TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Zur Lichtorientierung der Walzenspinnen (Arachnida, Solifugae) N2 - No abstract available Y1 - 1968 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46869 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Pyramidenbau - Ausdruck des Imponierverhaltens von Reiterkrabben am Roten Meer N2 - Werben und Drohen gehören zu den Verhaltensweisen mit Mitteilungswert, die besonders häufig - im Dienste ihrer SignalIunktion umgestaltet - zu Auslösern werden. Solche Auslöser, seien es nun besondere Bewegungsweisen und/oder spezielle morphologische Strukturen, sind an das Individuum gebunden. Eine optische Werbung oder ein Drohen mit körperfremden Mitteln, stellvertretend für ein Individuum, galt bislang als Privileg des Menschen. Die folgenden Ausführungen werden aber zeigen, daß auch andere Lebewesen derartige "Aushängeschilder" gebrauchen. Y1 - 1968 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44579 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Anemomenotaktische Orientierung bei Tenebrioniden und Mistkäfern (Insecta, Coleoptera) N2 - 1. Die Feistkäfer Pimelia grossa, P. tenuicornis, der Mehlkäfer Tenebrio molitor, die Mistkäfer Geotrupes silvaticus und G. stercorarius konnen sich unter entsprechenden Bedingungen rein anemomenotaktisch orientieren (Abb. 1-8). Sie bevorzugen Laufwinkel, die in relativ enge Winkelbereiche rechts und links der beiden Grundrichtungen führen (Abb. 3, 4, 26). 2. Die Bevorzugung bestimmter Winkelgrößen andert sich bei Geotrupes nicht gesetzmig mit der Tageszeit, der Temperatur (im Bereich 18-28° C) oder dem Fütterungszustand (Abb. 8-11). 3. Die untere Grenze der Windstärke, die eine menotaktische Einstellung ermöglicht, liegt für die Mistkäfer bei etwa 0,15 m/sec, für die Feistkäfer bei etwa 0,4 m/sec. Die obere Grenze befindet sich bei Geschwindigkeiten, die den Käfern ein Vorwärtskommen unmöglich machen. 4. Bei der menotaktischen Einstellung wird nur die Reizrichtung nicht aber die Reizstarke bewertet (Abb. 13-15). 5. Die Kontinuitat des Luftstroms ist keine Voraussetzung für die anemomenotaktische Orientierung: Die Käfer orientieren sich auch nach kurzen Windstößen (Abb. 17, 19, 21). Während der Windstille kommt es zu regelhaften Abweichungen von dem bei Wind eingehaltenen Kurs (Abb. 18). Das Ausmaß dieser Abweichungen wird nach häufigen Windunterbrechungen stark verringert (Abb. 20). 6. Gegen Turbulenzen des Luftstroms, wie sie über unebenem Untergrund entstehen, ist die Anemomenotaxis der Käfer nicht sehr anfällig (Abb. 22). 7. Die Sinnesorgane, die dem intakten Käfer die Windrichtungsbestimmung ermöglichen, sprechen auf Bewegungen im Pedicellus-Flagellumgelenk an. Ein Verlust der Endkolben hat beim Mistkäfer keinen Einfluß auf die Richtungs- und Winkelgrößenwahl, auch die Streuung wird nicht signifikant größer. 2 Flagellenglieder pro Antenne ermöglichen bei Windgeschwindigkeiten um oder über 1 m/sec noch eine anemomenotaktische Orientierung (Tabelle 3). 8. Bei 3 Mistkäfern, deren Fühler 4 Wochen bzw. 4 Monate vor dem Versuch entfernt worden waren, konnte wieder eine Orientierung nach der Windrichtung nachgewiesen werden (Abb. 23, Tabelle 1). 9. Die Kafer konnen Laufwinkel intramodal vierdeutig transponieren (z.B. Abb. 28, 29). Am deutlichsten tritt diese Fähigkeit bei Versuchsneulingen zutage, deren Laufe rein fluchtmotiviert sind: Sie wählen normalerweise denjenigen der 4 möglichen Laufwinkel, der der Aufsetzrichtung am nächsten liegt (vgl. Abb. 25, 26). 10. Die Existenz und die Wirkungsrichtung eines Drehkommandos, sowie die Beteiligung beider Grundorientierungen an der Anemomenotaxis werden nachgewiesen (Abb. 31). Die Fähigkeit, eine gleichbleibende Drehkommandogröße (die nie zu einer stärkeren Abweichung als 90° von einer Grundrichtung führen kann) mit verschiedenem Vorzeichen der Drehrichtung versehen zu konnen und die Möglichkeit zur Taxisumkehr (Abb. 32) erklären die orientierungsphysiologische Seite des vierdeutigen intramodalen Transponierens. 11. Versuchsergebnisse, die Aussagen uber den physiologischen Mechanismus der Anemomenotaxis der Käfer zulassen, sprechen für einen Kompensationsmechanismus. Die gegen die Kompensationstheorie der Menotaxis (JANDER, 1957) vorgebrachten Argumente werden im Rahmen der bisherigen Resultate kurz diskutiert. 