TY - JOUR A1 - Eckhardt, Manon A1 - Anders, Maria A1 - Muranyi, Walter A1 - Heilemann, Mike A1 - Krijnse-Locker, Jacomine A1 - Müller, Barbara T1 - A SNAP-Tagged Derivative of HIV-1-A Versatile Tool to Study Virus-Cell Interactions JF - PLoS ONE N2 - Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches. Here we describe the construction and characterization of the HIV derivative HIV(SNAP), which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIV(SNAP) represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence microscopy. KW - Human-immunodeficiency-virus KW - Fusion proteins KW - Live cells KW - Fluorescence microscopy KW - Stimulated-emission KW - Plasma-membrane KW - Living cells KW - Real-time KW - TYPE-1 KW - GAG Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133534 VL - 6 IS - 7 ER - TY - JOUR A1 - Matos, Isa A1 - Sucena, Èlio A1 - Machado, Miguel P A1 - Gardner, Rui A1 - Inácio, Ângela A1 - Schartl, Manfred A1 - Coelho, Maria M T1 - Ploidy mosaicism and allele-specific gene expression differences in the allopolyploid \(Squalius\) \(alburnoides\) JF - BMC Genetics N2 - Background Squalius alburnoides is an Iberian cyprinid fish resulting from an interspecific hybridisation between Squalius pyrenaicus females (P genome) and males of an unknown Anaecypris hispanica- like species (A genome). S. alburnoides is an allopolyploid hybridogenetic complex, which makes it a likely candidate for ploidy mosaicism occurrence, and is also an interesting model to address questions about gene expression regulation and genomic interactions. Indeed, it was previously suggested that in S. alburnoides triploids (PAA composition) silencing of one of the three alleles (mainly of the P allele) occurs. However, not a whole haplome is inactivated but a more or less random inactivation of alleles varying between individuals and even between organs of the same fish was seen. In this work we intended to correlate expression differences between individuals and/or between organs to the occurrence of mosaicism, evaluating if mosaics could explain previous observations and its impact on the assessment of gene expression patterns. Results To achieve our goal, we developed flow cytometry and cell sorting protocols for this system generating more homogenous cellular and transcriptional samples. With this set-up we detected 10% ploidy mosaicism within the S. alburnoides complex, and determined the allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh and β-actin) in cells from liver and kidney of mosaic and non-mosaic individuals coming from different rivers over a wide geographic range. Conclusions Ploidy mosaicism occurs sporadically within the S. alburnoides complex, but in a frequency significantly higher than reported for other organisms. Moreover, we could exclude the influence of this phenomenon on the detection of variable allelic expression profiles of ubiquitously expressed genes (rpl8; gapdh and β-actin) in cells from liver and kidney of triploid individuals. Finally, we determined that the expression patterns previously detected only in a narrow geographic range is not a local restricted phenomenon but is pervasive in rivers where S. pyrenaicus is sympatric with S. alburnoides. We discuss mechanisms that could lead to the formation of mosaic S. alburnoides and hypothesise about a relaxation of the mechanisms that impose a tight control over mitosis and ploidy control in mixoploids." KW - Squalius alburnoides Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142879 VL - 12 IS - 101 ER - TY - JOUR A1 - Schwede, Angela A1 - Jones, Nicola A1 - Engstler, Markus A1 - Carrington, Mark T1 - The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes JF - Molecular & Biochemical Parasitology N2 - In the mammalian host, the Trypanosoma brucei cell surface is covered with a densely packed protein coat of a single protein, the variant surface glycoprotein (VSG). The VSG is believed to shield invariant surface proteins from host antibodies but there is limited information on how far antibodies can penetrate into the VSG monolayer. Here, the VSG surface coat was probed to determine whether it acts as a barrier to binding of antibodies to the membrane proximal VSG C-terminal domain. The binding of C-terminal domain antibodies to VSG221 or VSG118 was compared with antibodies recognising the cognate whole VSGs. The C-terminal VSG domain was inaccessible to antibodies on live cells but not on fixed cells. This provides further evidence that the VSG coat acts as a barrier and protects the cell from antibodies that would otherwise bind to some of the other externally disposed proteins. KW - Trypanosome KW - VSG KW - Trypanosoma brucei KW - Cell surface KW - Antibody Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142746 VL - 175 IS - 2 ER - TY - JOUR A1 - Thormann, Birthe A1 - Raupach, Michael J. A1 - Wagner, Thomas A1 - Wägele, Johann W. A1 - Peters, Marcell K. T1 - Testing a Short Nuclear Marker for Inferring Staphylinid Beetle Diversity in an African Tropical Rain Forest JF - PLoS ONE N2 - Background: The use of DNA based methods for assessing biodiversity has become increasingly common during the last years. Especially in speciose biomes as tropical rain forests and/or in hyperdiverse or understudied taxa they may efficiently complement morphological approaches. The most successful molecular approach in this field is DNA barcoding based on cytochrome c oxidase I (COI) marker, but other markers are used as well. Whereas most studies aim at identifying or describing species, there are only few attempts to use DNA markers for inventorying all animal species found in environmental samples to describe variations of biodiversity patterns. Methodology/Principal Findings: In this study, an analysis of the nuclear D3 region of the 28S rRNA gene to delimit species-like units is compared to results based on distinction of morphospecies. Data derived from both approaches are used to assess diversity and composition of staphylinid beetle communities of a Guineo-Congolian rain forest in Kenya. Beetles were collected with a standardized sampling design across six transects in primary and secondary forests using pitfall traps. Sequences could be obtained of 99% of all individuals. In total, 76 molecular operational taxonomic units (MOTUs) were found in contrast to 70 discernible morphospecies. Despite this difference both approaches revealed highly similar biodiversity patterns, with species richness being equal in primary and secondary forests, but with divergent species communities in different habitats. The D3-MOTU approach proved to be an efficient tool for biodiversity analyses. Conclusions/Significance: Our data illustrate that the use of MOTUs as a proxy for species can provide an alternative to morphospecies identification for the analysis of changes in community structure of hyperdiverse insect taxa. The efficient amplification of the D3-marker and the ability of the D3-MOTUs to reveal similar biodiversity patterns as analyses of morphospecies recommend its use in future molecular studies on biodiversity. KW - DNA barcodes KW - Biological identifications KW - Species richness KW - Taxonomy KW - Conservation KW - Coleoptera KW - Parataxonomy KW - Assemblages KW - Madagascar Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142666 VL - 6 IS - 3 ER - TY - JOUR A1 - Cruse, Holk A1 - Wehner, Rüdiger T1 - No Need for a Cognitive Map: Decentralized Memory for Insect Navigation JF - PLoS computational biology N2 - In many animals the ability to navigate over long distances is an important prerequisite for foraging. For example, it is widely accepted that desert ants and honey bees, but also mammals, use path integration for finding the way back to their home site. It is however a matter of a long standing debate whether animals in addition are able to acquire and use so called cognitive maps. Such a 'map', a global spatial representation of the foraging area, is generally assumed to allow the animal to find shortcuts between two sites although the direct connection has never been travelled before. Using the artificial neural network approach, here we develop an artificial memory system which is based on path integration and various landmark guidance mechanisms ( a bank of individual and independent landmark-defined memory elements). Activation of the individual memory elements depends on a separate motivation network and an, in part, asymmetrical lateral inhibition network. The information concerning the absolute position of the agent is present, but resides in a separate memory that can only be used by the path integration subsystem to control the behaviour, but cannot be used for computational purposes with other memory elements of the system. Thus, in this simulation there is no neural basis of a cognitive map. Nevertheless, an agent controlled by this network is able to accomplish various navigational tasks known from ants and bees and often discussed as being dependent on a cognitive map. For example, map-like behaviour as observed in honey bees arises as an emergent property from a decentralized system. This behaviour thus can be explained without referring to the assumption that a cognitive map, a coherent representation of foraging space, must exist. We hypothesize that the proposed network essentially resides in the mushroom bodies of the insect brain. KW - Recurrent neural-networks KW - Desert ant navigation KW - Path-integraton KW - Cataglyphis-fortis KW - Mushroom bodies KW - Melophorus-bagoti KW - Systematic search KW - Central complex KW - Honey-bees KW - Behavior Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141184 VL - 7 IS - 3 ER - TY - JOUR A1 - Buchheim, Mark A. A1 - Keller, Alexander A1 - Koetschan, Christian A1 - Förster, Frank A1 - Merget, Benjamin A1 - Wolf, Matthias T1 - Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life JF - PLoS ONE N2 - Background: Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta. Methodology/Principal Findings: Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses. Conclusions/Significance: Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages. KW - RBCL Gene-sequences KW - Colonial volvocales chlorophyta KW - 26S RDNA Data KW - Land plants KW - Molecular systematics KW - Secondary structure KW - Nuclear RDNA KW - DNA KW - Barcodes KW - Dasycladales chlorophyta KW - Profile distances Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140866 VL - 6 IS - 2 ER - TY - JOUR A1 - Uppaluri, Sravanti A1 - Nagler, Jan A1 - Stellamanns, Eric A1 - Heddergott, Niko A1 - Herminghaus, Stephan A1 - Pfohl, Thomas A1 - Engstler, Markus T1 - Impact of Microscopic Motility on the Swimming Behavior of Parasites: Straighter Trypanosomes are More Directional JF - PLoS Computational Biology N2 - Microorganisms, particularly parasites, have developed sophisticated swimming mechanisms to cope with a varied range of environments. African Trypanosomes, causative agents of fatal illness in humans and animals, use an insect vector (the Tsetse fly) to infect mammals, involving many developmental changes in which cell motility is of prime importance. Our studies reveal that differences in cell body shape are correlated with a diverse range of cell behaviors contributing to the directional motion of the cell. Straighter cells swim more directionally while cells that exhibit little net displacement appear to be more bent. Initiation of cell division, beginning with the emergence of a second flagellum at the base, correlates to directional persistence. Cell trajectory and rapid body fluctuation correlation analysis uncovers two characteristic relaxation times: a short relaxation time due to strong body distortions in the range of 20 to 80 ms and a longer time associated with the persistence in average swimming direction in the order of 15 seconds. Different motility modes, possibly resulting from varying body stiffness, could be of consequence for host invasion during distinct infective stages. KW - African Trypanosomes KW - Cell Motility KW - Random-Walk KW - Brucei KW - Components KW - Flagellum KW - Biology KW - Motion KW - Chemotaxis KW - Movement Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140814 VL - 7 IS - 6 ER - TY - JOUR A1 - Niewalda, Thomas A1 - Völler, Thomas A1 - Eschbach, Claire A1 - Ehmer, Julia A1 - Wen-Chuang, Chou A1 - Timme, Marc A1 - Fiala, André A1 - Gerber, Bertram T1 - A Combined Perceptual, Physico-Chemical, and Imaging Approach to 'Odour-Distances' Suggests a Categorizing Function of the Drosophila Antennal Lobe JF - PLoS One N2 - How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours. KW - organization KW - cameleon KW - honeybee KW - map KW - neurons KW - reveals KW - melanogaster KW - mushroom body KW - spatial representation KW - olfactory information Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133510 VL - 6 IS - 9 ER - TY - JOUR A1 - Biju, Joseph A1 - Schwarz, Roland A1 - Linke, Burkhard A1 - Blom, Jochen A1 - Becker, Anke A1 - Claus, Heike A1 - Goesmann, Alexander A1 - Frosch, Matthias A1 - Müller, Tobias A1 - Vogel, Ulrich A1 - Schoen, Christoph T1 - Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome JF - PLoS One N2 - Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence. KW - population genetics KW - DNA recombination KW - meningococcal disease KW - recombinant proteins KW - genomic databases KW - comparative genomics KW - neisseria meningitidis KW - homologous recombination Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137960 VL - 6 IS - 4 ER - TY - JOUR A1 - Partho, Halder A1 - Chen, Yi-chun A1 - Brauckhoff, Janine A1 - Hofbauer, Alois A1 - Dabauvalle, Marie-Christine A1 - Lewandrowski, Urs A1 - Winkler, Christiane A1 - Sickmann, Albert A1 - Buchner, Erich T1 - Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain JF - PLoS One N2 - The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies. KW - neuropil KW - immunohistochemistry techniques KW - gel electrophoresis KW - immunoprecipitation KW - silver staining KW - drosophila melanogaster KW - antigen processing and recognition KW - hybridomas Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137957 VL - 6 IS - 12 ER -