TY - THES A1 - Melzer, Juliane T1 - Die Funktion der p21-aktivierten Kinase Mbt in Neuroblasten während der Entwicklung des zentralen Nervensystems von Drosophila melanogaster T1 - The function of the p21-activated kinase Mbt in neuroblasts during the development of the central nervous system of Drosophila melanogaster N2 - p21-aktivierte Kinasen regulieren zahlreiche zelluläre Prozesse, die während der Entwicklung, aber auch beispielsweise bei der Krebsentstehung, von zentraler Bedeutung sind. Mbt, das einzige Typ II PAK-Protein von Drosophila melanogaster, spielt eine Rolle bei der Gehirnentwicklung. Eine Nullmutation von mbt, mbtP1, bildet kleinere Gehirne mit stark verkleinerten Pilzkörpern aus. In dieser Arbeit wurde die Funktion von Mbt in Neuroblasten untersucht. Mbt wurde als Teil des apikalen Proteinkomplexes in Neuroblasten des Zentralhirns nachgewiesen. Die apikale Lokalisation von Mbt ist Zellzyklus-abhängig und wird über Bindung an Cdc42 reguliert. Sie ist essentiell für die Funktion von Mbt in Neuroblasten. Trotz apikaler Mbt-Lokalisation in Neuroblasten zeigte die mbt Nullmutante keine Defekte des basalen Mechanismus der asymmetrischen Zellteilung. Mud zeigte geringfügige Lokalisationsveränderungen, die auf einen möglichen Einfluss von Mbt hinweisen. Obwohl PAKs zentrale Regulatoren des Zytoskeletts sind, zeigte die mbtP1 Mutante keine offensichtlichen Veränderungen des Aktin- und Tubulin-Zytoskeletts. Armadillo, ein Aktin-assoziiertes Mbt-Substrat, zeigte ebenfalls keine Lokalisationsveränderung in Neuroblasten. Mbt steuert jedoch die apikale Anreicherung von Cno, einem weiteren Aktin-assoziierten Protein, in Neuroblasten. Darüber hinaus beeinflusst Mbt die Zellgröße von Neuroblasten, sowie deren Proliferationspotenzial und Überleben. mbtP1 Neuroblasten sind kleiner als wildtypische Neuroblasten, haben ein geringeres Proliferationsvermögen und eine geringere Überlebenswahrscheinlichkeit. Der Zelltod von Neuroblasten ist jedoch ein sekundärer Effekt. Daher kann eine Blockierung von Apoptose den adulten Pilzkörperphänotyp nicht retten. Signalwege, die Zellgröße und Proliferation regulieren, wurden auf eine Beteiligung von Mbt hin analysiert. mbtP1 induzierte leichte Effekte im Insulin-Signalweg und die Delokalisation eines nukleolären Proteins. Eine genetische Interaktion von mbtP1 mit Mutationen in Genen des klassischen MAPK-Signalweges identifzierte mbt als Positivregulator dieses Signalweges im Auge. Ein ähnlicher, schwächerer Effekt wurde auch bzgl. der Proliferation und Größe von Neuroblasten beobachtet. Eine 2D-Gelanalyse von Larvengehirnen identifizierte Bic und Hsp83 als mögliche von Mbt regulierte Proteine. Diese Arbeit charakterisiert eine bisher unbekannte Funktion der p21-aktivierten Kinase Mbt in neuronalen Stammzellen und liefert damit Ansatzpunkte für eine detaillierte Aufklärung der Funktionsmechanismen von Typ II PAKs bei der Regulation von Zellproliferation und Überleben N2 - p21-activated kinases regulate numerous cellular processes central not only during development, but also for example for cancer pathogenesis. Mbt, the only type II PAK in Drosophila, regulates brain development. The mbt null mutant mbtP1 exhibits reduced brain size, with the mushroom bodies showing the most pronounced reduction. In this work, the function of Mbt in neuroblasts was investigated. Mbt was identified as a component of the apical protein complex in central brain neuroblasts. The apical localization of Mbt was cell cycle dependent and regulated by binding to Cdc42, which is essential for Mbt function in neuroblasts. Despite apical localization of Mbt, the mbtP1 null allel showed no defects in the basic mechanism of asymmetric cell division in larval neuroblasts. However, Mud showed minor localization changes indicating a possible influence of Mbt. Even though PAKs are well-known regulators of the cytoskeleton, no obvious changes in the actin and tubulin cytoskeleton were observed in mbtP1 neuroblasts. The localization of Armadillo, an actin-associated Mbt substrate, was also undisturbed throughout the cell cycle. Mbt controls the apical enrichment of Cno, another actin-associated protein. Moreover, Mbt influences neuroblast cell size, proliferation potential and survival. mbtP1 neuroblasts were smaller than wildtype neuroblasts and showed reduced proliferation activity and survival. However, the apoptotic loss of mbtP1 neuroblasts is a secondary effect. Thus, the adult mushroom body phenotype cannot be rescued by blocking apoptosis. Signalling pathways known to regulate growth and proliferation were analyzed with respect to a possible participation of Mbt. mbtP1 induced slight effects in the insulin pathway and strongly influenced the localization of an unknown nucleolar protein. Genetic interactions of mbtP1 with mutations in genes involved in the classical MAPK pathway identified mbt as a positive regulator of the MAPK pathway. A similar effect was also observed with respect to neuroblast proliferation and size. A 2D gel analysis of larval brains identified Bic and Hsp83 as candidate proteins, that might be regulated by Mbt. This work characterizes a novel function of the p21-activated kinase Mbt in neural stem cells. It provides starting points for a detailed analysis of the mechanisms of type II PAK functions in the control of cell growth, proliferation and survival. KW - Taufliege KW - Auge KW - Ontogenie KW - Pilzkörper KW - Molekularbiologie KW - p21-aktivierten Kinase KW - PAK KW - Neuroblast KW - Pilzkörper KW - Drosophila melanogaster KW - p21 activated kinase KW - PAK KW - neuroblast KW - mushroombody KW - Drosophila melanogaster Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85619 ER - TY - THES A1 - Leibold, Christian T1 - Das Cystein String Protein von Drosophila melanogaster - Invivo-Funktionsanalyse verschiedener Proteindomänen am Modellsystem der larvalen neuromuskulären Synapse T1 - The Cysteine string protein of Drosophila melanogaster - Invivo-functional analysis of different protein domains using the larval neuromuscular junction as a model system N2 - Cystein String Proteine (CSPs) wurden als synaptische Vesikelproteine entdeckt. In Drosophila werden sie in den funktionellen Synapsen und sekretorischen Organellen aller Entwicklungsstufen exprimiert. Es konnte gezeigt werden, dass CSPs an der regulierten Neurotransmitterausschüttung beteiligt sind und mehrere, von Insekten bis zum Menschen konservierte Domänen besitzen: eine N-terminale Phosphorylierungsstelle der Protein Kinase A (PKA), eine J-Domäne mit 50%iger Homologie zum bakteriellen Chaperone-Protein DnaJ, eine Linker-Domäne, einen Cystein String aus elf aufeinander folgenden Cysteinen, die durch zwei Cystein-Paare flankiert werden und einen variableren C-Terminus. Es wurden Interaktionen mit den Proteinen HSC70, SGT, Syntaxin, Synaptobrevin/VAMP, verschiedenen Untereinheiten von G-Proteinen, Synaptotagmin, sowie spannungsabhängigen Ca2+-Kanälen beschrieben. csp-Nullmutanten CspU1 von Drosophila melanogaster zeigen einen temperatursensitiven Phänotyp, in dem adulte Fliegen von CspU1 reversibel bei 37°C innerhalb von drei Minuten paralysieren. An der neuromuskulären Synapse dritter Larven von CspU1 kann bei nicht-permissiver Temperatur von 32°C eine reversible Blockade der synaptischen Transmission beobachtet werden. In der vorliegenden Arbeit sollten mit Hilfe des larvalen Nerv-Muskel-Präparats dritter Larven elektrophysiologische Untersuchungen an verschiedenen csp-Mutanten durchgeführt werden. Hierdurch sollte die Bedeutung der einzelnen Domänen für die Funktion von csp weiter aufgeklärt werden. Am larvalen Nerv-Muskel-Präparat von Drosophila ist eine Arbeit auf Einzel-Zell-Niveau möglich. Die Segmentierung, die wiederkehrende Anordnung von Muskeln und innervierenden Motoneuronen, sowie das Vorkommen vieler auch im Gehirn von Drosophila lokalisierter synaptischer Proteine machen die larvale neuromuskuläre Synapse für die vorliegenden Fragestellungen. Wie in vielen anderen Arbeiten, wurden elektrophysiologische Messungen an dem Longitudinalmuskel 6 durchgeführt. Alle Messungen evozierter Muskelpotentiale (EJP) wurden, wenn nicht anders erwähnt, mit 0,2Hz Stimulusfrequenz durchgeführt. Die Reiz-Intensität wurde an jedes Präparat individuell angepasst und betrug das 2 ½ -fache des Initial-Schwellenwertes, bei dem ein vollständiges EJP ausgelöst wurde. Zunächst konnte der in der Literatur beschriebene larvale Block der synaptischen Transmitterausschüttung bei erhöhter Temperatur nicht reproduziert, jedoch durch Rückkreuzungen der Nullmutante CspU1 gegen den Wildtyp w1118 wiederhergestellt werden. Das „Rescue“-Konstrukt scDNA1, welches die Grundlage für alle weiteren mutierten Formen von csp darstellt, rettete den larvalen temperatursensitiven Phänotyp im csp-Nullmutantenhintergrund von CspU1 vollständig. Larvale Mutanten der Linie SSP, bei denen der Cystein String durch einen Serin String ausgetauscht worden war (Serine-string protein), zeigten in Übereinstimmung mit den adulten Fliegen den bekannten temperatursensitiven Phänotyp. Larvale Mutanten der Linie CLP (Cysteine-less protein) zeigten im Gegensatz zu adulten Tieren dieser Linie keinen temperatursensitiven Phänotyp, sondern ein wildtypisches Verhalten. Für die Mutante L∆8, die im Nullmutantenhintergrund von CspU1 roc ein in der Linker-Domäne um acht Aminosäuren verkürztes CSP-Protein exprimiert, wurden verschiedene elektrophysiologische Phänotypen beobachtet: Larven der X-chromosomalen Linie zeigten den bekannten temperaturabhängigen Block der synaptischen Transmission. Larven der Insertionslinie für das 3. Chromosom zeigten keine Temperatursensitivität, sondern wildtypisches Verhalten. In immunhistochemischen Untersuchungen konnte für die X-chromosomale Linie eine deutlich schwächere Expression des L∆8-Proteins beobachtet werden. Larven der Linie C∆27, die ein im C-terminalen Bereich von CSP um 27 Aminosäuren verkürztes CSP-Protein exprimieren, im Nullmutantenhintergrund CspU1 roc konnten anhand des Phänotyps in zwei Gruppen unterteilt werden. Unabhängig vom Insertionsort zeigte eine Gruppe den bekannten larvalen temperatursensitiven Phänotyp. Die zweite Gruppe zeigte auch bei erhöhter Temperatur wildtypisches Verhalten. Im zweiten Teil der Arbeit wurde versucht, eine neue Deletionsmutante für csp durch Remobilisierung einer P-Insertion (P#1617, flybase, Bloomington) im ersten Exon zu erzeugen, da in der Nullmutante CspU1 möglicherweise auch benachbarte Gene betroffen sind. Nach Überprüfung der erzeugten Mutanten durch Western und Southern Blot, immunhistochemische Experimente und elektrophysiologische Untersuchungen am Nerv-Muskel-Präparat 3. Larven konnte keine Deletionsmutante mit temperaturabhängigem Phänotyp isoliert werden, die ausschließlich csp betraf. N2 - Cysteine string proteins (CSPs) were detected as synaptic vesicle proteins. In Drosophila they are expressed in functional synapses and secretory organelles of all developmental stages. CSPs were shown to be involved in regulated neurotransmitter release and contain several domains, which are conserved from insects to man: N-terminal phosphorylation site for protein kinase A (PKA), “J”-domain with 50% homology to a bacterial chaperone-protein DnaJ, “linker”-domain, cysteine string consisting of eleven following cysteines, flanked by two pairs of cysteines and the more variable C-terminus. Interactions with the following proteins have been described: HSC70, SGT, Syntaxin, Synaptobrevin/VAMP, several subunits of G-proteins, Synaptotagmin, and voltage-dependent Ca2+-channels. Csp-null mutants (CspU1) of Drosophila melanogaster exhibit a temperature sensitive phenotype. Adult flies of CspU1 paralyse reversibly at 37°C within three minutes. At the neuromuscular junction of 3rd instar larvae of CspU1 a reversible blockade of synaptic transmission can be observed at non-permissive temperature of 32°C. Electrophysiological studies at the larval nerve-muscle-preparation of 3rd instar larvae of different csp-mutants were performed in this Ph.D. thesis in order to investigate the relevance of the different CSP domains for the function of csp. Using the larval nerve-muscle-preparation of Drosophila studies at single-cell-levels are possible. The clear segmentation, iterated position of the body wall muscles and localization of many proteins, which are also present in the brain, account for the larval neuromuscular junction as an ideal model-system for the study of synaptic transmission. As described in previous work, electrophysiological studies have been performed at longitudinal muscle 6. All recordings of evoked junction potentials (EJP) were performed with 0.2Hz stimulus frequency (if not described in a different way). Stimulus intensity was adjusted 2 ½ times to initial threshold for a complete EJP, individually for each preparation. In the beginning larval blockade of synaptic transmitter release as described in literature could not be reproduced. Backcrossing for 12 generations of CspU1 with w1118 could restore the temperature-dependent blockade of synaptic transmission in 3rd instar larvae. “Rescue”-construct scDNA1, which was further used as template for all mutated forms of CSP used in this study, completely rescued the larval temperature-sensitive phenotype in csp-null mutant background. Larval mutants of SSP (serine-string protein, serine-string replaces cysteine-string) showed the temperature-sensitive phenotype, as known from their adult flies. In contrast to their adult flies larval mutants of CLP (cysteine-less protein) showed no temperature-sensitive phenotype, but wild type-like behaviour. For the mutant L∆8 (deletion of eight conserved amino acids of linker domain) in null mutant background of CspU1 roc two different phenotypes could be observed: The X-chromosomal strain showed the known temperature-dependent blockade of synaptic transmission. In contrast, 3rd instar larvae of the strain with insertion on the 3rd chromosome showed no temperature sensitivity, but wild type-like behaviour. In immunhistochemical staining a weaker L∆8-protein expression could be observed for the X-chromosomal line. Due to their different phenotype and independent of insertion locus, larval C∆27-mutants could be divided into two groups. One group revealed the known larval temperature-sensitive phenotype. The second group showed also at elevated temperature wild type-like behaviour. In the second part of the current work a new mutant for csp should be created because of the possibility that additional genes are influenced in the null-mutant CspU1. Therefore a deletion in the csp-Locus should be created in a jump-out mutagenesis. In the strain P1617 (flybaase, Bloomington) the PZ-element, which is located in the non-translated region of the 1st exon of csp, was remobilized. Characterization of the jump-out mutants by western and southern blot analysis, immunhistochemical experiments and electrophysiological studies at nerve-muscle-preparations of 3rd instar larvae failed to isolate a jump-out mutant with described temperature-dependent phenotype and affection only of csp. KW - Taufliege KW - Cysteinderivate KW - Temperaturabhängigkeit KW - Drosophila KW - CSP KW - Synapse KW - temperatursensitiv KW - Drosophila KW - CSP KW - Synapse KW - temperature sensitive Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7481 ER - TY - THES A1 - Kroiß, Matthias T1 - Reinigung und funktionelle Charakterisierung des SMN-Komplexes von Drosophila melanogaster T1 - Purification and functional characterization of the SMN-complex in Drosophila melanogaster N2 - Die Zusammenlageurng spleißosomaler UsnRNPs erfolgt beim Menschen und anderen Vertebraten durch den makromolekularen SMN-Komplex. Dieser besteht aus insgesamt neun Proteinen, genannt SMN und Gemin2-8. In dieser Arbeit wurde die Evolution dieser molekularen Maschine untersucht. Dazu wurden die Genome mehrerer Modellorganismen bioinformatisch nach Orthologen von SMN und seinen Komplexpartnern durchsucht. Es zeigte sich, dass SMN und Gemin2 die Kernkomponenten des Komplexes darstellen. Von diesen ausgehend kamen weitere Komponenten im Laufe der Evolution hinzu und zwar blockweise, wie es ihrer physischen Assoziation im humanen Komplex entspricht. Um diese Befunde einer biochemischen