12. Die möglichen biologischen Bedeutungen der Anemomenotaxis werden besprochen. Es wird angenommen, daß sie beim Appetenzverhalten des nach geruchlichen Schlüsselreizen "suchenden" Käfers ihre biologisch wichtigste Aufgabe erfüllt. Sie kann auch die basalen Aufgaben einer Raumorientierung übernehmen und so z.B. kompaßtreue Fluchtkurse steuern. N2 - 1. The tenebrionid beetles Pimelia grossa, P. tenuicornis, Tenebrio molitor, the dung beetles Geotrupes silvaticus and G. stercorarius can, under specific conditions, use pure anemomenotactic orientation (Figs. l-8). They prefer running-angles which have relatively narrow angular deviations, left and right, to the basic directions (Figs. 3, 4, 26). 2. The preferences for particular angle sizes do not constantly alter with respect to the times of day, temperature (between 18 and 28° C) or feeding conditions (Figs. 8-11). 3. The lowest wind velocities which will evoke menotactic orientation lie at about 0.15 m/sec (Geotrupes) and 0.4 m/sec (Pimelia). The upper limit for anemomenotactic orientation are velocities higher than those against which the animal can move. 4. Only stimulus direction, not strength is evaluated for menotaxis (Figs. 13-15). 5. The continuity of the air stream is not a hard and fast requirement for anemomenotactic orientation: beetles can also orient themselves to short puffs of wind (Figs. 17, 19, 21). During still air, between puffs, the beetles characteristically deviate from their adopted course (Fig. 18). However the more puffs and intervals the less the deviation becomes (Fig. 20). 6. The anemomenotactic orientation is not greatly disturbed in partly turbulent air (for example over rough ground)(Fig. 22). 7. The sense organ which allows the intact beetle to detect wind direction is situated in the pedicellus-flagellum joint. In Geotrupes the loss of the clubs does not have a detrimental effect on either choice of direction or angular preference, neither does it result in significantly larger standard deviations. 2 segments of the flagellum allow the beetle to anemomenotactically orientate to wind directions when the air stream is moving at, or above, 1 m/sec (Table 3). 8. 3 dung beetles were able to orient themselves to wind directions 4 weeks respectively 4 months after antennal amputation (Fig. 23, Table 1). 9. Beetles are able to transpose their running-angles intramodally (Figs. 28, 29). This ability is most obvious in experimentally naive animals whose locomotion is flight motivated. Of the four possible directions they choose the one nearest to that of their long axis after they have been placed on the substrate (Figs. 25, 26). 10. The existence and working direction of a Course order, and the participation of both basic orientations in anemomenotaxis are proven (Fig. 32). The ability to provide a sustained Course order size (that can never deviate over the 90° limit of the basic directions) with different signs (of the turning direction) and the possibility to reverse taxis explains the orientation physiology of the four intramodal transpositions. 11. A compensation mechanism is suggested as the basis for anemomenotaxis of beetles by the experimental evidence in this account. Two main objections against such a mechanism are debated in the discussion. 12. The possible biological significances of anemomenotaxis are discussed. It is proposed that this taxis has its most important significance in appetetive behavior of beetles that are in readiness for an olfactory sign-stimulus. It is proposed that anemomenotaxis can also fullfill the basic role of space orientation (for example, compass true alignment during flight). Y1 - 1969 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44512 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Die Interaktion der paarigen antennalen Sinnesorgane bei der Windorientierung laufender Mist- und Schwarzkäfer (Insecta, Coleoptera) T1 - The interaction of the paired antennal sense organs in the wind orientation of walking dung beetles and tenebrionid beetles (Insecta, Coleoptera) N2 - 1. Bei der Anemomenotaxis arbeiten die Windrichtungen perzipierenden, paarigen Sinnesorgane der Antennen - vermutlich die Johnstonschen Organe - als Synergisten zusammen. Der Ausfall der für die Windrichtung spezifischen afferenten Meldungen eines Fühlers führt zu einer Halbierung der Drehtendenzstärke (Abb.I-ll). Es konnten keine Anhaltspunkte gefunden werden, die auf eine direkte zentrale Kompensation dieses Effektes hinweisen. Verschiedene Arten der Ausschaltung, totalc (Abb.2) oder teilweise (Abb. 4) Amputation (bei der der Pedicellus unverletzt bleibt) oder Blockierung des Pedicellus-Flagellumgelenks durch Lackierung (Abb.3), bewirken dieselben Änderungen im Orientierungsverhalten. 