TY - JOUR A1 - Wheeler, Nicole E. A1 - Barquist, Lars A1 - Kingsley, Robert A. A1 - Gardner, Paul P. T1 - A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes JF - Bioinformatics N2 - Motivation: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predi cting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. Results: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. KW - Host adaptation KW - Salmonella-enteritidis KW - Sequence identity KW - Rapid evolution KW - Variants KW - Cystic-fibriosis KW - Strains KW - Pathogenicity KW - Typhimurium KW - Yersinia Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186502 VL - 32 IS - 23 ER - TY - THES A1 - Hagmann [geb. Kischkies], Laura Violetta T1 - Stringent response regulation and its impact on ex vivo survival in the commensal pathogen \(Neisseria\) \(meningitidis\) T1 - Regulation der stringenten Kontrolle und ihre Auswirkungen auf das ex vivo Überleben des kommensalen Erregers \(Neisseria\) \(meningitidis\) N2 - Neisseria meningitidis is a commensal bacterium which sometimes causes serious disease in humans. Recent studies in numerous human pathogenic bacteria have shown that the stringent response contributes to bacterial virulence. Therefore, this study analyzed the regulation of the stringent response in meningococci and in particular of RelA as well as its contribution to ex vivo fitness in a strain- and condition- dependent manner by using the carriage strain α522 and the hyperinvasive strain MC58 in different in vitro and ex vivo conditions. Growth experiments revealed that both wild-type strains were almost indistinguishable in their ex vivo phenotypes. However, quantitative real time PCR (qRT-PCR) found differences in the gene expression of relA between both strains. Furthermore, in contrast to the MC58 RelA mutant strain α522 deficient in RelA was unable to survive in human whole blood, although both strains showed the same ex vivo phenotypes in saliva and cerebrospinal fluid. Moreover, strain α522 was depended on a short non-coding AT-rich repeat element (ATRrelA) in the promoter region of relA to survive in human blood. Furthermore, cell culture experiments with human epithelial cells revealed that in both strains the deletion of relA resulted in a significantly decreased invasion rate while not significantly affecting adhesion. In order to better understand the conditional lethality of the relA deletion, computational and experimental analyses were carried out to unravel differences in amino acid biosynthetic pathways between both strains. Whereas strain MC58 is able to synthesize all 20 amino acids, strain α522 has an auxotrophy for cysteine and glutamine. In addition, the in vitro growth experiments found that RelA is required for growth in the absence of external amino acids in both strains. Furthermore, the mutant strain MC58 harboring an ATRrelA in its relA promoter region showed improved growth in minimal medium supplemented with L-cysteine and/or L-glutamine compared to the wild-type strain. Contrary, in strain α522 no differences between the wild-type and the ATRrelA deletion mutant were observed. Together this indicates that ATRrelA interferes with the complex regulatory interplay between the stringent response pathway and L-cysteine as well as L-glutamine metabolism. It further suggests that meningococcal virulence is linked to relA in a strain- and condition- depended manner. In conclusion, this work highlighted the role of the stringent response and of non-coding regulatory elements for bacterial virulence and indicates that virulence might be related to the way how meningococci accomplish growth within the host environments. N2 - Neisseria meningitidis ist ein kommensal lebendes, fakultativ pathogenes Bakterium, welches unter nicht vollständig verstandenen Umständen lebensbedrohliche Krankheitsbilder bei Menschen verursacht. Aktuelle Studien haben gezeigt, dass die stringente Antwort einen Einfluss auf die bakterielle Virulenz haben kann. Aus diesem Grund untersucht diese Arbeit die Regulation der stringenten Antwort, insbesondere die Rolle von RelA, sowie den Einfluss der stringenten Antwort auf die Ex-vivo-Fitness der Meningokokken. Die Ergebnisse wurden für den Trägerstamm α522 und den hyperinvasiven Stamm MC58 erhoben und miteinander verglichen. Wachstumsexperimente zeigten, dass sich beide Wildtyp-Stämme in ihren Ex-vivo-Phänotypen nicht unterscheiden. Jedoch wurden mittels quantitativer Echtzeit-PCR (qRT-PCR) Unterschiede zwischen beiden Stämmen in der Genexpression von relA gefunden. Zudem war die α522 relA Mutante im Gegensatz zu der MC58 relA Mutante nicht in der Lage, in menschlichem Vollblut zu überleben. Allerdings zeigten in Saliva und Liquor beide Stämme den gleichen Phänotyp. Außerdem war der Trägerstamm auf eine kurze, nicht-codierende AT-reiche Region (ATRrelA) in der Promotorregion von relA angewiesen, um im menschlichen Blut überleben zu können. Darüber hinaus zeigten Zellkulturexperimente mit humanen Epithelzellen, dass die Deletion relA die Invasionsrate in beiden Stämmen signifikant verringerte, obwohl die Adhäsionsrate durch die Deletion unbeeinflusst blieb. Um besser verstehen zu können, weshalb die Deletion von relA unter bestimmten Bedingungen letal ist, wurden mit In-silico- und experimentellen Analysen nach Unterschieden in den Aminosäurebiosynthesewegen beider Stämme gesucht. Es zeigte sich, dass Stamm MC58 in der Lage ist alle 20 Aminosäuren zu synthetisieren, während Stamm α522 eine Auxotrophie für Cystein und Glutamin aufweist. Ferner zeigten die In-vitro-Wachstumsversuche, dass RelA bei Aminosäuremangel essentiell für beide Stämme ist. Darüber hinaus zeigte eine MC58 Mutante mit einer ATRrelA –Kopie in der relA Promotorregion ein im Vergleich zum Wildtyp-Stamm verbessertes Wachstum in mit L-Cystein und/oder L-Glutamin angereichertem Minimalmedium. Gegensätzlich dazu zeigte der Stamm α522 keine Unterschiede im Wachstum zwischen dem Wildtyp und einer ATRrelA Deletions-Mutante. Dies deutet darauf hin, dass ATRrelA an dem komplexen regulatorischen Zusammenspiel der stringenten Antwort und dem L-Cystein- beziehungsweise dem L-Glutamin-Metabolismus beteiligt ist. Es lässt sich vermuten, dass RelA zu der Virulenz von Meningokokken in einer stamm- und umgebungsspezifischen Weise beiträgt. Abschließend hebt diese Arbeit die Rolle von kleinen regulatorischen Elementen für die bakterielle Virulenz hervor und postuliert, dass die Virulenz der Meningokokken auf ihrer Fähigkeit basiert, sich der durch den Wirt gegebenen Umgebung anzupassen. KW - Neisseria meningitidis KW - Stringente Kontrolle KW - Virulenzfaktor KW - Genregulation KW - Transposon KW - Stringent response KW - RelA KW - MITE KW - Stringente Antwort Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144352 ER - TY - INPR A1 - Bartfeld, Sina T1 - Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids T2 - Developmental Biology N2 - Advances in stem cell research have allowed the development of 3-dimensional (3D) primary cell cultures termed organoid cultures, as they closely mimic the in vivo organization of different cell lineages. Bridging the gap between 2-dimensional (2D) monotypic cancer cell lines and whole organisms, organoids are now widely applied to model development and disease. Organoids hold immense promise for addressing novel questions in host-microbe interactions, infectious diseases and the resulting inflammatory conditions. Researchers have started to use organoids for modeling infection with pathogens, such as Helicobacter pylori or Salmonella enteritica, gut- microbiota interactions and inflammatory bowel disease. Future studies will broaden the spectrum of microbes used and continue to establish organoids as a standard model for human host-microbial interactions. Moreover, they will increasingly exploit the unique advantages of organoids, for example to address patient-specific responses to microbes. KW - gastrointestinal disease KW - salmonella KW - microbiota KW - inflammatory bowel disease KW - organoid culture KW - helicobacter KW - rotavirus KW - norovirus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138788 UR - http://www.sciencedirect.com/science/article/pii/S0012160616304602 SN - 0012-1606 N1 - This is the accepted version of the following article: Bartfeld, Sina, Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids, Developmental Biology, 2016, 420, 2, 262-270. http://dx.doi.org/10.1016/j.ydbio.2016.09.014 ER - TY - JOUR A1 - Jiang, Yuxiang A1 - Oron, Tal Ronnen A1 - Clark, Wyatt T. A1 - Bankapur, Asma R. A1 - D'Andrea, Daniel A1 - Lepore, Rosalba A1 - Funk, Christopher S. A1 - Kahanda, Indika A1 - Verspoor, Karin M. A1 - Ben-Hur, Asa A1 - Koo, Da Chen Emily A1 - Penfold-Brown, Duncan A1 - Shasha, Dennis A1 - Youngs, Noah A1 - Bonneau, Richard A1 - Lin, Alexandra A1 - Sahraeian, Sayed M. E. A1 - Martelli, Pier Luigi A1 - Profiti, Giuseppe A1 - Casadio, Rita A1 - Cao, Renzhi A1 - Zhong, Zhaolong A1 - Cheng, Jianlin A1 - Altenhoff, Adrian A1 - Skunca, Nives A1 - Dessimoz, Christophe A1 - Dogan, Tunca