Überprüfung zu unterziehen, wurde ein neues Affinitätsepitop, das TagIt-Epitop, entwickelt. Nach stabiler Transfektion von Drosophila Schneider2-Zellen konnte das Fusionsprotein effizient exprimiert und der Drosophila-SMN-Komplex nativ aufgereinigt werden. Die massenspektrometrische Untersuchung des Komplexes zeigte, dass SMN und Gemin2 seine einzigen stöchiometrischen Komponenten sind. Dies ist in eindrucksvoller Übereinstimmung mit den bioinformatischen Daten. Der aufgereinigte Komplex lagert in vitro Sm-Proteine mit der entsprechenden UsnRNA zum UsnRNP-core-Komplex zusammen. Diese Ergebnisse ließen sich nach rekombinanter Rekonstitution des SMN/Gemin2-Dimers rekapitulieren. Dabei zeigte sich, dass der SMN-Komplex die unkoordinierte Bindung der Sm-Proteine an „falsche“ RNAs verhindert. Folglich genügen SMN und Gemin2 zur Zusammenlagerung des Sm-core-Komplexes, während die übrigen Gemine weitere Funktionen im Kontext der UsnRNP-Biogenese spielen könnten. Aus evolutionsbiologischer Sichtweise ist der SMN-Komplex aus Drosophila ein eindrückliches Beispiel, wie die Vereinfachung eines biochemischen Prozesses zur Kompaktierung des Genoms beitragen kann. N2 - In vertebrates, assembly of spliceosomal UsnRNPs is mediated by the SMN-complex, a macromolecular entity composed of the proteins SMN and Gemins 2-8. In this study, the evolution of this machinery has been investigated using complete genome assemblies of multiple model organisms. The SMN-complex has gained complexity in evolution by a block-wise addition of Gemins onto an ancestral core complex composed of SMN and Gemin2. In contrast to this overall evolutionary trend to higher complexity in metazoans, orthologs of most Gemins are missing in dipterans. In order to challenge these findings by biochemical means, I have developed a novel affinity epitope suitable for use in transfected Drosophila Schneider2-cells. Using protein mass spectrometry, the composition of the Drosophila SMN-complex has been determined. In accordance with the bioinformatic data, it consists of the core components SMN and Gemin2 only. Purified complex mediates assembly of UsnRNP core complexes in a manner very similar to its vertebrate counterpart. These results were recapitulated after recombinant reconstitution of the dSMN/dGemin2-dimer, demonstrating that the Drosophila complex also prevents mis-assembly of Smproteins onto non-target RNAs. Hence, only a minority of Gemins is required for the assembly reaction per se, whereas others may serve additional functions in the context of UsnRNP biogenesis. From a more general point of view, the evolution of the SMN-complex is an interesting example of how the simplification of a biochemical process contributes to genome compaction. KW - Taufliege KW - Epitop KW - Antikörper KW - Biochemische Evolution KW - SMN-Komplex KW - Spinale Muskelatrophie KW - Affinitätsreinigung KW - Epitop-Tag KW - SMN-complex KW - spinal muscular atrophy KW - affinity purification KW - epitope tagging Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28840 ER - TY - THES A1 - Kibler, Eike Mathias U. T1 - Casein-Kinase-2-Beta und neuronale Entwicklungsprozesse T1 - Casein kinase 2ß and neural development - examinations employing the neurogenetic model organism Drosophila melanogaster N2 - Die Pilzkörper von Drosophila melanogaster stellen eine für die Lebensfähigkeit dieses Organismus entbehrliche Gehirnstruktur dar. Die Entwicklungsprozesse, die der Bildung dieser zentralnervösen Struktur zugrunde liegen, sind gut erforscht. Die neuronalen Stammzellen, die für die Bildung dieser Gehirnstruktur verantwortlich sind, sind identifiziert und experimentell gut zugänglich. Daher bietet sich die Drosophila-Pilzkörperentwicklung als neurogenetisches Modellsystem an, grundlegende Mechanismen der Gehirnentwicklung durch die Untersuchung von Pilzkörperstrukturmutanten zu erforschen. In dieser Arbeit wurde mushroom bodies undersized P1 (mbuP1) als eine durch Transposon- Insertion in den Casein-Kinase-2ß-Genlokus verursachte, hypomorphe Mutation identifiziert, die zu einer starken Verringerung der Anzahl der die Pilzkörper bildenden intrinsischen Neurone führt. Eine Reversion des mbuP1-Pilzkörperphänotyps konnte unter anderem durch die Expression von Casein-Kinase-2ß-(CK2ß)-Transgenen im mbuP1-Hintergrund erzielt werden. Durch Rekombination wurde ein fertiler mbuP1-Stamm etabliert, der nun die Untersuchung der zellulären mbuP1-Defekte ermöglicht. Eine partielle, letale Deletion der CK2ß-Transkriptionseinheit wurde erzeugt. Die Letalität dieser Deletion konnte sowohl durch ein genomisches CK2ß-Transgen als auch durch die ubiquitäre Expression einer CK2ß-cDNA gerettet, und hierdurch die essentielle Funktion der CK2ß-Transkriptionseinheit in Drosophila belegt werden. Durch die ubiquitäre Expression von in vitro-mutagenisierten CK2ß-cDNAs im CK2ß-Letalhintergrund wurde gezeigt, daß die Phosphorylierung der regulatorischen CK2ß-Untereinheit durch die katalytisch aktive CK2α-Untereinheit kein lebensnotwendiger Prozess ist. Gleichartige Experimente wurden zur Untersuchung der funktionellen Bedeutung eines CK2ß-Zinkfingermotivs und eines CK2ß-Destruction-Box-Motivs durchgeführt. Diese legen nahe, daß das Zinkfingermotiv im Gegensatz zum Destruction-Box-Motiv für die in vivo-Funktion der CK2ß-Untereinheit essentiell ist. Expression der in vitro-mutagenisierten CK2ß-cDNAs im mbuP1-Hintergrund werden die funktionelle Bedeutung der ausgetauschten Aminosäuren für die Pilzkörperentwicklung zeigen. Eine letale genetische Interaktion von mbuP1 mit einer Mutation des Drosophila-MAP-Kinase-Gens rolled (rlSem) und eine lebensfähige Interaktion von mbuP1 mit einer Mutation des Drosophila-S6-Kinase-p90rsk-Gens ignorant (ignP1), bei der Flügel- und Augenent-wicklungsdefekte zu beobachten sind, wurden gefunden. Es wurde zudem gezeigt, daß rlSem als Suppressor des Pilzkörperphänotyps eines schwächeren mbu-Allels wirkt. Hierdurch konnte eine Beteiligung der Casein-Kinase-2 an MAP-Kinase-Signalübertragungswegen wahrscheinlich gemacht werden. N2 - Mushroom bodies are dispensable for the developing and adult Drosophila fly. The developmental processes underlying mushroom body formation are well studied, the neural stem cells responsable for their development are identified and experimentally well accessable. Therefore Drosophila mushroom body development can be used as a powerful neurogenetic model system to find out about fundamental mechanisms underlying brain development by studying mutant flies showing aberrant mushroom body development. In the course of this work, mushroom bodies undersized P1 (mbuP1) was identified as a hypomorphic casein kinase 2ß-allele (CK2ß) caused by the insertion of transposable elements in the casein kinase 2ß gene locus. The mbuP1-mutation leads to a drastic reduction of the number of intrinsic neurons forming the adult mushroom body. Expression of transgenic CK2ß in a mbuP1-mutant background led to a reversion of the mbuP1-associated mushroom body phenotype. Fertility of mbuP1-flies could be partially restored by recombining the original mbuP1{P3843/2}-chromosome with a w1118-chromosome. This will allow future studies to identify the cellular defects caused by mbuP1. A partial deletion of the CK2ß gene causes lethality which could be rescued by either a genomic CK2ß-transgene or by ubiquitous expression of a CK2ß-cDNA. Therefore, CK2ß has been shown to be an essential gene in Drosophila. By ubiquitous expression of in vitro mutagenized CK2ß-cDNAs in a CK2ß-lethal background, a non-essential role of phosphorylation of the regulatory CK2ß-subunit by the catalytically active CK2α-subunit could be shown. Similar experiments were performed to examine the role of a CK2ß-zincfinger motif and a CK2ß-destruction-box motif. The obtained results suggest a non-essential in vivo function for the destruction-box motif and an essential in vivo function for the zincfinger-motif. Expression of the in vitro mutagenized CK2ß-cDNAs in a mbuP1-background will reveal the functional significance of the substituted amino acids for mushroom body development. Performed genetic interaction