2. Der einzelne Fühler fungiert bei der Anemomenotaxis als "zweisinniger Lenker". Ein Käfer mit nur einem Fühler ist - nach einer genügend langen Erholungszeit - noch fähig, die Windrichtung festzustellen und zu ihr eindeutige menotaktische Kurse zu steuern (vgl. z. B. Abb. 1, 9). Außerdem kann er sich wie ein intakter Käfer (Abb. 14) bei plötzlicher Anderung der Reizrichtung um den kleineren Winkelbetrag zu seiner Sollrichtung zurückdrehen (Abb. 15). 3. Zwischen Drehtendenzstärke und Reizrichtung besteht nach den Ergebnissen der Ausschaltversuche eine Sinusfunktion. Gleichgroße Rechts- oder Linksabweichungen des Käfers von der positiven oder negativen Grundrichtung werden von rechtem und linkem Fühler mit der gleichen Drehtendenzstärke bewertet (Abb. 13). Es ist deshalb naheliegend, anzunehmen, daß jeder Fühler bei der Reizrichtungsbewertung seinen Abweichungsbetrag von der nächsten der beiden Grundstellungen mißt. In einer Grundstellung befindet sich der Fühler jeweils dann, wenn sich der Käfer genau gegen oder mit dem Wind eingestellt hat. 4. Afferente Drehtendenz und efferentes Drehkommando sind Dreherregungsgrößen, die sich bei Einstellung des Sollwinkels durch ihre antagonistische Wirkung aufheben. Halbierung der Drehtendenzstärke durch Ausschaltung eines Fühlers führt demnach erwartungsgemäß zu einer Verdopplung der Drehkommandowirkung. Daraus und aus der Sinusförmigkeit der Drehtendenzstärkenkurve ergibt sich, daß Drehkommandogrößen, die beim intakten Käfer die Einhaltung von Menotaxiswinkeln von > 30° zur Folge haben, von der halbierten Drehtendenz nicht mehr kompensiert werden können. Die Käfer können dann Dauerrotationen vermeiden, indem sie das Drehkommando soweit abschwächen, daß es von der halbierten Drehtendenz wieder kompensiert wird (Abb. 8). 5. Standardabweichung und mittlere Laufwinkelgröße sind miteinander korreliert. Die Korrelation gilt in gleicher Weise für das intakte und das einseitig antennenamputierte Versuchstier. 6. Nach einer einseitigen Fühlerausschaltung bevorzugen Tenebrio molitor und Scaurus dubius anfänglich Laufrichtungen zur Seite der intakten Antenne hin. Bei allen VT-Arten nimmt die Neigung zum intramodalen Winkeltransponieren nach Fühlerausschaltung sehr stark zu (Abb. 12). 7. Den Grundorientierungen - positive und negative Anemotaxis - liegt, wie auch der Menotaxis, kein tropotaktischer Mechanismus der Fühlerverschaltung zugrunde. Anemotaxis und Anemomenotaxis unterscheiden sich lediglich dadurch, daß bei letzterer ein efferentes Drehkommando die Sollrichtung verstellt. 8. Die experimentellen Befunde werden im Hinblick auf den, der Anemomenotaxis zugrunde liegenden, physiologischen Mechanismus diskutiert: Sie lassen sich alle widerspruchslos mit einem Kompensationsmechanismus vereinen. N2 - 1. The interaction of the paired antennal sense organs perceiving wind directions-probably the Johnston organs-is a synergistic one. The loss of the specific afferent information concerning wind direction of one antenna is followed by a reduction of 50% of the strength of the "turning tendency" (Figs. I-lI). There is no evidence indicating a central compensation of this effect. Three different ways for eliminating one antenna all resulted in the same effect on orientation behaviour. The three ways were total (Fig. 2) or partial (Fig.4) amputation (in which the pedicellus is not injured) or blocking up the pedicellus-flagellum joint by lacquer (Fig. 3). 2. After an adequate recovery period the beetle with only one antenna is able: a) to determine the wind direction, b) to orientate itself unambiguously anemomenotactically (Fig. 1,9) and c) to turn back to its preferred direction over the smaller angle (Fig. 15). 3. The experimental data suggest a sinoidal function between the strength of the turning tendency and the stimulus direction. In evaluating the stimulus direction each antenna most probably measures its deviation from the nearest of the two basic positions, i. e. exactly with or against the wind: The right or left antenna evaluates equal deviations to the right or the left from the negative or positive basic direction with the same strength of the turning tendency (Fig. 13). 