A1 - Hakala, Kai A1 - Kaewphan, Suwisa A1 - Mehryary, Farrokh A1 - Salakoski, Tapio A1 - Ginter, Filip A1 - Fang, Hai A1 - Smithers, Ben A1 - Oates, Matt A1 - Gough, Julian A1 - Törönen, Petri A1 - Koskinen, Patrik A1 - Holm, Liisa A1 - Chen, Ching-Tai A1 - Hsu, Wen-Lian A1 - Bryson, Kevin A1 - Cozzetto, Domenico A1 - Minneci, Federico A1 - Jones, David T. A1 - Chapman, Samuel A1 - BKC, Dukka A1 - Khan, Ishita K. A1 - Kihara, Daisuke A1 - Ofer, Dan A1 - Rappoport, Nadav A1 - Stern, Amos A1 - Cibrian-Uhalte, Elena A1 - Denny, Paul A1 - Foulger, Rebecca E. A1 - Hieta, Reija A1 - Legge, Duncan A1 - Lovering, Ruth C. A1 - Magrane, Michele A1 - Melidoni, Anna N. A1 - Mutowo-Meullenet, Prudence A1 - Pichler, Klemens A1 - Shypitsyna, Aleksandra A1 - Li, Biao A1 - Zakeri, Pooya A1 - ElShal, Sarah A1 - Tranchevent, Léon-Charles A1 - Das, Sayoni A1 - Dawson, Natalie L. A1 - Lee, David A1 - Lees, Jonathan G. A1 - Sillitoe, Ian A1 - Bhat, Prajwal A1 - Nepusz, Tamás A1 - Romero, Alfonso E. A1 - Sasidharan, Rajkumar A1 - Yang, Haixuan A1 - Paccanaro, Alberto A1 - Gillis, Jesse A1 - Sedeño-Cortés, Adriana E. A1 - Pavlidis, Paul A1 - Feng, Shou A1 - Cejuela, Juan M. A1 - Goldberg, Tatyana A1 - Hamp, Tobias A1 - Richter, Lothar A1 - Salamov, Asaf A1 - Gabaldon, Toni A1 - Marcet-Houben, Marina A1 - Supek, Fran A1 - Gong, Qingtian A1 - Ning, Wei A1 - Zhou, Yuanpeng A1 - Tian, Weidong A1 - Falda, Marco A1 - Fontana, Paolo A1 - Lavezzo, Enrico A1 - Toppo, Stefano A1 - Ferrari, Carlo A1 - Giollo, Manuel A1 - Piovesan, Damiano A1 - Tosatto, Silvio C. E. A1 - del Pozo, Angela A1 - Fernández, José M. A1 - Maietta, Paolo A1 - Valencia, Alfonso A1 - Tress, Michael L. A1 - Benso, Alfredo A1 - Di Carlo, Stefano A1 - Politano, Gianfranco A1 - Savino, Alessandro A1 - Rehman, Hafeez Ur A1 - Re, Matteo A1 - Mesiti, Marco A1 - Valentini, Giorgio A1 - Bargsten, Joachim W. A1 - van Dijk, Aalt D. J. A1 - Gemovic, Branislava A1 - Glisic, Sanja A1 - Perovic, Vladmir A1 - Veljkovic, Veljko A1 - Almeida-e-Silva, Danillo C. A1 - Vencio, Ricardo Z. N. A1 - Sharan, Malvika A1 - Vogel, Jörg A1 - Kansakar, Lakesh A1 - Zhang, Shanshan A1 - Vucetic, Slobodan A1 - Wang, Zheng A1 - Sternberg, Michael J. E. A1 - Wass, Mark N. A1 - Huntley, Rachael P. A1 - Martin, Maria J. A1 - O'Donovan, Claire A1 - Robinson, Peter N. A1 - Moreau, Yves A1 - Tramontano, Anna A1 - Babbitt, Patricia C. A1 - Brenner, Steven E. A1 - Linial, Michal A1 - Orengo, Christine A. A1 - Rost, Burkhard A1 - Greene, Casey S. A1 - Mooney, Sean D. A1 - Friedberg, Iddo A1 - Radivojac, Predrag A1 - Veljkovic, Nevena T1 - An expanded evaluation of protein function prediction methods shows an improvement in accuracy JF - Genome Biology N2 - Background A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. KW - Protein function prediction KW - Disease gene prioritization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166293 VL - 17 IS - 184 ER - TY - JOUR A1 - Hanzelmann, Dennis A1 - Joo, Hwang-Soo A1 - Franz-Wachtel, Mirita A1 - Hertlein, Tobias A1 - Stevanovic, Stefan A1 - Macek, Boris A1 - Wolz, Christiane A1 - Götz, Friedrich A1 - Otto, Michael A1 - Kretschmer, Dorothee A1 - Peschel, Andreas T1 - Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants JF - Nature Communications N2 - Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. KW - Pathogens KW - Toll-like receptors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165975 VL - 7 ER - TY - JOUR A1 - Babski, Julia A1 - Haas, Karina A. A1 - Näther-Schindler, Daniela A1 - Pfeiffer, Friedhelm A1 - Förstner, Konrad U. A1 - Hammelmann, Matthias A1 - Hilker, Rolf A1 - Becker, Anke A1 - Sharma, Cynthia M. A1 - Marchfelder, Anita A1 - Soppa, Jörg T1 - Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq) JF - BMC Genomics N2 - Background Differential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. Although the transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. Therefore, we used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii. Results Three independent cultures of Hfx. volcanii grown under optimal conditions to the mid-exponential growth phase were used to determine the primary transcriptome and map the 5′-ends of the transcripts. In total, 4749 potential TSSs were detected. A position weight matrix (PWM) was derived for the promoter predictions, and the results showed that 64 % of the TSSs were preceded by stringent or relaxed basal promoters. Of the identified TSSs, 1851 belonged to protein-coding genes. Thus, fewer than half (46 %) of the 4040 protein-coding genes were expressed under optimal growth conditions. Seventy-two percent of all protein-coding transcripts were leaderless, which emphasized that this pathway is the major pathway for translation initiation in haloarchaea. A total of 2898 of the TSSs belonged to potential non-coding RNAs, which accounted for an unexpectedly high fraction (61 %) of all transcripts. Most of the non-coding TSSs had not been previously described (2792) and represented novel sequences (59 % of all TSSs). A large fraction of the potential novel non-coding transcripts were cis-antisense RNAs (1244 aTSSs). A strong negative correlation between the levels of antisense transcripts and cognate sense mRNAs was found, which suggested that the negative regulation of gene expression via antisense RNAs may play an important role in haloarchaea. The other types of novel non-coding transcripts corresponded to internal transcripts overlapping with mRNAs (1153 iTSSs) and intergenic small RNA (sRNA) candidates (395 TSSs). Conclusion This study provides a comprehensive map of the primary transcriptome of Hfx. volcanii grown under optimal conditions. Fewer than half of all protein-coding genes have been transcribed under these conditions. Unexpectedly, more than half of the detected TSSs belonged to several classes of non-coding RNAs. Thus, RNA-based regulation appears to play a more important role in haloarchaea than previously anticipated. KW - Archaea KW - dRNA-Seq KW - Promoter KW - Non-coding RNAs KW - sRNA KW - Haloferax volcanii KW - Transcriptome KW - Leaderless transcript KW - Antisense RNA Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164553 VL - 17 IS - 629 ER - TY - JOUR A1 - Čuklina, Jelena A1 - Hahn, Julia A1 - Imakaev, Maxim A1 - Omasits, Ulrich A1 - Förstner, Konrad U. A1 - Ljubimov, Nikolay A1 - Goebel, Melanie A1 - Pessi, Gabriella A1 - Fischer, Hans-Martin A1 - Ahrens, Christian H. A1 - Gelfand, Mikhail S. A1 - Evguenieva-Hackenberg, Elena T1 - Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation JF - BMC Genomics N2 - Background Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. Results A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 % of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. Conclusions The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes. KW - Bradyrhizobium KW - RNA-seq KW - Promoter prediction KW - Genome re-annotation KW - Internal transcription start site KW - Nodule KW - Transcription start site KW - Proteogenomics KW - Antisense RNA Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164565 VL - 17 ER - TY - JOUR A1 - Ene, Iuliana V. A1 - Lohse, Matthew B. A1 - Vladu, Adrian V. A1 - Morschhäuser, Joachim A1 - Johnson, Alexander D. A1 - Bennett, Richard J. T1 - Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells JF - mBio N2 - The white-opaque switch is a bistable, epigenetic transition affecting multiple traits in Candida albicans including mating, immunogenicity, and niche specificity. To compare how the two cell states respond to external cues, we examined the fitness, phenotypic switching, and filamentation properties of white cells and opaque cells under 1,440 different conditions at 25°C and 37°C. We demonstrate that white and opaque cells display striking differences in their integration of metabolic and thermal cues, so that the two states exhibit optimal fitness under distinct conditions. White cells were fitter than opaque cells under a wide range of environmental conditions, including growth at various pHs and in the presence of chemical stresses or antifungal drugs. This difference was exacerbated at 37°C, consistent with white cells being the default state of C. albicans in the mammalian host. In contrast, opaque cells showed greater fitness than white cells under select nutritional conditions, including growth on diverse peptides at 25°C. We further demonstrate that filamentation is significantly rewired between the two states, with white and opaque cells undergoing filamentous growth in response to distinct external cues. Genetic analysis was used to identify signaling pathways impacting the white-opaque transition both in vitro and in a murine model of commensal colonization, and three sugar sensing pathways are revealed as regulators of the switch. Together, these findings establish that white and opaque cells are programmed for differential integration of metabolic and thermal cues and that opaque cells represent a more metabolically specialized cell state than the default white state. KW - biology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165818 VL - 7 IS - 6 ER - TY - JOUR A1 - Dugar, Gaurav A1 - Svensson, Sarah L. A1 - Bischler, Thorsten A1 - Waldchen, Sina A1 - Reinhardt, Richard A1 - Sauer, Markus A1 - Sharma, Cynthia M. T1 - The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni JF - Nature Communications N2 - The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA (flaA) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA. KW - bacterial genetics KW - cell signalling KW - translation KW - Campylobacter jejuni Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173201 VL - 7 ER - TY - JOUR A1 - Selle, Martina A1 - Hertlein, Tobias A1 - Oesterreich, Babett A1 - Klemm, Theresa A1 - Kloppot, Peggy A1 - Müller, Elke A1 - Ehricht, Ralf A1 - Stentzel, Sebastian A1 - Bröker, Barbara M. A1 - Engelmann, Susanne A1 - Ohlsen, Knut T1 - Global antibody response to Staphylococcus aureus live-cell vaccination JF - Scientific Reports N2 - The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. KW - pathogens KW - bacterial infection KW - cell vaccines KW - Staphylococcus aureus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181245 VL - 6 ER - TY - JOUR A1 - Müller, Anna A. A1 - Dolowschiak, Tamas A1 - Sellin, Mikael E. A1 - Felmy, Boas A1 - Verbree, Carolin A1 - Gadient, Sandra A1 - Westermann, Alexander J. A1 - Vogel, Jörg A1 - LeibundGut-Landmann, Salome A1 - Hardt, Wolf-Dietrich T1 - An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection JF - PLoS Pathogens N2 - Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf\(^{-/-}\) ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. KW - NK cells KW - Salmonella Typhimurium KW - mucosal inflammation KW - diarrhea Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167429 VL - 12 IS - 6 ER - TY - JOUR A1 - Barquist, Lars A1 - Mayho, Matthew A1 - Cummins, Carla A1 - Cain, Amy K. A1 - Boinett, Christine J. A1 - Page, Andrew J. A1 - Langridge, Gemma C. A1 - Quail, Michael A. A1 - Keane, Jacqueline A. A1 - Parkhill, Julian T1 - The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries JF - Bioinformatics N2 - Transposon insertion sequencing is a high-throughput technique for assaying large libraries of otherwise isogenic transposon mutants providing insight into gene essentiality, gene function and genetic interactions. We previously developed the Transposon Directed Insertion Sequencing (TraDIS) protocol for this purpose, which utilizes shearing of genomic DNA followed by specific PCR amplification of transposon-containing fragments and Illumina sequencing. Here we describe an optimized high-yield library preparation and sequencing protocol for TraDIS experiments and a novel software pipeline for analysis of the resulting data. The Bio-Tradis analysis pipeline is implemented as an extensible Perl library which can either be used as is, or as a basis for the development of more advanced analysis tools. This article can serve as a general reference for the application of the TraDIS methodology. KW - mechanisms KW - Transposon insertion sequencing KW - sequencing protocol KW - TraDIS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189667 VL - 32 IS - 7 ER - TY - JOUR A1 - Hershko-Shalev, Tal A1 - Odenheimer-Bergman, Ahuva A1 - Elgrably-Weiss, Maya A1 - Ben-Zvi, Tamar A1 - Govindarajan, Sutharsan A1 - Seri, Hemda A1 - Papenfort, Kai A1 - Vogel, Jörg A1 - Altuvia, Shoshy T1 - Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries JF - PLoS Genetics N2 - While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein. KW - prophage KW - Gifsy-1 KW - sRNA KW - IsrK Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166717 VL - 12 IS - 4 ER - TY - JOUR A1 - Read, Hannah M. A1 - Mills, Grant A1 - Johnson, Sarah A1 - Tsai, Peter A1 - Dalton, James A1 - Barquist, Lars A1 - Print, Cristin G. A1 - Patrick, Wayne M. A1 - Wiles, Siouxsie T1 - The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium JF - PeerJ N2 - Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments. KW - bioluminescence KW - lux KW - luciferase KW - biophotonic imaging KW - bioluminescence imaging KW - enteric pathogens KW - animal model KW - reporter genes KW - phenotypic microarray KW - biolog Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166576 VL - 4 IS - e2130 ER - TY - JOUR A1 - Espina, Laura A1 - Pagán, Rafael A1 - López, Daniel A1 - García-Gonzalo, Diego T1 - Individual Constituents from Essential Oils Inhibit Biofilm Mass Production by Multi-Drug Resistant Staphylococcus aureus JF - Molecules N2 - Biofilm formation by Staphylococcus aureus represents a problem in both the medical field and the food industry, because the biofilm structure provides protection to embedded cells and it strongly attaches to surfaces. This circumstance is leading to many research programs seeking new alternatives to control biofilm formation by this pathogen. In this study we show that a potent inhibition of biofilm mass production can be achieved in community-associated methicillin-resistant S. aureus (CA-MRSA) and methicillin-sensitive strains using plant compounds, such as individual constituents (ICs) of essential oils (carvacrol, citral, and (+)-limonene). The Crystal Violet staining technique was used to evaluate biofilm mass formation during 40 h of incubation. Carvacrol is the most effective IC, abrogating biofilm formation in all strains tested, while CA-MRSA was the most sensitive phenotype to any of the ICs tested. Inhibition of planktonic cells by ICs during initial growth stages could partially explain the inhibition of biofilm formation. Overall, our results show the potential of EOs to prevent biofilm formation, especially in strains that exhibit resistance to other antimicrobials. As these compounds are food additives generally recognized as safe, their anti-biofilm properties may lead to important new applications, such as sanitizers, in the food industry or in clinical settings. KW - Listeria monocytogenes KW - carvacrol KW - strains KW - essential oils KW - anti-biofilm KW - bacterial biofilms KW - food industry KW - antibacterial KW - inactivation KW - components KW - citrus KW - biofilms KW - Staphylococcus aureus KW - (+)-limonene KW - citral Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151845 VL - 20 SP - 11357 EP - 11372 ER - TY - JOUR A1 - Firdessa, Rebuma A1 - Good, Liam A1 - Amstalden, Maria Cecilia A1 - Chindera, Kantaraja A1 - Kamaruzzaman, Nor Fadhilah A1 - Schultheis, Martina A1 - Röger, Bianca A1 - Hecht, Nina A1 - Oelschlaeger, Tobias A. A1 - Meinel, Lorenz A1 - Lühmann, Tessa A1 - Moll, Heidrun T1 - Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB) JF - PLoS Neglected Tropical Diseases N2 - Background Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. Methodology/Principal Findings Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. Conclusions Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators. KW - resistance KW - activation KW - dendritic cells KW - Cutaneous leishmaniasis KW - topical treatment KW - biocide polyhexamethylene biguanide KW - experimental visceral leishmaniasis KW - drug-delivery systems KW - therapy KW - paromomycin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148162 VL - 9 IS - 10 ER - TY - JOUR A1 - Dembek, Marcin A1 - Barquist, Lars A1 - Boinett, Christine J. A1 - Cain, Amy K. A1 - Mayho, Matthew A1 - Lawley, Trevor D. A1 - Fairweather, Neil F. A1 - Fagan, Robert P. T1 - High-throughput analysis of gene essentiality and sporulation in Clostridium difficile JF - mBio N2 - Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen. KW - Bacillus subtilis KW - expression KW - spores KW - toxin KW - transcription KW - germination KW - transposition KW - metabolism KW - infection KW - in vitro Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143745 VL - 6 IS - 2 ER - TY - THES A1 - Sturm, Volker Jörg Friedrich T1 - \(^{19}F\) Magnetresonanztomographie zur Bildgebung von Infektionen im Zeitverlauf T1 - \(^{19}F\) magnetic resonance imaging to monitor the timecourse of bacterial infections in vivo N2 - Im Rahmen dieser Arbeit sollten die Möglichkeiten der MR Tomographie erkundet werden bakterielle Infektionen im Zeitverlauf darzustellen. Genauer gesagt sollte das Potential der MR Tomographie anhand eines durch eine Infektion induzierten lokalisierten Abszesses unter Verwendung dreier unterschiedlicher MRT Methoden untersucht werden: Mittels nativem \(T_2\) Kontrast; der Verwendung von superparamagnetischen Eisenoxid Partieln (USPIO) als \(T_2^*\) Kontrastmittel; und dem Einsatz von Perfluorkarbonen (PFC) als \(^{19}F\) MRT Marker (siehe Kapitel 3). Wie erwartet führte die durch die Infektion hervorgerufene Entzündung zu veränderten \(T_2\)-Zeiten, welche auf \(T_2\)-gewichteten MR Bildern eine Lokalisierung des Abszessbereiches erlauben. Jedoch eigneten sich diese Daten aufgrund der graduellen Änderung der \(T_2\)-Zeiten nicht, um eine klare Grenze zwischen Abszess und umliegendem Gewebe zu ziehen. Superparamagnetische Eisenoxidpartikel andererseit haben als MRT Kontrastmittel bereits in den