studies showed a lethal interaction of mbuP1 with a mutation in the Drosophila-MAP-kinase gene rolled (rlSem) and a viable genetic interaction with a mutation in the Drosophila-S6-kinase-p90rsk gene ignorant (ignP1) which revealed defects in wing formation and eye development. It also could be shown that rlSem acts as a suppressor of the mushroom body phenotype associated with a weaker mbu-allele. These observations point towards a role of casein kinase 2 in MAP-kinase signalling. KW - Taufliege KW - Pilzkörper KW - Ontogenie KW - Embryonalentwicklung KW - Proteinkinase CK2 KW - Drosophila KW - CK2 KW - Pilzkörper KW - CK2ß KW - Entwicklung KW - Drosophila KW - CK2 KW - mushroom body KW - CK2ß KW - development Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4202 ER - TY - THES A1 - Jauch, Mandy T1 - Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen T1 - The serine/arginine protein kinase 79D (SRPK79D) of Drosophila melanogaster and its role in the formation of active zones of synapses N2 - Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche – Aktive Zonen (AZs) genannt –, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie für den Prozess der Neurotransmitter-Ausschüttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein für die T-förmigen Bänder („T-Bars“) der präsynaptischen Aktiven Zonen. BRP ist notwendig für eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeinträchtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von Säugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolutionär hoch konservierte zweigeteilte Kinasedomäne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolutionär hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren gehören und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) führt zu auffälligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter Bänder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gewährleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antikörpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier möglichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Phänotyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer Überexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In Köpfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich verändert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der präsynaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf verändertes Spleißen der entsprechenden prä-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente für die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugfähigkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunfähigen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelfärbungen mit Antikörpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neurohämal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Ausschüttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose möglicherweise eine Rolle bei der Ausschüttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei Färbung gegen BRP weist keine deutlichen Veränderungen zum Wildtyp auf. N2 - Synapses as sites of communication between neurons contain specialized regions termed active zones (AZs) which are composed of a highly complex network of proteins comprising the exocytotic machinery for neurotransmitter release and vesicle recycling. In Drosophila the Bruchpilot (BRP) protein is an important building block of the T-shaped ribbons („T-bars“) at presynaptic active zones. By screening for mutations affecting the tissue distribution of Bruchpilot, a P-transposon insertion in the Srpk gene at the position 79D has been identified (Srpk79D, CG11489). This gene codes for a kinase which shows high homology to the mammalian family of serine/arginine protein kinases (SRPKs). Members of this family have an evolutionarily highly conserved bipartite kinase domain in common which is separated by a non-conserved spacer sequence. SRPKs phosphorylate SR proteins, an evolutionarily highly conserved family of serine/arginine-rich splicing factors that control the processes of constitutive and alternative splicing. Mutation of the Srpk79D gene caused by the P-element insertion (Srpk79DP1) or by a deletion in the gene (Srpk79DVN null mutant) leads to conspicuous accumulations of BRP in larval and adult axons. This thesis shows that these BRP accumulations at the ultrastructural level correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Using immuno electron microscopy, these accumulation were characterized as BRP immuno-reactive structures. To prevent the assembly of BRP containing agglomerates in axons and to maintain intact brain function the SRPK79D seems to be expressed only at low levels because the endogenous kinase was not detectable using various antibodies. It was shown in other thesis that the expression of the PB, PC or PF isoform of the four possible SRPK79D variants resulting from two alternative transcription start sites in exon one and three, respectively, and alternative splicing of exon seven is sufficient to rescue the phenotype of BRP accumulation in the Srpk79DVN null-mutant background. Cloning of the cDNA for the SRPK79D-PE isoform into a UAS vector has been started in order to characterize the ability of this isoform to rescue the BRP-phenotype. It seems as if the formation of axonal BRP agglomerates is not due to BRP overexpression in the affected neurons as was shown by reduced expression of the BRP protein in the Srpk79DVN null-mutant background which still leads to BRP agglomerates. The overall amount of Bruchpilot protein in adult heads of the Srpk79DVN null mutant is not clearly altered compared to wild type. No clear alteration was observed between Srpk79DVN null-mutant and wild-type flies comparing the expression of different presynaptic proteins like Synapsin, Synapse-associated protein of 47 kDa (Sap47), and Cysteine string protein (CSP). The experiment does not point towards altered splicing of the corresponding pre-mRNAs. Each of the seven known SR proteins of Drosophila is a potential target protein of the SRPK79D. Pan-neuronal knock-down experiments for the three SR proteins SC35, X16/9G8, and B52/SRp55 investigated in this thesis by RNA interference did not show an effect on the tissue distribution of BRP. It was shown that the Srpk79DVN null mutation has no additive effect on the knock-down of the BRP protein regarding the flight ability of the respective animals because the double mutants showed similar values of non-flyers as each of the single mutants with either null mutation of the Srpk79D gene or knock-down of BRP. Presumably, Bruchpilot and the SR protein kinase 79D are part of the same signaling pathway. Performing double fluorescence stainings with antibodies against BRP and the CAPA peptides it was shown that Bruchpilot is also present in the median and transverse nerve system (MeN/TVN) of Drosophila containing the neurohaemal organs. These organs are responsible for storage and release of neuropeptide hormones. In contrast to the larval segmental and intersegmental nerves of the Srpk79DVN null mutant which show characteristic BRP agglomerates, mutation of the Srpk79D gene does not affect the distribution of BRP in the axons of the Va neurons which form the MeN/TVN system. The staining pattern of BRP in these nerves does not show clear alterations in the Srpk79DVN null mutant compared to wild type. The finding that BRP is present in the median and transverse nerve system opens the field for speculation of a role for the Bruchpilot protein not only in the neurotransmitter exocytosis but also in the release of neuropeptides. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - Synapse KW - Genexpression KW - Aktive Zone KW - Serin/Arginin Proteinkinase KW - SRPK KW - Bruchpilot KW - Drosophila KW - Synapse KW - Motorische Endplatte KW - Nervenzelle KW - Neurotransmitter KW - active zone KW - serine/arginine protein kinase KW - SRPK KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53974 ER - TY - THES A1 - Huber, Saskia T1 - Charakterisierung von SAP47 in Drosophila melanogaster und der dazugehörigen Proteinfamilie T1 - Characterization of SAP47 in Drosophila melanogaster and its protein familiy N2 - In der Arbeit wird ein synapsenassoziiertes Protein, das SAP47 und seine zugehörige Proteinfamilie charakterisiert. N2 - A synapse associated protein, SAP47, and its protein family is characterized. KW - Taufliege KW - Synapse KW - Proteine KW - Molekularbiologie KW - Drosophila KW - Synapse KW - SAP47 KW - BSD KW - Drosophila KW - synapse KW - SAP47 KW - BSD Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7777 ER - TY - THES A1 - Hampel, Stefanie T1 - Funktionelle Analyse des Einflusses von putativen T-Beta-H-positiven Neuronen auf das ethanolinduzierte Verhalten von Drosophila melanogaster T1 - Functional analysis of putative TbH neurons involved in ethanol induced behavior of Drosophila melanogaster N2 - Es sollten neuronale Netzwerke in Drosophila melanogaster identifiziert werden, die in die Entwicklung von ethanolinduziertem Verhalten involviert sind. Mittels der Tyramin-beta-Hydroxylase (TbH) wird der letzte Schritt der Biosynthese von Oktopamin aus Tyramin gewährleistet. TbHM18 Mutanten entwickeln eine reduzierte Ethanoltoleranz und haben keine nachweisbaren Oktopamin Konzentrationen (MONASTIRIOTI et al. 1996; SCHOLZ et al. 2000). Die molekulargenetische Ursache dieser Mutante wurde näher untersucht. Wahrscheinlich ist die Deletion von einem Teil des Intron 1, des Exon 2 und einem Teil des Intron 2 des TbH-Gens verantwortlich für den Verlust der Tyramin-beta-Hydroxylase. Die Deletion der kodierenden Sequenz führt jedoch nicht zu einem Leserasterschub in der Aminosäuresequenz. Demzufolge könnte ein verkürztes Protein hergestellt werden. Ferner gibt es zwei Transkripte des TbH-Gens, woraus eventuell zwei Proteine exprimiert werden könnten. Ein Protein wäre die Tyramin-beta-Hydroxylase und das andere könnte eine Dopamin-beta-Hydroxylase sein. Um möglicherweise spezifische putative Subsets von TH-positiven Neuronen zu markieren, wurden verschiedene GAL4-Treiberlinien mit Hilfe unterschiedlicher Fragmente der Promoterregion des TbH-Gens hergestellt. Mittels des GAL4/UAS Systems konnte die Neurotransmitterausschüttung in putativen TbH-positiven Neuronen der TbH-GAL4-Linien inhibiert werden. Auf diese Weise sollte die Funktion der putativen TbH-positiven Neurone während der Entwicklung von Ethanolsensitivität und Toleranz untersucht werden. Das Transgen Tetanustoxin wurde mit der 1.3TbH-GAL4 Treiberlinie in einem bestimmten Set von Neuronen exprimiert. Die Inhibition der Synaptobrevin-abhängigen Neurotransmission in den 1.3TH-GAL4-positiven Neuronen beeinflusst nicht das ethanolinduzierte Verhalten. Hingegen das Ausschalten der Erregbarkeit der Zellen mit Hilfe eines UAS-Kir2.1 Transgens resultiert in erhöhter Resistenz gegenüber Ethanol. Das heißt, dass Synaptobrevin-unabhängige zelluläre Mechanismen der Zellen notwendig sind, um ethanolinduziertes Verhalten zu regulieren. Die 1.3TbH-GAL4-Linie exprimiert in einem sehr spezifischen Subset von Neuronen GAL4, bzw. Effektoren. Insgesamt werden ≈ 10 Zellen detektiert. Davon liegen die Somata zweier Neurone caudal und projizieren in die Region der ersten und vierten Bande des Fächerförmigen Körpers. Weitere kleine Ansammlungen von acht Zellen können um den Ösophagus und im Bereich des Subösophagialganglion verzeichnet werden. Die mit GFP markierten Neurone exprimieren wahrscheinlich kein Oktopamin. Ferner resultierte die Inhibition der synaptischen Transmission von 6.2TbH-GAL4-positiven Neuronen, mit Hilfe von Tetanustoxin, in einer erhöhten Ethanolsensitivität. Ebenfalls zu einer ethanolinduzierten Verhaltensänderung führt die Inaktivierung der 6.2TbH-GAL4 Zellen mittels eines UAS-Kir2.1 Transgens. Dabei entwickeln die Fliegen eine erhöhte Ethanolresistenz. Somit wäre möglich, dass die Entwicklung von Ethanolsensitivität und Resistenz über verschiedene zelluläre Mechanismen reguliert werden. Die 6.2TbH-GAL4-Linie ermöglicht die Transgen-Expression in 65-70 Neuronen. Diese innerverieren u.a. das Subösophagialganglion, den Ösophagus, den Ellipsoid Körper, das laterale und das dorso-laterale Protocerebrum. Fünf der Neurone, die sich durch die 6.2TbH-GAL4 Treiberlinie markieren lassen, exprimieren Oktopamin. Dazu gehört ein VUM-Neuron und vier große caudale Zellen. Eine weitere putativ oktopaminerge GAL4-Linie Tdc2-GAL4 wurde mit der UAS-Kir2.1 Effektorlinie gekreuzt und die Nachkommen im Inebriometer gemessen. Bei Inaktivierung der Erregbarkeit der Tdc2-positiven Neurone resultiert dies in einer erhöhten Ethanolsensitivität, hingegen in keiner Veränderung der Toleranz. Die reduzierten Levels an Oktopamin spielen dabei wahrscheinlich eine Rolle. Hingegen regulieren eventuelle neurosekretorische Zellen über andere Mechanismen die Ethanolresistenz, wie die 6.2TbH-GAL4, UAS-Kir2.1 Fliegen zeigen. Es konnte gezeigt werden, dass unterschiedliche Neuronencluster für verschiedene ethanolinduzierte Verhaltensantworten verantwortlich sind. Da wahrscheinlich neurosekretorische Zellen des PI die Ethanolresistenz beeinflussen (RODAN et al. 2002), hingegen den Zentralkomplex-innervierende Zellen eher für die Entwicklung von Ethanolsensitivität und Toleranz notwendig sind (URIZAR et al. 2007). N2 - We wanted to identify neuronal networks in Drosophila melanogaster that are involved in the development of ethanol sensitivity and/or tolerance. The tyramine-beta-hydroxylase (TbH) catalyzes the last step in the biosynthesis of tyramine into octopamine. The TbHM18 mutant develdops a reduced ethanol tolerance, because they have no concentrations of octopamine in their bodies (MONASTIRIOTI et al. 1996; SCHOLZ et al. 2000). We investigated the molecular reason of the mutant. Probably the deletion of a part of intron 1, exon 2 and a part of intron 2 of the TbH gene is responsible for the loss of the tyramine-beta-hydroxylase. The deletion of the coding sequence does not result in a frame shift of the aminoacid sequence and because of this a truncated protein could be expressed. Further there are two transcripts of the TbH gene, from that two proteins could be expressed. One protein could be the tyramine-beta-hydroxylase and the other, a dopamine-beta-hydroxylase. For possibly marking specific putative subsets of TbH-positive neurons, different GAL4 driver lines were generated with different promoter fragments out of the TbH gene. Via the GAL4/UAS system the neurotransmitter release could be inhibited in putative TbH-positive neurons. In this manner the function of the putative TbH-positive neurons should be analyzed during the development of ethanol sensitivity and tolerance. The transgene tetanustoxin was expressed in a specific subset of 1.3TbH-GAL4 positive neurons. The ethanol induced behaviour is not influenced by inhibition of synaptobrevin-dependent neurotransmission in 1.3TbH-GAL4 positive neurons. Blocking the excitability of cells by using a UAS-Kir2.1 transgene results in increased ethanol resistence. That means that synaptobrevin-independent cellular mechanisms of cells are necessary for regulating ethanol induced behaviour. The 1.3TbH-GAL4 line expresses GAL4 in a very specific subset of neurons as well as effectors. All in all about 10 cells can be detected. Two somata of these cells are located caudal which project to the first and fourth layer of the fanshaped body. Eight more cells are localized frontal around the esophagus and in the subesophagial region. Probably the GFP-marked neurons do not express octopamine. Furthermore the inhibition of synaptic transmission with tetanustoxin of 6.2TbH-GAL4 positive neurons results in an increased ethanol sensitivity. Also the inactivation of 6.2TbH-GAL4 cells with an UAS-Kir2.1 transgene leads to an ethanol-induced change of behaviour and there the flies develop an increased ethanol resistence. It could be possible that the development of ethanol sensitivity and tolerance is regulated by different cellular mechanisms. The 6.2TbH-GAL4 line enables transgene expression in 65-70 neurons. These are innervating for example the SOG, esophagus, ellipsoid body, lateral and the dorsolateral protocerebrum. Five of these 6.2TbH-GAL4 driven neurons express octopamine, which include