4. The afferent turning tendency and the efferent "course order" are turning excitations, which neutralize each other by their antagonistic action, if the set angle is reached. Halving the strength of the turning tendency by elimination of one antenna therefore leads to a doubling of the course order efficiency. The consequence of this and the sinoidal turning tendency pattern is that course orders, which in the intact beetle lead to angles of 30°, can not be compensated by a halved turning tendency. The beetles then can avoid continuous rotations by diminishing the course order to such an extent that it can be compensated by the halved turning tendency (Fig. 8). 5. The standard deviation and the mean running-angles show a correlation. This correlation is the same for the intact beetle and for the beetle with one antenna amputated. 6. After amputation of one antenna in the beginning Tenebrio molitor and Scaurus dubius at first prefer running towards the side of the intact antenna. After amputation of one antenna all tested species showed an increasing tendency to transpose angles intramodally (Fig. 12). 7. In positive and negative anemotaxis as weil as in anemomenotaxis the cooperation of the two antennae is not based on a tropotactic mechanism. Anemomenotaxis and anemotaxis differ only in the lack of an efferent course order in the latter. 8. The experimental findings with respect to the physiological mechanism concerning anemomenotaxis are discussed: They all are consistent with a compensation mechanism. Y1 - 1970 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44507 ER - TY - JOUR A1 - Linsenmair, Karl Eduard A1 - Linsenmair, Christa T1 - Paarbildung und Paarzusammenhalt bei der monogamen Wüstenassel Hemilepistus reaumuri (Crustacea, Isopoda, Oniscoidea) N2 - No abstract available Y1 - 1971 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33937 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Die Bedeutung familienspezifischer "Abzeichen" für den Familienzusammenhalt bei der sozialen Wüstenassel Hemilepistus reaumuri Audouin und Savigny N2 - No abstract available Y1 - 1972 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32663 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Anemomenotactic orientation in beetles and scorpions N2 - Scorpions, living in North African semideserts are - in spite of disrupting experimental interferences - able to maintain a certain direction in their natural environment in the dark on a plane surface. Under comparable laboratory conditions, excluding the possibility of light or gravity orientation, they can orient themselves if a directed air current passes over the "arena." In most cases the scorpions do not run necessarily with or against the wind, but rather maintain constant angles to the air current for anywhere from minutes to many hours. They are running anemomenotactically (ref. 1). Under identical conditions many species of beetles also orient themselves to air currents (refs. 2 to 4). The main problems to be solved in the study of anemomenotactic orientation are: (1) Which physical qualities of the air current have an influence on the anemomenotaxis? (2) With which sense organs do beetles and scorpions perceive wind directions? (3) Which physiological mechanism is the basis of anemomenotactic orientation? (4) What is the biological significance of anemomenotaxis in beetles and scorpions? With respect to these problems, more study has been done on beetles than on scorpions. Therefore, due to lack of space, I shall discuss mainly some of the results obtained in experiments with dung beetles (Geotrupes silvaticus, G. ,Stercorarius, G. armifrons, G. niger, Scarabaeus variolosus) and tenebrionid beetles (Tenebrio molitor, Pimelia grossa, P. tenuicomis, Scaurus dubius). KW - Biologie KW - Skorpion KW - Käfer Y1 - 1972 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78118 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Die Wüstenassel: Sozialverhalten und Lebensraum. N2 - Unter den Krebsen ist als größerer Gruppe allein den Landasseln (Oniscoidea) eine Eroberung des Festlandes gelungen. Ihre Anpassung an das Landleben blieb aber bislang recht mangelhaft, z. B. fehlt ein wirksamer Verdunstungsschutz. Wie zu erwarten, bewohnen daher die meisten Landasselarten feuchte Lebensstätten. Zu den wenigen Ausnahmen zählt die Wüstenassel Hemilepistus reaumuri, die nordafrikanische und kleinasiatische Halbwüsten - stellenweise auch echte Wüstengebiete - besiedelt. Es sind vor allem Verhaltensanpassungen, die den Wüstenasseln in diesen während vieler Monate trockenheißen Extrembiotopen nicht nur ein Oberleben