW - species interactions KW - pollinator interactions KW - climate-change KW - phenological response Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228533 VL - 87 IS - 1 ER - TY - JOUR A1 - Christopher D., Pull A1 - Ugelvig, Line V. A1 - Wiesenhofer, Florian A1 - Anna V., Grasse A1 - Tragust, Simon A1 - Schmitt, Thomas A1 - Brown, Mark JF A1 - Cremer, Sylvia T1 - Destructive disinfection of infected brood prevents systemic disease spread in ant colonies JF - eLIFE N2 - In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogens non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. KW - division of labor KW - Fungal cell-walls KW - Leaf cutting ants KW - Metarhizium anisopliae KW - Beauveria bassiana Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223728 VL - 7 ER - TY - JOUR A1 - Rasa, Santa A1 - Nora-Krukle, Zaiga A1 - Henning, Nina A1 - Eliassen, Eva A1 - Shikova, Evelina A1 - Harrer, Thomas A1 - Scheibenbogen, Carmen A1 - Murovska, Modra A1 - Prusty, Bhupesh K. T1 - Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) JF - Journal of Translational Medicine N2 - Background and main text: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and controversial clinical condition without having established causative factors. Increasing numbers of cases during past decade have created awareness among patients as well as healthcare professionals. Chronic viral infection as a cause of ME/CFS has long been debated. However, lack of large studies involving well-designed patient groups and validated experimental set ups have hindered our knowledge about this disease. Moreover, recent developments regarding molecular mechanism of pathogenesis of various infectious agents cast doubts over validity of several of the past studies. Conclusions: This review aims to compile all the studies done so far to investigate various viral agents that could be associated with ME/CFS. Furthermore, we suggest strategies to better design future studies on the role of viral infections in ME/CFS. KW - ME/CFS KW - Viral infections KW - Biomarkers Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224960 VL - 16 IS - 268 ER - TY - JOUR A1 - Reiling, Sarah J. A1 - Krohne, Georg A1 - Friedrich, Oliver A1 - Geary, Timothy G. A1 - Rohrbach, Petra T1 - Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites JF - Scientific Reports N2 - Chloroquine (CQ) treatment failure in Plasmodium falciparum parasites has been documented for decades, but the pharmacological explanation of this phenotype is not fully understood. Current concepts attribute CQ resistance to reduced accumulation of the drug at a given external CQ concentration ([CQ] ex) in resistant compared to sensitive parasites. The implication of this explanation is that the mechanisms of CQ-induced toxicity in resistant and sensitive strains are similar once lethal internal concentrations have been reached. To test this hypothesis, we investigated the mechanism of CQ-induced toxicity in CQ-sensitive (CQS) versus CQ-resistant (CQR) parasites by analyzing the time-course of cellular responses in these strains after exposure to varying [CQ] ex as determined in 72 h toxicity assays. Parasite killing was delayed in CQR parasites for up to 10 h compared to CQS parasites when exposed to equipotent [CQ] ex. In striking contrast, brief exposure (1 h) to lethal [CQ] ex in CQS but not CQR parasites caused the appearance of hitherto undescribed hemozoin (Hz)-containing compartments in the parasite cytosol. Hz-containing compartments were very rarely observed in CQR parasites even after CQ exposures sufficient to cause irreversible cell death. These findings challenge current concepts that CQ killing of malaria parasites is solely concentration-dependent, and instead suggest that CQS and CQR strains fundamentally differ in the consequences of CQ exposure. KW - Cellular imaging KW - Parasite development Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225123 VL - 8 IS - 11137 ER - TY - JOUR A1 - Scheer, Ulrich T1 - Boveri's research at the Zoological Station Naples: Rediscovery of his original microscope slides at the University of Würzburg JF - Marine Genomics N2 - Eric Davidson once wrote about Theodor Boveri: "From his own researches, and perhaps most important, his generalized interpretations, derive the paradigms that underlie modern inquiries into the genomic basis of embryogenesis" (Davidson, 1985). As luck would have it, the "primary data" of Boveri's experimental work, namely the microscope slides prepared by him and his wife Marcella during several stays at the Zoological Station in Naples (1901/02, 1911/12 and 1914), have survived at the University of Wurzburg. More than 600 slides exist and despite their age they are in a surprisingly good condition. The slides are labelled and dated in Boveri's handwriting and thus can be assigned to his published experimental work on sea urchin development. The results allowed Boveri to unravel the role of the cell nucleus and its chromosomes in development and inheritance. Here, I present an overview of the slides in the context of Boveri's work along with photographic images of selected specimens taken from the original slides. It is planned to examine the slides in more detail, take high-resolution focal image series of significant specimens and make them online available. KW - Sea urchin development KW - Polyspermy KW - Multipolar mitosis KW - Aneuploidy KW - Merogone experiments KW - Science history Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228453 VL - 40 ER -