four big caudal cells and probably one VUM-neuron. An additional putative octopaminergic GAL4-line, the Tdc2-GAL4 line was crossed to the UAS-Kir2.1 effector line and the offspring measured for ethanol sensitivity and tolerance in the inebriometer. Inactivation of the excitability of the Tdc2-positive neurons results in an increased ethanol sensitivity, but on the other hand to no change of ethanol tolerance. The reduced octopamine levels do probably play a role in this. However the potential neurosecretory cells regulate the ethanol resistence by different mechanisms, like 6.2TbH-GAL4, UAS-Kir2.1 flies show. The inhibition of neurotransmission with three other TbH-GAL4 lines (600TbH-GAL4, 4.6TbH-GAL4, 6.6TbH-GAL4) show no divergence of ethanol-induced behaviour compared to wildtype flies. There, the specific expression pattern of 600TbH-GAL4 line includes five cells in the pars intercerebralis and a brain surrounding glia layer. Further the 6.6TbH-GAL4 line enables expression of effector genes in eight cells and in a surrounding layer of the brain as well. The expression of 600TbH-GAL4 line and 6.6TbH-GAL4 line do not overlap with the octopaminergic expression pattern of our colocalization studies. The expression of UAS- effector genes driven by 4.6TbH-GAL4 line can be provided in approxymatly 67 neurons of the adult brain. With this GAL4-line the structures of the ellipsoid body, antennal lobes, pars intercerebralis and a big commissur are innervated. Seven cells can be detected caudal, but the region that they are projecting to is unknown. It could be shown that different clusters of neurons are responsible for several ethanol-induced behavioural responses. Because neurosecretory cells of the pars intercerebralis seem to influence the ethanol resistance (RODAN et al. 2002), but central complex- innervating cells are necessary rather for the development of ethanol sensitivity and tolerance (URIZAR et al. 2007). KW - Taufliege KW - TbH KW - Drosophila melanogaster KW - Ethanol KW - TbH KW - Drosophila melanogaster KW - Ethanol Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25600 ER - TY - THES A1 - Gruber, Franz Andreas T1 - Untersuchung zur Regulation der Expression des zuckerkonditionierten Verhaltens bei Drosophila melanogaster T1 - Analysing the regulation of the expression of sugar-conditioned behaviour in Drosophila melanogaster N2 - In dieser Doktorarbeit habe ich die Regulation der Expression des zuckerbelohnten Verhaltens durch den Fütterungszustand bei Drosophila melanogaster untersucht. Die Fliegen können während einer Trainingsphase mit Hilfe einer Zuckerbelohnung auf einen bestimmten Duft konditioniert werden. Nach dem Training können die Fliegen dann auf das olfaktorische Gedächtnis getestet werden. Die Bereitschaft das zuckerkonditionierte Gedächtnis im Test zu zeigen wird vom Fütterungszustand kontrolliert, wie ich in Übereinstimmung mit den Ergebnissen früherer Arbeiten demonstrierte (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008). Nur nicht gefütterte Fliegen exprimieren das Gedächtnis, während Fütterungen bis kurz vor dem Test eine reversibel supprimierende Wirkung haben. Einen ähnlichen regulatorischen Einfluss übt der Futterentzug auch auf die Expression anderer futterbezogener Verhaltensweisen, wie z.B. die naive Zuckerpräferenz, aus. Nachdem ich den drastischen Einfluss des Fütterungszustands auf die Ausprägung des zuckerkonditionierten Verhaltens gezeigt bzw. bestätigt hatte, habe ich nach verhaltensregulierenden Faktoren gesucht, die bei einer Fütterung die Gedächtnisexpression unterdrücken. Als mögliche Kandidaten untersuchte ich Parameter, die zum Teil bereits bei verschiedenen futterbezogenen Verhaltensweisen unterschiedlicher Tierarten als „Sättigungssignale“ identifiziert worden waren (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). Dabei stellte sich heraus, dass weder die „ernährende“ Eigenschaft des Futters, noch ein durch Futteraufnahme bedingter Anstieg der internen Glukosekonzentration für die Suppression des zuckerkonditionierten Gedächtnisses notwendig sind. Die Unterdrückung der Gedächtnisexpression kann auch nicht durch Unterschiede in den aufgenommenen Futtermengen, die als verhaltensinhibitorische Dehnungssignale des Verdauungstrakts wirken könnten, oder mit der Stärke des süßen Geschmacks erklärt werden. Die Suppression des zuckerbelohnten Verhaltens folgte den Konzentrationen der gefütterten Substanzen und war unabhängig von deren chemischen Spezifität. Deshalb wird die Osmolarität des aufgenommenen Futters als ein entscheidender Faktor für die Unterdrückung der zuckerkonditionierten Gedächtnisexpression angenommen. Weil nur inkorporierte Substanzen einen Unterdrückungseffekt hatten, wird ein osmolaritätsdetektierender Mechanismus im Körper 67 postuliert, wahrscheinlich im Verdauungstrakt und/oder der Hämolymphe. Die Hämolymphosmolarität ist als „Sättigungssignal“ bei einigen wirbellosen Tieren bereits nachgewiesen worden (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Deshalb habe ich mit Hilfe genetischer Methoden und ohne die Fliegen zu füttern, versucht über einen künstlich induzierten Anstieg der Trehaloseund Lipidkonzentrationen die Osmolarität der Hämolymphe in Drosophila zu erhöhen. Eine solche konzentrationserhöhende Wirkung für Lipide und die Trehalose, dem Hauptblutzucker der Insekten, ist bereits für das adipokinetische Hormon (AKH), das von Zellen der Corpora cardiaca exprimiert wird, nachgewiesen worden (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). Es stellte sich heraus, dass die künstliche Stimulierung AKH-produzierender Neurone das zuckerkonditionierten Verhalten temporär, reversible und selektiv unterdrückt. Gleiche Behandlungen hatten keinen Effekt auf ein aversiv konditioniertes olfaktorisches Gedächtnis oder ein naives Zuckerpräferenzverhalten. Wie aus dieser Arbeit hervorgeht, stellt wahrscheinlich die Osmolarität des Verdauungstrakts und der Hämolymphe oder nur der Hämolymphe ein physiologisches Korrelat zum Fütterungszustand dar und wirkt als unterdrückendes Signal. Dass Fütterungen das zuckerkonditionierte Verhalten und die Zuckerpräferenz supprimieren, die künstliche Stimulation AKH-produzierender Zellen aber selektiv nur die zuckerbelohnte Gedächtnisexpression unterdrückt, deutet auf mindestens zwei unterschiedliche „Sättigungssignalwege“ hin. Außerdem macht es deutlich wie uneinheitlich futterbezogene Verhaltensweisen, wie das zuckerbelohnte Verhalten und die naive Zuckerpräferenz, reguliert werden. N2 - In this work I investigated the regulation of the expression of the sugar conditioned behavior by feeding states in Drosophila melanogaster. During the training flies are able to associate an odor with a sugar reward. During the test these flies have the opportunity to show their odor memory. In accordance with previous findings (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008), I also showed that the readiness to express sugar conditioned memory is controlled by the feeding state. The memory was only displayed by starved flies, whereas feedings of the flies until the test cause a reversible and temporary suppression of conditioned behavior. Feeding states similarly influence the expression of other food-related behaviors like sugar preference. After I have showed/confirmed the drastic influence of feeding state on sugar conditioned behavior, I tried to search for factors which suppress the memory expression of conditioned flies during feeding. Therefore I verified physiological parameters as promising candidates which have already been identified as “satiation-signals” for different food-related behaviors through the animal kingdom (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). As the results revealed, neither the nutritional value of the available food nor an increase of the internal glucose-concentrations were necessary for suppressing conditioned behavior. Furthermore differences in sweet taste and in the amount of the ingested food, which likely serve as volumetric signals of the digestive system, were not critical determinants for inhibition of the memory expression. Because