letzten Jahren ihre Fähigkeit unter Beweis gestellt Entzündungen [53, 58, 64] darzustellen. Die Anreicherung dieser Partikel am Rande des Abszesses [53], wie sie auch in unseren MR Daten zu beobachten war, erlaubte eine relativ scharfe Abgrenzung gegenüber dem umgebenden Gewebe in der chronischen Phase der Infektion (Tag 9 p.i.). Hingegen genügte die nur sehr spärlichen Anreicherung von USPIO Partikeln in der akuten Phase der Infektion (Tag 3 p.i.) nicht für eine entsprechende Abgrenzung [58]. Aufgrund der sehr geringen biologischen Häufigkeit und den sehr kurzen Relaxationszeiten von endogenem Fluor eignen sich Perfluorkarbone als Markersubstanz in der MR Tomographie von biologischen Systemen. Insbesondere da PFC Emulsionen durch phagozytierende Zellen aufgenommen werden und im Bereich von Entzündungen akkumulieren [30, 59]. In dieser Arbeit konnte anhand der erhaltenen MRT Daten eine Akkumulation von Perfluorkarbonen nicht nur in der chronischen Phase, sondern auch in der akuten Phase nachgewiesen werden. Diese Daten erlauben somit zu allen untersuchten Zeitpunkten eine Abgrenzung zwischen Infektion und umliegenden Gewebe. Aufgrund der besagten Vorteile wurden die Perfluorkarbone gewählt, um die Möglichkeiten der MR Tomographie zu testen, quantitative Informationen über die schwere der Infektion zu liefern. Als Referenz für die Bakterienbelastung wurden die Biolumineszenzbildgebung (BLI) [49, 50] und die Standardmethode zur Bestimmung der Bakterienbelastung cfu (koloniebildenden Einheiten) herangezogen. Eine Gegenüberstellung der zeitlichen Verläufe der durch die Biolumineszenzbildgebung und durch die cfu erhaltenen Daten liefert eine qualitative Übereinstimmung mit den durch die 19F MR Tomographie erhaltenen Daten. Dies trifft hierbei sowohl auf die über den gesamten Infektionsbereich hinweg summierten Signalamplituden, als auch auf das Volumen zu, in dem Fluor am Ort der Infektion akkumuliert wurde. Im Gegensatz zur Methode der cfu Bestimmung sind die MR Tomographie und die Biolumineszenzbildgebung nicht invasiv und erlauben die Verfolgung des Infektionsverlaufes an einem einzelnen Individuum. Hierzu benötigt, im Gegensatz zur MR Tomographie, die Methode der Biolumineszenzbildgebung jedoch einen speziellen Pathogenstamm. Darüber hinaus ist hervorzuheben, dass die MR Tomographie zudem die Möglichkeit bietet auch morphologische Informationen über den Infektionsbereich und seine Umgebung zu akquirieren. Gerade weil jede dieser Methoden die mit der Infektion einhergehenden Prozesse aus einer leicht anderen Blickrichtung betrachtet, erscheint es sinnvoll diese etablierte Untersuchungsplattform bestehend aus MRT, BLI und cfu über die in dieser Arbeit bearbeitete Fragestellung hinaus näher zu untersuchen. Insbesondere der Aspekt inwieweit die drei Methoden sich gegenseitig ergänzen, könnte einen tieferen Einblick in die Wechselwirkung zwischen Pathogen und Wirt erlauben. Auch wenn für die betrachtete Fragestellung bereits der hierdurchgeführte semiquanitative Ansatz zur Bestimmung der relativen Fluormengen am Ort der Infektion ausreichte, so ist doch im Allgemeinen wünschenswert probenbezogen die Sensitivität der Spule und damit die Güte der Spulenabstimmung zu bestimmen. Hierzu ist jedoch die Aufnahme von \(B_1\)-Karten unabdingbar und wird entsprechend im Kapitel 4 \(Bloch-Siegert B_1^+-Mapping\) näher addressiert. Der Schwerpunkt liegt hierbei, wie der Kapitelname bereits andeutet, auf der Bloch-Siegert Methode, die insbesondere in der präsentierten Implementierung in einer Turbo/ Multi Spin Echo Sequenz eine effiziente Nutzung der relativ langen \(T_\)2-Zeiten der Perfluorkarbone erlaubt. Da zudem die Bloch-Siegert-Methode eine rein phasenbasierte Methode ist, kann neben der aus den Daten erzeugten \(B_1\)-Karte zugleich ein unverfälschtes Magnitudenbild generiert werden, wodurch eine sehr effiziente Nutzung der vorhandenen Messzeit ermöglicht wird. Diese Eigenschaft ist insbesondere für \(^{19}F\) Bildgebung von besonderem Interesse, da hier für jede Messung, aufgrund der üblicherweise relativ geringen Konzentration an Fluoratomen, lange Messzeiten benötigt werden. Zusammenfassend konnte anhand des untersuchten Tiermodells sowohl die Fähigkeit der MR Tomographie nachgewiesen werden Infektionen im Zeitverlauf darzustellen, als auch die Fähigkeit der MR Tomographie quantitative Informationen über den Verlauf der Infektion zu liefern. Desweiteren konnte eine Möglichkeit aufgezeigt werden, welche das Potential hat in vertretbarem Zeitrahmen auch in vivo B1+-Karten auf dem Fluorkanal zu erstellen und so einen zentralen Unsicherheitsfaktor, für Relaxometry und absolute Quantifizierung von \(^{19}F\) Daten in vivo, zu beseitigen. N2 - The main focus of this work is to investigate the potential of magnetic resonance imaging (MRI) to monitor the timecourse of bacterial infections in vivo. More specifically, it focuses on the ability to localize and assess an infection-induced localized bulky abscess using three different MRI methods: the utilization of native \(T_2\) contrast; the usage of super paramagnetic iron oxide nanoparticles (USPIO) as MRI \(T_2^*\) contrast agents; and the application of perfluorcarbons (PFC) as \(^{19}F\) MRI marker (see chapter 3). Study results demonstrated that, as expected the altered \(T_2\) values present in the abscess area permit localization of the infection when using \(T_2\) weighted data. The precise boundary of the abscess, however, could not be determined due to the gradual change of the \(T_2\) values in the area of the infection. Conforming to other studies [53, 58], the MR-detected accumulation of USPIO particles along the abscess rim allowed definition of a fairly exact demarcation line between the abscess and surrounding tissue during the chronic phase of the infection (day 9 p.i.). During the acute phase of the infection (day 3 p.i.), however, the particle accumulation at the abscess rim was too sparse for precise boundary definition [58]. Because of their extremely low biological abundance and the very short relaxation times of endogenous fluorine, PFCs can be imaged background-free in a biological system. Moreover, as emulsified PFCs were taken up by phagocytosing cells and accumulated at the site of inflammation [30, 59], the acquired MRI data showed PFC accumulation during both the chronic and acute phases of infection. It was thus possible to differentiate between the abscess and surrounding tissue at each examined time point. Due to the described advantages, PFCs were chosen to evaluate with MRI the infection severity. As a bacterial burden reference, colony forming units (cfu) and bioluminescence imaging (BLI) [49, 50] were selected. Observation of BLI, cfu and \(^{19}F\) MRI data showed qualitative correlation during the investigated time course. This was true for the accumulated \(^{19}F\) MR signal in the area of infection and for the \(^{19}F\) MR signal volume. Additionally, unlike the cfu method MRI and BLI are non-invasive and thus data can be gathered at multiple time points. However, contrary to BLI, MRI does not require a special pathogen strain. Moreover, it can provide morphological data from an abscess and the surrounding tissue. Because the data delivered by each of these three methods (MRI, BLI and cfu), are based on alternative approaches, additional examinations of the established platform are suggested. For example, the extent to which the methods supplement each other may provide deeper insight into the interaction between pathogen and host. Even though the chosen semi quantitative approach was sufficient in the context of the evaluated issues to estimate the relative fluorine amount at the site of infection, it is in general desirable for each quantification to determine the sensitivity of the coil per sample. To address this issue the Bloch Siegert (BS) based \(B_1\) mapping method implemented in a turbo/ multi spin echo (TSE/MSE) sequence is presented in Chapter 4 Bloch-Siegert \(B_1^+\)-Mapping. Such a sequence allows effective use of the relatively long PFC \(T_2\) times and encodes BS information solely into the phase data. Thus, a \(B_1\) map can be created in addition to the unaltered TSE/MSE magnitude image. In the context of \(^{19}F\) imaging, this is of special interest due to the usually low amounts of fluorine resulting in long measurement times. In conclusion, it was shown that MRI not only enables visualization of the temporal behavior of infections on the investigated animal model, but it can also provide quantitative information about the progress of the infection. Additionally, a method potentially allowing in vivo B1+ mapping was introduced. This is an important step to improve the reliability of relaxometry and absolute quantification of in vivo \(^{19}F\) MRI. KW - Kernspintomografie KW - Bakterielle Infektion KW - 19F MR KW - Perfluorkarbon KW - Infektionsbildgebung KW - Bloch Siegert KW - B1 Mapping KW - Kontrastmittel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122851 ER - TY - JOUR A1 - Neumann, Yvonne A1 - Ohlsen, Knut A1 - Donat, Stefanie A1 - Engelmann, Susanne A1 - Kusch, Harald A1 - Albrecht, Dirk A1 - Cartron, Michael A1 - Hurd, Alexander A1 - Foster, Simon J. T1 - The effect of skin fatty acids on Staphylococcus aureus JF - Archives of Microbiology N2 - Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS KW - S. aureus KW - skin fatty acid KW - C-6-H KW - resistance Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121657 VL - 197 ER - TY - JOUR A1 - Masic, Anita A1 - Valencia Hernandez, Ana Maria A1 - Hazra, Sudipta A1 - Glaser, Jan A1 - Holzgrabe, Ulrike A1 - Hazra, Banasri A1 - Schurigt, Uta T1 - Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice JF - PLoS One N2 - Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. KW - leishmania major KW - promastigotes KW - apoptosis KW - mitochondria KW - parasitic diseases KW - leishmania KW - leishmaniasis KW - mouse models Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125354 VL - 10 IS - 11 ER - TY - JOUR A1 - Schneider, Johannes A1 - Klein, Teresa A1 - Mielich-Süss, Benjamin A1 - Koch, Gudrun A1 - Franke, Christian A1 - Kuipers, Oskar P. A1 - Kovács, Ákos T. A1 - Sauer, Markus A1 - Lopez, Daniel T1 - Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium JF - PLoS Genetics N2 - Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. KW - membrane proteins KW - gene expression KW - bacillus subtilis KW - fluorescence microscopy KW - cell fusion KW - signal transduction KW - gene regulation KW - lipids Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125577 VL - 11 IS - 4 ER - TY - JOUR A1 - Glaser, Jan A1 - Schurigt, Uta A1 - Suzuki, Brian M. A1 - Caffrey, Connor R. A1 - Holzgrabe, Ulrike T1 - Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl JF - Molecules N2 - Bornyl caffeate (1) was previously isolated by us from Valeriana (V.) wallichii rhizomes and identified as an anti-leishmanial substance. Here, we screened a small compound library of synthesized derivatives 1–30 for activity against schistosomula of Schistosoma (S.) mansoni. Compound 1 did not show any anti-schistosomal activity. However, strong phenotypic changes, including the formation of vacuoles, degeneration and death were observed after in vitro treatment with compounds 23 (thymyl cinnamate) and 27 (eugenyl cinnamate). Electron microscopy analysis of the induced vacuoles in the dying parasites suggests that 23 and 27 interfere with autophagy. KW - thymyl cinnamate KW - vacuoles KW - autophagy KW - anti-schistosomal activity KW - schistosoma KW - schistosomula KW - parasite KW - eugenyl cinnamate Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125712 VL - 20 ER - TY - JOUR A1 - Frank, Benjamin A1 - Marcu, Ana A1 - de Oliveira Almeida Petersen, Antonio Luis A1 - Weber, Heike A1 - Stigloher, Christian A1 - Mottram, Jeremy C. A1 - Scholz, Claus Jürgen A1 - Schurigt, Uta T1 - Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210 JF - Parasites & Vectors N2 - Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients. KW - autophagy KW - BNIP3 KW - CTSE KW - electron tomography KW - leishmania major KW - macrophages KW - miRNAs KW - MTOR KW - siRNAs KW - transmission electron microscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124997 VL - 8 IS - 404 ER - TY - JOUR A1 - Abda, Ebrahim M. A1 - Krysciak, Dagmar A1 - Krohn-Molt, Ines A1 - Mamat, Uwe A1 - Schmeisser, Christel A1 - Förstner, Konrad U. A1 - Schaible, Ulrich E. A1 - Kohi, Thomas A. A1 - Nieman, Stefan A1 - Streit, Wolfgang R. T1 - Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and \(\beta\)-Lactamase Expression JF - Frontiers in Microbiology N2 - Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas rnaltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the Li and L2 beta-lactamases in response to beta-lactam treatment. Here we report that the patient isolate S. rnaltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, bleu and bla(L2) were transcriptionally the most strongly upregulated genes. Promoter fusions of b/a(L1) and b/a(L2) genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously bla(L2) expressing cells as identified by RNA(seq) analysis. Overexpression of cornE in S. maltophilia K279a reduced the level of cells that were in a bla(L2)-ON mode to 1% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including b/a(L1), b/a(L2), and comE. KW - xanthomonas maltophilia KW - gram-negative bacteria KW - RNA-seq KW - pseudomas aeruginosa KW - antibiotic resistance KW - colony morphotypes KW - beta-lactamases KW - K279a KW - Stenotrophomonas maltophilia KW - phenotypic heterogeneity KW - persister cells KW - streptococcus pneumoniae KW - nosocomial pathogen KW - membrane vesicles KW - sinorhizobium fredii NGR234 KW - red fluorescent protein KW - escherichia coli Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136446 VL - 6 IS - 1373 ER - TY - JOUR A1 - von Bohl, Andreas A1 - Kuehn, Andrea A1 - Simon, Nina A1 - Nkwouano Ngongang, Vanesa A1 - Spehr, Marc A1 - Baumeister, Stefan A1 - Przyborski, Jude M. A1 - Fischer, Rainer A1 - Pradel, Gabriele T1 - A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny JF - Malaria Journal N2 - Background During development in human erythrocytes, Plasmodium falciparum parasites display a remarkable number of adhesive proteins on their plasma membrane. In the invasive merozoites, these include members of the PfMSP1 and PfAMA1/RON complexes, which facilitate contact between merozoites and red blood cells. In gametocytes, sexual precursor cells mediating parasite transmission to the mosquito vector, plasma membrane-associated proteins primarily belong to the PfCCp and 6-cys families with roles in fertilization. This study describes a newly identified WD40-repeat protein unique to Plasmodium species that associates with adhesion protein complexes of both merozoites and gametocytes. Methods The WD40-repeat protein-like protein PfWLP1 was identified via co-immunoprecipitation assays followed by mass spectrometry and characterized using biochemical and immunohistochemistry methods. Reverse genetics were employed for functional analysis. Results PfWLP1 is expressed both in schizonts and gametocytes. In mature schizonts, the protein localizes underneath the merozoite micronemes and interacts with PfAMA1, while in gametocytes PfWLP1 primarily accumulates underneath the plasma membrane and associates with PfCCp1 and Pfs230. Reverse genetics failed to disrupt the pfwlp1 gene, while haemagglutinin-tagging was feasible, suggesting a crucial function for PfWLP1 during blood stage replication. Conclusions This is the first report on a plasmodial WD40-repeat protein associating with cell adhesion proteins. Since WD40 domains are known to mediate protein–protein contact by serving as a rigid scaffold for protein interactions, the presented data suggest that PfWLP1 supports the stability of adhesion protein complexes of the plasmodial blood stages. KW - PfCCp protein KW - Pfs230 KW - PfAMA1 KW - WD40 KW - gametocyte KW - microneme KW - merozoite KW - plasmodium falciparum KW - malaria Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139728 VL - 14 IS - 435 ER - TY - JOUR A1 - Sass, Andrea M. A1 - Van Acker, Heleen A1 - Förstner, Konrad U. A1 - Van Nieuwerburgh, Filip A1 - Deforce, Dieter A1 - Vogel, Jörg A1 - Coenye, Tom T1 - Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315 JF - BMC Genomics N2 - Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation. KW - persistence KW - genomic islands KW - pathogen KW - identification KW - bacteria KW - small RNAs KW - translation initiation KW - cepedia complex KW - global gene expression KW - SEQ KW - resistance KW - burkholderia cenocepacia KW - biofilms KW - dRNA-Seq KW - transcription start site KW - antisense RNA Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139748 VL - 16 IS - 775 ER - TY - JOUR A1 - Fan, Ben A1 - Li, Lei A1 - Chao, Yanjie A1 - Förstner, Konrad A1 - Vogel, Jörg A1 - Borriss, Rainer A1 - Wu, Xiao-Qin T1 - dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42 JF - PLoS One N2 - Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions. KW - gene expression KW - subtilis genome KW - enterica serovar thphimurium KW - small regulatory RNAs KW - binding protein HFQ KW - escherichia coli KW - messenger RNA KW - transcriptional landscape KW - mycobacterium tuberculosis KW - listeria monocytogenes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138369 VL - 10 IS - 11 ER - TY - THES A1 - Frank, Benjamin T1 - Untersuchungen zur Autophagieinduktion in Leishmania major-infizierten Knochenmarksmakrophagen T1 - Analyses of autophagy induction in Leishmania major-infected bone marrow-derived macrophages N2 - Die von der WHO zu den 17 wichtigsten NTDs gezählte Leishmaniose wird durch intrazelluläre Parasiten der Gattung Leishmania hervorgerufen. Der Lebenszyklus der Parasiten besteht aus zwei Phasen. Die länglichen und beweglichen Promastigoten kennzeichnen die Phase in der Sandmücke – der Vektor der Leishmaniose. Hingegen ist die Phase im Säugerwirt durch runde unbewegliche Amastigoten charakterisiert. Aufgrund des Mangels an potenten antileishmanialen Therapien wurde in der vorliegenden Arbeit die Interaktion zwischen L. m. Parasiten und der Hauptwirtszelle, der Makrophage, v. a. in Hinblick auf autophage Prozesse in den infizierten Makrophagen näher untersucht, um demgemäß neue Erkenntnisse zu gewinnen, welche bei der Herstellung zukünftiger anti-leishmanialer Medikamente helfen könnten. Bei der Autophagie handelt es sich um einen katabolen Prozess, wodurch Zellen bei Nahrungsmangel oder zellulärem Stress ihre Homöostase erhalten können. Durch diesen Prozess können überflüssige oder beschädigte Organellen recycelt werden, um die Funktionen der Zelle aufrechtzuerhalten. Daneben übernimmt Autophagie auch eine essenzielle Rolle bei der Abwehr von ins Zytosol eindringenden Pathogenen. Mittels des neu etablierten totalen Autophagiescore konnte festgestellt werden, dass Autophagie in L. m.