erlauben, sondern sie darüber hinaus noch vielerorts zum erfolgreichsten Faunenelement machen. KW - Verhaltensökologie KW - Extrembiotop KW - individuelles Kennen KW - Monogamie KW - chemische Familienabzeichen Y1 - 1973 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44493 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Some adaptations of the desert woodlouse Hemilepistus reaumuri (Isopoda, Oniscoidea) to desert environment N2 - No abstract available Y1 - 1974 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44483 ER - TY - JOUR A1 - Linsenmair, Karl Eduard T1 - Untersuchungen zur Soziobiologie der Wüstenassel Hemilepistus reaumuri und verwandter Isopodenarten (Isopoda, Oniscoidea): Paarbildung und Evolution der Monogamie T1 - On the sociobiology of the desert isopod Hemilepistus reaumuri, and related species: pairbond and evolution of monogamy N2 - The desert isopod, Hemilepistus reaumuri, extremely common in the arid regions of North Africa and Asia Minor, depends upon the burrows it itself digs for survival during the hotter parts of the year. The dig-ging of new burrows is limited by chmatic conditions to a short period during the spring. Burrows must be constantly defendet - especially against roving eonspecifics. The decisive problem of a connnuous burrow defense is solved through cooperative behavior: the adult woodlice form monogamous pairs whose partners recognize one another individually. Here, questions on the binding of partners, especially the problem of the binding of male to female will be treated upon, along with questions on the evolution of monogamy, wherein the purely maternal families of Porcellio species will be taken as models for intermediäre stages. At first, males olHemilepistus are not permitted to copulate at all; later, for a relatively long period, they are only permitted incomplete copulations, the females alone have control over the partunal ecdysis; they alone determine the moment of final copulations. Under the thermal conditions prevalent during the season of pair formation, a female irreversibly induces a parturial ecdysis only when it has spent a minimum of sev-eral days in her own burrow with a specific male. At higher average temperatures, the number of females which undergo parturial ecdyses without these preconditions increases sharply. Males cannot greatly lnrlu-ence the willingness of females to reproduce with the investment they make in the digging of burrows; the factors deciding this are the male's presence and its role as guard. The first condition necessary for the genesis of monogamy might have been the evolution of a stncüy lo-cation-dependent copulatory behavior, which guaranteed the male exclusive mating pnveliges with the female whose location - the burrow - he acheived control of. A male must, under these conditions, serve guard duty in his own interest, and defend the burrow against competitors (Cf or 2) seeking an already-dug burrow. The decisive advantage for the female in the beginning of the development was probably that she could leave the burrow for extended feeding excursions, whereas alone it would have to either completely forego nourishment or, as is the case with the Porcellio species mentioned, must greatly restrict the spectrum of food that it can use (to that which is to be found only a short distance from the burrow and which can eas-ily be carried inside the burrow). This could be a disadvantage, especially during egg production. Necessary to the male's successful defense of the burrow is that he recognises his female. Studies of the Canary Island Porcellio species have shown over which pathways and under what selection pressures the recopinon of individuals, as is realized mHemilepistus, could have evolved. Females can bind males longer, the longer the period of their attraction is extended: Females olHemilepistus reaumuri have been proven to be al·ready att-ractive before they are ready to copulate and still remain attractive after they have copulated. The conse-quences of the last fact will be discussed. The question of why the males remain with the females after the parturial ecdysis will also be discussed: The great danger to the male's investment resulting from a tooi early abandoning, and the low probability of successfully finding another partner after a later abandomng should prevent a positive balance in the males' cost-effecriveness calculations. Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30854 ER -