suppression followed the concentration of the substances independent of the chemical specificity, I conclude that the osmolarity of the ingested food is a critical factor for inhibition of sugar conditioned behavior. Only ingested substances were suppressive. Therefore an internal osmolarity-detecting mechanism is postulated, most probably in the digestive system or the hemolymph. Hemolymph-osmolarity has already been shown as a “satiation-signal” for some invertebrates (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Thus I tried to increase the hemolymph-osmolarity by an artificially induced rise of the concentration of lipids and trehalose, the main blood sugar of insects. A concentration-increasing effect such like this has already been shown for the adipokinetic hormone (AKH), which is expressed in cells of the corpora cardiaca (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). I demonstrated that an artificial stimulation of AKH69 producing neurons induces the suppression of sugar conditioned behavior, but leaves aversive conditioned behavior and naïve sugar preference unchanged. This work indicates that the osmolarity of the digestive system and the hemolymph or only of the hemolymph serves as (a) physiological correlate(s), which signals suppression. Feeding induced inhibition of the expression of sugar conditioned behavior and naïve sugar preference, whereas the artificial stimulation of AKH-producing cells selectively inhibited sugar rewarded memory expression alone. Thus I assume at least two separable “satiation”-pathways. Moreover these results demonstrate the non-uniform regulation of different food-related behaviors like sugar conditioned behavior and naïve sugar preference. KW - Taufliege KW - Futterentzug KW - Klassische Konditionierung KW - Konditionierung KW - Gedächtnis KW - Assoziatives Gedächtnis KW - Osmolarität KW - Drosophila melanogaster KW - zuckerkonditioniertes Verhalten KW - klassische Konditionierung KW - Futterentzug KW - Drosophila melanogaster KW - sugar-conditioned behaviour KW - classical conditioning KW - food deprivation KW - starvation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48802 ER - TY - THES A1 - Funk, Natalja T1 - Das Sap47-Gen aus Drosophila melanogaster : Gezielte Mutagenisierung und Suche nach Interaktionspartnern T1 - The Sap47 gene of Drosophila melanogaster: mutagenesis and identification of interaction partners N2 - SAP47 ist ein Synapsenassoziiertes Protein von 47 kDa aus Drosophila melanogaster, das zu einer neuen Proteinfamilie gehört. Um eine Sap47 Mutante zu erzeugen wurden drei Methoden eingesetzt: Gezielte Mutagenese durch homologe Rekombination, RNA interference (RNAi) und Transposon Remobilisierung. Um einen Interaktionspartner für das SAP47 Protein zu identifizieren wurden ein Yeast-Two-Hybrid System und das "CytoTrap" Verfahren eingesetzt. N2 - SAP47 (synapse-associated protein of 47 kDA) of Drosophila melanogaster belongs to a novel protein family of unknown function. Three techniques were used for Sap47 mutagenesis: "gene targeting" by homologous recombination, RNA interference (RNAi) and Jump-out mutagenesis. A standard yeast-two-hybrid system and the "CytoTrap" assay were used to identify interaction partners for the SAP47 protein. KW - Taufliege KW - Molekulargenetik KW - Sap47 KW - Synapse KW - RNA interference KW - Gezeilte Mutagenese KW - Sap47 KW - synapse KW - RNA interference KW - gene targeting Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7667 ER - TY - THES A1 - Franz, Mirjam T1 - Analyse der Hangover Funktion während der Entwicklung von Ethanol-induziertem Verhalten T1 - Analysis of the Hangover function during the development of ethanol-induced behaviour N2 - Die Entwicklung von Ethanoltoleranz ist ein Indikator für eine mögliche Abhängigkeit von Alkohol. Der genaue molekulare Mechanismus der Ethanoltoleranzentwicklung ist jedoch nicht bekannt. Drosophila ermöglicht die molekulare und phänotypische Untersuchung von verschiedenen Mutanten mit veränderter Toleranz und kann so zu einem besseren Verständnis beitragen. Die hangAE10 Mutante entwickelt eine reduzierte Ethanoltoleranz, wobei dieser Phänotyp auf Defekte in der zellulären Stressantwort zurückzuführen ist. Für ein besseres Verständnis, in welchen molekularen Mechanismen bzw. Signalwegen HANG wirkt, wurde die Funktion des Proteins auf zellulärer Ebene analysiert und mögliche Zielgene charakterisiert. Die auffällige Proteinstruktur von HANG spricht für eine Interaktion mit Nukleinsäuren. Immunhistochemische Analysen von ektopisch exprimiertem Hangover Protein ergaben, dass dieses nicht mit der DNA co-lokalisiert und auch nicht an polytänen Chromosomen nachgewiesen werden kann. Die ektopische Expression von HANG in Speicheldrüsenzellen zeigte eine punktförmige Verteilung des Proteins innerhalb des Zellkerns. Dieses punktförmige Expressionsmuster wird häufig in RNA-bindenden Proteinen gefunden. Deshalb wurden Co-Lokalisationsstudien von HANG mit Markern für RNAmodifizierende Proteine durchgeführt. Dabei wurde keine Interaktion mit verschiedenen Markerproteinen des Spleißapparates gefunden. Mithilfe von in vitro Experimenten konnte aber die Bindung von RNA an bestimmten Hangover Proteinbereichen nachgewiesen werden Diese Ergebnisse legen nahe, dass HANG eine RNA-regulierende Funktion hat. In einem cDNA Microarray Experiment wurde das Gen dunce als mögliches Zielgen von Hangover identifiziert. Das Gen dunce kodiert für eine Phosphodiesterase, welche spezifisch cAMP hydrolysiert. Zur Bestätigung der cDNA Microarray Experimente wurden die dnc Transkriptunterschiede in Wildtyp und hangAE10 Mutante mithilfe von semiquantitativer RT-PCR für jede der vier Gruppen untersucht. Dabei konnte eine Reduktion der dncRMRA-Transkriptgruppe in hangAE10 Mutanten nachgewiesen werden. Aufgrund dieser Ergebnisse wurde die dncRMRA -spezifische dncΔ143 Mutante hergestellt und auf Verhaltensebene analysiert. Die Experimente zeigten, dass sowohl dnc1, als auch die dncΔ143 Mutante eine reduzierte Ethanoltoleranz und Defekte in der zellulären Stressantwort aufweisen. Für die Rettung der reduzierten Toleranz von hangAE10 und dncΔ143 in dncRMRA-spezifischen Neuronen wurde die dncRMRA Promotor- GAL4 Linie hergestellt. Die reduzierte Ethanoltoleranz der dncΔ143 Mutanten konnte über die Expression von UAS-dnc mit der dncRMRA-GAL4 Linie auf Wildtyp Level gerettet werden. Die reduzierte Toleranz der hangAE10 Mutante konnte mithilfe derselben GAL4 Linie verbessert werden. Dies beweist, dass in beiden Mutanten dieselben Zellen für die Entwicklung von Ethanoltoleranz benötigt werden und sie wahrscheinlich in der gleichen Signaltransduktionskaskade eine Funktion haben. Aufgrund der Anfälligkeit der UAS/ GAL4 Systems gegenüber Hitze war es außerdem nicht möglich die Defekte der zellulären Stressantwort von dncΔ143 bzw. hangAE10 Fliegen zu retten. Die Rettung der reduzierten Ethanoltoleranz der dcnΔ143 Mutante führte außerdem zu der Vermutung, dass die cAMP Regulation eine wichtige Funktion bei der Ethanoltoleranzentwicklung hat. Über die Expression von cAMP-regulierenden Proteinen in dncRMRA-spezifischen Neuronen wurde der Einfluss von cAMP bei Ethanol-induziertem Verhalten überprüft. Bei der Überexpression von dunce und rutabaga konnte weder eine Veränderung für die Ethanolsensitivität, noch für die Toleranzentwicklung festgestellt werden. Eine Erklärung hierfür wäre, dass Veränderungen in der cAMP Konzentration über Rückkopplungsmechanismen zwischen Dunce und Rutabaga ausgeglichen werden können. Für eine genauere Aussage müsste jedoch die cAMP Konzentration in diesen Fliegen gemessen werden. Die Überexpression von pka- in dncRMRA spezifischen Zellen führt zu einer erhöhten Ethanolresistenz. Das bedeutet, dass die Modulation der cAMP Konzentration durch dunce und rutabaga in dncRMRA spezifischen Zellen keinen Einfluss auf Ethanol-induziertes Verhalten hat, wohingegen die Stärke der cAMP vermittelten Signalverarbeitung über die cAMP-abhängige PKA zu Veränderungen im Verhalten führt. Für Mutanten des cAMP Signalweges ist außerdem bekannt, dass sie Defekte im olfaktorischen Lernen bzw. Gedächtnis