-infizierten BMDM induziert wird. Die intrazellulären Amastigoten werden durch Autophagie in den BMDM verdaut. Die erhöhte autophage Aktivität konnte zudem durch Western-Blot-Analysen der autophagierelevanten Proteine ATG5, LC3B und UB bestätigt werden. Die molekulargenetischen Untersuchungen von L. m.-infizier-ten BMDM mithilfe von Affymetrix Microarrays führten zu einem Netzwerk aus autophagierelevanten und infektionsspezifischen Genen, welches als LISA bezeichnet worden ist. Hier hat sich ebenfalls eine starke Verknüpfung von autophagierelevanten Genen und den Genen der Glykolyse, einem zweiten katabolen Prozess, gezeigt. Zudem konnten zwei weitere autophagierelevante und infektionsspezifische Gene außerhalb von LISA identifiziert werden, nämlich Bnip3 und Ctse, welche im Anschluss genauer untersucht worden sind. Bei beiden Genen konnte auf Proteinebene gezeigt werden, dass sie in L. m.-infizierten BMDM signifikant erhöht sind. Durch siRNA-Analysen konnte überdies beobachtet werden, dass beide für die erfolgreiche Elimination der Amastigoten essenziell sind. Somit konnte mit den Proteinen BNIP3 und CTSE zwei potenzielle neue Ansatzpunkte für mögliche zukünftige antileishmaniale Therapien gefunden werden. Auch die in LISA enthaltenen Gene stellen prinzipiell vielversprechende Ziele für künftige Medikamente gegen Leishmaniose dar. Durch all diese Untersuchungen kommt man dem Ziel einer neuen, gezielten und nebenwirkungsärmeren Behandlung der Leishmaniose einen Schritt näher. N2 - Leishmaniasis, listed by the WHO to be one of the 17 most important NTDs, is caused by intracellular parasites of the genus Leishmania. The life cycle of the parasites consists of two stages. The oblong and motile promastigotes characterize the stage in the sand fly, the vector of leishmaniasis. However, the stage in the vertebrate host is characterized by round immotile amastigotes. Due to a lack of capable antileishmanial therapies, the interaction between L. m. parasites and their main host cell, the macrophage, was investigated in the present work, huge focus on autophagic processes in infected macrophages. Our goal was to get new insights for the future production of antileishmanial drugs. Autophagy is a catabolic process whereby cells are able to maintain their homeostasis in times of starvation or cellular stress. During to this process, redundant or damaged organelles are recycled in order to sustain cellular viability. Furthermore, autophagy has an essential role in the defense of pathogens invading the cytosol. The newly established total autophagy score showed an autophagy induction in L. m.-infected BMDM. Intracellular amastigotes are digested by autophagy in BMDM. The increased autophagic activity could also be confirmed by western-blot analyses of the autophagy-relevant proteins ATG5, LC3B, and UB. Molecular genetic investigations of L. m.-infected BMDM by Affymetrix microarrays led to a network of autophagy-relevant and infection-specific genes, which was called LISA. Additionally, it showed a strong connection between autophagy-relevant genes and genes of the glycolysis, a second catabolic process. Moreover, we identified and further characterized two additional autophagy-relevant genes, Bnip3 and Ctse, which were not included in LISA. Both genes were significantly overexpressed on protein level in L. m.-infected BMDM. By siRNA analyses we also demonstrated their importance for successful elimination of amastigotes. Therefore, both proteins, BNIP3 and CTSE, could be new potential targets for possible future antileishmanial therapies. In addition, the genes included in LISA might be promising targets for future drugs against leishmaniasis. Due to all these investigations we are one step closer to our goal of a targeted and safe therapy of leishmaniasis. KW - Autophagie KW - Leishmania major KW - Cathepsin E KW - BNIP3 KW - Elektronenmikroskopie KW - Autophagie KW - Leishmania major KW - Cathepsin E KW - BNIP3 KW - Elektronenmikroskopie KW - Microarray KW - siRNA KW - Autophagiescore Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137277 ER - TY - JOUR A1 - Beiss, Veronique A1 - Spiegel, Holger A1 - Boes, Alexander A1 - Scheuermayer, Matthias A1 - Reimann, Andreas A1 - Schillberg, Stefan A1 - Fischer, Rainer T1 - Plant expression and characterization of the transmission-blocking vaccine candidate PfGAP50 JF - BMC Biotechnology N2 - Background: Despite the limited success after decades of intensive research and development efforts, vaccination still represents the most promising strategy to significantly reduce the disease burden in malaria endemic regions. Besides the ultimate goal of inducing sterile protection in vaccinated individuals, the prevention of transmission by so-called transmission blocking vaccines (TBVs) is being regarded as an important feature of an efficient malaria eradication strategy. Recently, Plasmodium falciparum GAP50 (PfGAP50), a 44.6 kDa transmembrane protein that forms an essential part of the invasion machinery (glideosome) multi-protein complex, has been proposed as novel potential transmission-blocking candidate. Plant-based expression systems combine the advantages of eukaryotic expression with a up-scaling potential and a good product safety profile suitable for vaccine production. In this study we investigated the feasibility to use the transient plant expression to produce PfGAP50 suitable for the induction of parasite specific inhibitory antibodies. Results: We performed the transient expression of recombinant PfGAP50 in Nicotiana benthamiana leaves using endoplasmatic reticulum (ER) and plastid targeting. After IMAC-purification the protein yield and integrity was investigated by SDS-PAGE and Western Blot. Rabbit immune IgG derived by the immunization with the plastidtargeted variant of PfGAP50 was analyzed by immune fluorescence assay (IFA) and zygote inhibition assay (ZIA). PfGAP50 could be produced in both subcellular compartments at different yields IMAC (Immobilized Metal Affinity Chromatography) purification from extract yielded up to 4.1 mu g/g recombinant protein per fresh leaf material for ER-retarded and 16.2 mu g/g recombinant protein per fresh leave material for plasmid targeted PfGAP50, respectively. IgG from rabbit sera generated by immunization with the recombinant protein specifically recognized different parasite stages in immunofluorescence assay. Furthermore up to 55 % inhibition in an in vitro zygote inhibition assay could be achieved using PfGAP50-specific rabbit immune IgG. Conclusions: The results of this study demonstrate that the plant-produced PfGAP50 is functional regarding the presentation of inhibitory epitopes and could be considered as component of a transmission-blocking malaria vaccine formulation. KW - PFS25 KW - plastid targeting KW - plant-made vaccines KW - agroinfiltration KW - gametes KW - sexual stage KW - plasmodium falciparum KW - membrane KW - antibodies KW - immunization KW - RTS,S/AS01 malaria vaccine KW - recombinant proteins KW - cost-effectiveness KW - purification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137327 VL - 15 IS - 108 ER - TY - JOUR A1 - Okoro, Chinyere K. A1 - Barquist, Lars A1 - Connor, Thomas R. A1 - Harris, Simon R. A1 - Clare, Simon A1 - Stevens, Mark P. A1 - Arends, Mark J. A1 - Hale, Christine A1 - Kane, Leanne A1 - Pickard, Derek J. A1 - Hill, Jennifer A1 - Harcourt, Katherine A1 - Parkhill, Julian A1 - Dougan, Gordon A1 - Kingsley, Robert A. T1 - Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa JF - PLoS Neglected Tropical Diseases N2 - Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population. KW - genome sequence KW - infection KW - pathogenicity KW - children KW - disease KW - adults KW - identification KW - Escherichia coli KW - virulence Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143779 VL - 9 IS - 3 ER - TY - JOUR A1 - Berg, Stefan A1 - Schelling, Esther A1 - Hailu, Elena A1 - Firdessa, Rebuma A1 - Gumi, Balako A1 - Erenso, Girume A1 - Gadisa, Endalamaw A1 - Mengistu, Araya A1 - Habtamu, Meseret A1 - Hussein, Jemal A1 - Kiros, Teklu A1 - Bekele, Shiferaw A1 - Mekonnen, Wondale A1 - Derese, Yohannes A1 - Zinsstag, Jakob A1 - Ameni, Gobena A1 - Gagneux, Sebastien A1 - Robertson, Brian D A1 - Tschopp, Rea A1 - Hewinson, Glyn A1 - Yamuah, Lawrence A1 - Gordon, Stephen V A1 - Aseffa, Abraham T1 - Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection JF - BMC Infectious Diseases N2 - Background: Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extra-pulmonary TB in Ethiopia. Methods: Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. Results: No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported "contact with other TB patient" more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. Conclusions: The study suggests a complex role for multiple interacting factors in the epidemiology of extra-pulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia. KW - zoonotic KW - Mycobacterium KW - Ethiopia KW - tuberculosis KW - Bovis KW - pulmonary KW - extrapulmonary KW - lymphadenitis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143935 VL - 15 IS - 112 ER - TY - JOUR A1 - Rodriguez, Héctor A1 - Rico, Sergio A1 - Yepes, Ana A1 - Franco-Echevarría, Elsa A1 - Antoraz, Sergio A1 - Santamaría, Ramón I. A1 - Díaz, Margerita T1 - The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor JF - Frontiers in Microbiology N2 - Two-component systems (TCSs) are the most important sensing mechanisms in bacteria. In Streptomyces, TCSs-mediated responses to environmental stimuli are involved in the regulation of antibiotic production. This study examines the individual role of two histidine kinases (HKs), AbrC1 and AbrC2, which form part of an atypical TCS in Streptomyces coelicolor. gRT-PCR analysis of the expression of both kinases demonstrated that both are expressed at similar levels in NB and NMMP media. Single deletion of abrC1 elicited a significant increase in antibiotic production, while deletion of abrC2 did not have any clear effect. The origin of this phenotype, probably related to the differential phosphorylation ability of the two kinases, was also explored indirectly, analyzing the toxic phenotypes associated with high levels of phosphorylated RR. The higher the AbrC3 regulator phosphorylation rate, the greater the cell toxicity. For the first time, the present work shows in Streptomyces the combined involvement of two different HKs in the response of a regulator to environmental signals. Regarding the possible applications of this research, the fact that an abrC1 deletion mutant overproduces three of the S. coelicolor antibiotics makes this strain an excellent candidate as a host for the heterologous production of secondary metabolites. KW - halstedii JM8 KW - biosynthesis KW - expression mutants KW - domain genes A3(2) KW - two-component systems KW - Streptomyces KW - antibiotic production KW - histidine kinases KW - heterologous production KW - activation KW - response regulator KW - PCR Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143048 VL - 6 IS - 450 ER - TY - JOUR A1 - Afonso-Grunz, Fabian A1 - Hoffmeier, Klaus A1 - Müller, Sören A1 - Westermann, Alexander J. A1 - Rotter, Björn A1 - Vogel, Jörg A1 - Winter, Peter A1 - Kahl, Günter T1 - Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells JF - BMC Genomics N2 - Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro-and eukaryotic cells without prior fixation or physical disruption of the interaction. Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium. KW - complete genome sequence KW - secretion systems KW - RNA-Seq KW - deepSuperSAGE KW - transcriptome KW - gene expression KW - serovar Typhimurium KW - human macrophages KW - epithelial cells KW - infection KW - SuperSAGE KW - receptors KW - Dual 3'seq KW - MACE KW - tag based KW - simultaneous KW - genome wide KW - gene expression profiling KW - host pathogen interaction KW - Salmonella enterica Typhimurium strain SL1344 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143230 VL - 16 IS - 323 ER - TY - JOUR A1 - Boes, Alexander A1 - Spiegel, Holger A1 - Voepel, Nadja A1 - Edgue, Gueven A1 - Beiss, Veronique A1 - Kapelski, Stephanie A1 - Fendel, Rolf A1 - Scheuermayer, Matthias A1 - Pradel, Gabriele A1 - Bolscher, Judith M. A1 - Behet, Marije C. A1 - Dechering, Koen J. A1 - Hermsen, Cornelus C. A1 - Sauerwein, Robert W. A1 - Schillberg, Stefan A1 - Reimann, Andreas A1 - Fischer, Rainer T1 - Analysis of a multi-component multi-stage malaria vaccine candidate—tackling the cocktail challenge JF - PLoS ONE N2 - Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17–25 μg/ml), the blood stage (40–60 μg/ml) and the sexual stage (1.75 μg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy. KW - malaria KW - vaccines KW - antibodies KW - P. falciparum Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173092 VL - 10 IS - 7 ER - TY - JOUR A1 - Nguyen, Minh Thu A1 - Kraft, Beatrice A1 - Yu, Wenqi A1 - Demicrioglu, Dogan Doruk A1 - Hertlein, Tobias A1 - Burian, Marc A1 - Schmaler, Mathias A1 - Boller, Klaus A1 - Bekeredjian-Ding, Isabelle A1 - Ohlsen, Knut A1 - Schittek, Birgit A1 - Götz, Friedrich T1 - The vSa\(\alpha\) Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells JF - PLoS Pathogens N2 - All Staphylococcus aureus genomes contain a genomic island, which is termed vSa\(\alpha\) and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the vSa\(\alpha\) islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I vSa\(\alpha\) island. Since the contribution of the lpl gene cluster encoded in the vSa\(\alpha\) island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the vSa\(\alpha\) encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes high-lights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor. KW - resistant Staphylococcus-aureus KW - bacterial lipoproteins KW - internalization KW - evolution KW - fibronectin-binding protein KW - toll-like receptor 2 KW - epithelial cells KW - genome sequence KW - activation KW - mechanisms Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151856 VL - 11 IS - 6 ER - TY - JOUR A1 - Papenfort, Kai A1 - Vogel, Jörg T1 - Small RNA functions in carbon metabolism and virulence of enteric pathogens JF - Frontiers in Cellular and Infection Microbiology N2 - Enteric pathogens often cycle between virulent and saprophytic lifestyles. To endure these frequent changes in nutrient availability and composition bacteria possess an arsenal of regulatory and metabolic genes allowing rapid adaptation and high flexibility. While numerous proteins have been characterized with regard to metabolic control in pathogenic bacteria, small non-coding RNAs have emerged as additional regulators of metabolism. Recent advances in sequencing technology have vastly increased the number of candidate regulatory RNAs and several of them have been found to act at the interface of bacterial metabolism and virulence factor expression. Importantly, studying these riboregulators has not only provided insight into their metabolic control functions but also revealed new mechanisms of post-transcriptional gene control. This review will focus on the recent advances in this area of host-microbe interaction and discuss how regulatory small RNAs may help coordinate metabolism and virulence of enteric pathogens. KW - sRNA KW - carbon metabolism KW - Hfq KW - CsrA KW - virulence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197520 SN - 2235-2988 VL - 4 IS - 91 ER - TY - JOUR A1 - Cull, Benjamin A1 - Lima Prado Godinho, Joseane A1 - Fernandes Rodrigues, Juliany Cola A1 - Frank, Benjamin A1 - Schurigt, Uta A1 - Williams, Roderick AM A1 - Coombs, Graham H A1 - Mottram, Jeremy C T1 - Glycosome turnover in Leishmania major is mediated by autophagy JF - Autophagy N2 - Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes. KW - ATG8 KW - Leishmania KW - TEM KW - glycosome KW - protozoan parasite KW - ATG KW - autophagy-related KW - GFP KW - green fluorescent protein KW - MVT KW - multivesicular tubule KW - RFP KW - red fluorescent protein KW - transmission electron microscopy KW - adaptation KW - autophagy KW - mC KW - mCherry KW - fluorescent protein Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150277 VL - 10 IS - 12 ER - TY - THES A1 - Schiller, Roswitha Dorothee T1 - Studien zu Virulenzeigenschaften typischer und atypischer uropathogener Escherichia coli T1 - Studies on virulence properties of typical and atypical uropathogenic Escherichia coli N2 - Die Forschungsergebnisse der letzten Jahre liefern immer mehr Hinweise darauf, dass eine klare Unterscheidung von Fitness- und Virulenzfaktoren in vielen Fällen, insbesondere bei extraintestinal pathogenen Escherichia coli, nicht möglich ist. So lässt sich auch bei Harnwegsinfektionen verursachenden E. coli den bakteriellen und teils stammspezifischen Faktoren oftmals nicht eindeutig eine typische Virulenz- oder Fitness-assoziierte Funktion zuordnen. Zudem werden in neueren Studien immer häufiger atypische uropathogene Isolate von E. coli beschrieben, die in ihrem „Virulenzrepertoire“ deutlich von typischen uropathogenen E. coli (UPEC) abweichen, da sie keine klassischen UPEC-Virulenzfaktoren