aufweisen. Deshalb wurden die dncΔ143, dnc1 und hangAE10 Mutanten in diesem Paradigma getestet. Sowohl dnc1, als auch dncΔ143 Fliegen zeigten einen reduzierten Performance Index für das zwei und 30 Minuten Gedächtnis. Nach 180 Minuten verhielten sich die dncΔ143 Mutanten nicht mehr unterschiedlich zum Wildtyp, die dnc1 Mutante zeigte jedoch immer noch eine Reduktion des Performance Index im Vergleich zur Kontrolle. Demnach ist in dncΔ143 Mutanten nur das Kurzzeitgedächtnis betroffen, wohingegen hangAE10 Mutanten keine Reduktion des Performance Index für das olfaktorische Kurzzeitgedächtnis aufweisen. Die unterschiedlichen Ergebnisse der beiden Mutanten in der Gedächtnisentwicklung deuten außerdem daraufhin, dass Lernen und Gedächtnis in dncΔ143 und hangAE10 Mutanten von der Toleranzentwicklung unabhängig über unterschiedliche cAMP-abhängige Signaltransduktionskaskaden reguliert werden. N2 - The development of ethanol tolerance is an indicator for a possible alcohol addiction. However the correct molecular mechanism of ethanol tolerance development is not known. The model organism Drosophila allows molecular and phenotypic observations of several mutants with altered ethanol tolerance (Scholz et al., 2000). HangAE10 mutants develop reduced ethanol tolerance because of defects in the cellular stress response (Scholz et al., 2005). For a better understanding of molecular mechanisms or signaling pathways, HANG putative target genes were identified, characterized and the protein function was analyzed on cellular level. The Hangover protein has 16 zinc finger domains, two of them are found in RNA modifying proteins (Scholz et al., 2005; Nelissen et al., 1991). This striking protein structure argues for an interaction of HANG with nucleic acids. In immunohistochemical studies with an ectopically expressed Hangover protein neither colocalization with DNA nor detectable Hangover binding on polytene chromosomes was observed. The ectopic expression of HANG in salivary glands shows a speckled protein distribution in the nucleus, which is similar to the expression pattern in RNA modifying proteins (Spector, 2001). Therefore colocalization studies of HANG with markers for RNA modifying proteins were performed. However no interaction with nucleoli was found. Certain factors of the splicing machinery also show no colocalization with Hangover. Since the studies were done with ectopically expressed protein, the results do not necessarily reflect the wild type behavior of HANG, as the interaction partner is not expressed in a comparable amount. RNA binding to specific parts of the Hangover protein was detected by in vitro experiments. Furthermore wild type expression of Hangover in neuronal cells shows the typical speckled distribution of RNA modifying proteins. These results suggest a RNA regulating function of HANG. In cDNA microarray experiments dunce was identified as a putative target gene of Hangover (Klebes and Scholz, unpublished data). The gene dunce encodes a phosphodiesterase that specifically hydrolyses cAMP (Davis and Kiger, 1981). The 14 dnc transcripts can be divided into four groups based on their length and function (http://flybase.org/; Qiu et al., 1993). To confirm the results of the cDNA microarray experiments, semiquantitative RT-PCRs were performed to analyze the differences in dnc transcript levels between wild type and hangAE10 mutants for each dnc group. A reduced amount of dncRMRA transcripts was observed in hangAE10 mutants. On the basis of these results the dncRMRA transcript specific dncΔ143 mutant was generated (Saratsis, 2006) and tested on behavioral level. Behavioral analysis of dnc1 and dncΔ143 mutants showed reduced ethanol tolerance and defects in the cellular stress response. For rescue experiments of reduced ethanol tolerance in hangAE10 and dncΔ143 mutants in specific dncRMRA neurons, the promotor dncRMRA-GAL4 line was generated (Saratsis, 2006). In-situ hybridization studies suggested that the expression pattern of dncRMRA-GAL4 reflects the endogenous expression of the dncRMRA transcripts. For unambiguous results colocalization studies with a specific DncRMRA antibody has to be done. The dncRMRA-GAL4 line shows a broad expression pattern, with transgene expression in about every 200th cell in the brain. It innervates the antennal lobes, parts of the mushroom body and regions of the central complex. The reduced ethanol tolerance in dncΔ143 mutants was rescued to wild type level by expressing UAS-dnc with the promotor dncRMRA-GAL4 line. Whereas the reduced ethanol tolerance in hangAE10 mutants was advanced by expressing UAS-hang with the same GAL4 line. This demonstrates that both mutants involve the same set of neurons for developing ethanol tolerance and probably act in the same signaling pathway. Expression studies showed that dncRMRA lies downstream of hang. The attempt to rescue the reduced ethanol tolerance in hangAE10 flies by expressing dnc using dncRMRA-GAL4 line did not advance the tolerance in these flies. An obvious explanation is that HANG does not only regulate dunce but also other genes and these regulation defects in hangAE10 mutants cannot be reversed by dnc expression. Due to the sensitivity of the UAS/ GAL4 system towards heat it was impossible to rescue the cellular stress response defects in dncΔ143 and hangAE10 mutants. The rescue of the dncΔ143 tolerance phenotype resulted in the assumption that cAMP regulation has an important function in the development of ethanol tolerance. The effect of cAMP on ethanol induced behavior should be tested by expression of cAMP regulating proteins in dncRMRA specific neurons. There the overexpression of dunce should result in an increase and the overexpression of rutabaga should lead to a decrease in cAMP levels. However, for both experiments there was neither a change in ethanol sensitivity nor in ethanol tolerance. An explanation would be that changes in cAMP concentration could be balanced by feedback loops between Dunce and Rutabaga. For a decisive conclusion the cAMP concentration in these flies has to be measured. Overexpressing pka-c, a gene that encodes the catalytic subunit of PKA in dncRMRA specific cells, leads to a higher resistance towards ethanol. This shows that the modulation of cAMP level by Dunce and Rutabaga has no effect on ethanol induced behavior in dncRMRA specific cells. Whereas the intensity of cAMP mediated signaling processes result in behavioral changes. Several mutants of the cAMP signaling pathway are impaired in olfactory learning and memory. Therefore dnc1, dncΔ143 and hangAE10 mutants were tested in this paradigm. Dnc1 as well as dncΔ143 flies showed reduced performance indices two and 30 minutes memory. After 180 minutes the performance index of dncΔ143 mutants was not significantly different from wild type whereas dnc1 mutants still had a reduction in comparison to wild type. Thus, dncΔ143 mutants have defects in short-term memory whereas short-term memory of hangAE10 mutants is not affected. However it is not known how hangAE10 flies will perform for mid-term and long-term memory formation. Similar to memory formation there exist different phases of tolerance development. To detect, if the long-term or the short-term form of tolerance is affected, the kinetic of tolerance development was investigated for dncΔ143 and hangAE10 mutants. In dncΔ143 mutants the first phase of tolerance development is defective, whereas in hangAE10 mutants the early and the late phase seem to be affected. Thus a part of the reduced tolerance in hangAE10 and the complete reduction in dncΔ143 mutants could be due to defects in the same signaling pathway regulated via cAMP. The variable results for the development of short-term memory in both mutants indicate that memory formation in dncΔ143 and hangAE10 mutants is independent of ethanol tolerance development and is regulated by different cAMP signaling pathways. KW - Taufliege KW - Tachyphylaxie KW - Alkohol KW - Erfahrungsorientiertes Lernen KW - Drosophila KW - Ethanoltolerance KW - dunce KW - hangover Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35591 ER -