aufweisen. In dieser Arbeit wurden daher Virulenzeigenschaften typischer als auch atypischer UPEC untersucht. Der Effekt eines bestimmten bakteriellen Faktors auf den Wirtsorganismus wird teilweise indirekt durch sekundäre Modifikation bedingt. Dies offenbart sich beispielsweise am Autotransporterprotein AIDA-I, dessen Konformation durch posttranslationale Glykosylierung stabilisiert wird, wodurch es seine Funktionalität als Adhäsin erhält. Da bisherige Studien zum AIDA-I homologen Autotransporterprotein Antigen 43 (Ag43) auf der Analyse von künstlich glykosyliertem Protein basieren, lag ein Schwerpunkt dieser Arbeit auf der Untersuchung der natürlichen Glykosylierung von Ag43 in UPEC Stamm 536. Es zeigte sich, dass beide Ag43-Varianten von E. coli Stamm 536 natürlicherweise glykosyliert vorliegen, der Grad der Glykosylierung jedoch wesentlich geringer ausfällt als bei natürlich glykosyliertem AIDA-I. Inwieweit die natürliche Glykosylierung von Ag43 zu dessen Funktionalität beiträgt, kann erst durch die Identifizierung der für die Ag43-Glykosylierung verantwortlichen Glykosyltransferase geklärt werden. Die in silico-Analyse des Genoms von UPEC Stamm 536 für potentielle Glykosyltransferasen von Ag43 lieferte neun Kandidatengene. Die Gene wurde teils im Wildtyp-Hintergrund, teils im rfaH-negativen Hintergrund von E. coli Stamm 536 deletiert und die Mutanten im Anschluss phänotypisch charakterisiert. Die Deletion der Kandidatengene waaF, waaG und waaQ, die für Glykosyltransferasen des LPS-Biosynthesesystems kodieren, führte zu den deutlichsten Unterschieden in Bezug auf Motilität, Curli/Zellulose-Produktion, Hämolyseaktivität und Expression von Typ 1 Fimbrien. Der Einfluss des „knock-out“ der Kandidatengene auf die Glykosylierung von Ag43 muss in weiterführenden Studien untersucht werden. Zur Charakterisierung des uropathogenen Virulenzpotentials verschiedener E. coli Stämme in vivo hat sich in den letzten Jahren das murine Modell der aufsteigenden Harnwegsinfektion etabliert. Mit Hilfe dieses Modells wurden in der vorliegenden Arbeit sowohl spezifische Deletionsmutanten prototypischer UPEC als auch atypische E. coli Harnwegsisolate bezüglich ihrer Urovirulenz getestet und verglichen. Bei der Untersuchung der klassischen UPEC lag der Fokus auf der möglichen Urovirulenzmodulation durch die folgenden spezifischen Faktoren: dem Autotransporterprotein Ag43, dem „Response regulator“ UvrY, dem Polyketid Colibactin sowie dem Exopolysaccharid poly-β-1,6-N-Acetylglucosamin (PGA). Für Ag43 war bei der Etablierung einer Harnwegsinfektion keine eindeutige Funktion feststellbar. Es ist jedoch denkbar, dass Ag43 zur Langzeitpersistenz im Harnwegstrakt beitragen kann, was in weiteren Studien belegt werden sollte. Die Expression von UvrY in der natürlichen uvrY-Deletionsmutante UPEC Stamm 536 ließ keine Erhöhung des Urovirulenzpotentials im Mausmodell erkennen. In diesem Zusammenhang konnte allerdings gezeigt werden, dass die Expression des Genotoxins Colibactin in UPEC Stamm 536 dessen Virulenz signifikant herabsetzte. Die Untersuchungen zur Relevanz des Exopolysaccharids PGA belegen deutlich, dass PGA für die Langzeitpersistenz von E. coli im murinen Harnwegstrakt benötigt wird. Für die initiale Kolonisierung scheint PGA hingegen keine Bedeutung zu haben. Für atypische UPEC Isolate, die Charakteristika von STEC und EAEC zeigen und sich in ihrem Virulenzmuster deutlich von prototypischen UPEC unterscheiden, ließ sich im murinen Modell der aufsteigenden Harnwegsinfektion, verglichen mit dem UPEC Modellorganismus 536, ein ähnliches, teils sogar erhöhtes uropathogenes Virulenzpotential nachweisen. Die Ergebnisse der Arbeit untermauern somit die heutige Vorstellung bezüglich der Entwicklung und Etablierung einer Harnwegsinfektion, dass verschiedene E. coli Stämme unterschiedliche (Kontroll-) Mechanismen entwickelt haben, um erfolgreich den Harnwegstrakt kolonisieren und eine Infektion auslösen zu können. Zudem weisen sie darauf hin, dass diese Fähigkeit nicht auf Isolate typischer phylogenetischer UPEC Entwicklungslinien beschränkt und auf das Vorhandensein charakteristischer UPEC Virulenzfaktoren angewiesen ist. N2 - Research findings over the last years indicate that in many cases, including extraintestinal pathogenic Escherichia coli, a clear distinction between fitness and virulence factors is not possible. Accordingly, the classical distinction of often strain-specific virulence- and fitness-related traits of uropathogenic E. coli (UPEC) can often not be made. Furthermore, recent studies describe atypical UPEC isolates. These isolates remarkably differ in their “virulence repertoire” compared to typical UPEC, because they lack classical UPEC-related virulence factors. Therefore, the aim of the present study was the investigation of virulence properties of typical as well as atypical UPEC strains. The effect of a certain bacterial factor upon the host organism is in part indirectly influenced by secondary modifications. For instance, the conformation of the autotransporter protein AIDA-I is stabilized by posttranslational glycosylation which in turn confers its functionality as an adhesin. Prior studies on the AIDA-I homologous autotransporter protein antigen 43 (Ag43) are based on the analysis of the artificially glycosylated protein. Thus, a key aspect of the current work was to elucidate the naturally occurring glycosylation of Ag43 in UPEC strain 536. For both Ag43 variants of E. coli 536 natural glycosylation was detected. However, Ag43 was less glycosylated than naturally glycosylated AIDA-I. The future identification of the glycosyltransferase responsible for natural glycosylation of Ag43 will help to determine the impact of this posttranslational modification on the functionality of Ag43. In silico analysis of the UPEC strain 536 genome regarding potential glycosyltransferases of Ag43 revealed nine candidate genes. Corresponding deletion mutants of the identified genes were constructed in part in the wild type strain background and in part in the rfaH-negative background of UPEC 536. The most prominent differences concerning motility, curli/cellulose production, hemolytic activity and expression of type 1 fimbriae were observed upon deletion of the genes waaF, waaG or waaQ coding for glycosyltransferases of the LPS biosynthesis pathway. The impact of the deleted candidate genes on the glycosylation of Ag43 has to be further investigated. In recent years the murine model of ascending urinary tract infection was established to characterize the uropathogenic potential of E. coli strains in vivo. By means of this model the uropathogenic potential of different specific “knock-out” mutants of prototypic UPEC strains as well as of atypical E. coli urinary tract isolates was tested and compared. The analysis of the impact of specific factors on the uropathogenic potential of classical UPEC strains focused on the autotransporter protein Ag43, the response regulator UvrY, the genotoxin colibactin, and the exopolysaccharide poly-β-1,6-N-acetylglucosamine (PGA). Ag43 did not exhibit a distinct function during the establishment of urinary tract infection in mice. However, it is conceivable that Ag43 can contribute to long-term persistence in the urinary tract, which should be covered in further studies. Expression of UvrY in the natural uvrY-negative UPEC strain 536 did not increase the uropathogenic potential. However, expression of the genotoxin colibactin significantly reduced the urovirulence of UPEC strain 536. The exopolysaccharide PGA was shown to contribute to long-term persistence of UPEC in the murine model of urinary tract infection. For the initial colonization of the urinary tract, PGA seems to be dispensable. The atypical UPEC isolates investigated in this study display typical characteristics of STEC and EAEC and differ significantly in their virulence gene content compared to prototypic UPEC strains. Nevertheless, in the murine model of ascending UTI many atypical UPEC isolates exhibited a comparable and sometimes even increased uropathogenic potential relative to UPEC model strain 536. The results of this work support the current idea regarding the development and establishment of a urinary tract infection that different E. coli strains have evolved diverse (control-) mechanisms to successfully colonize the urinary tract and provoke an infection. In addition, the findings point out that the ability to cause a urinary tract infection is not limited to phylogenetic lineages of classical UPEC isolates and the presence of characteristic UPEC virulence traits. KW - Escherichia coli KW - Harnwegsinfektion KW - Glykosylierung KW - UPEC KW - Autotransporterprotein KW - Glykosyltransferase KW - murines Modell der aufsteigenden Harnwegsinfektion Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103907 ER - TY - THES A1 - Westermann, Alexander J. T1 - Dual RNA-seq of pathogen and host T1 - Duale RNA-Sequenzierung eines Pathogens und seines Wirts N2 - The infection of a eukaryotic host cell by a bacterial pathogen is one of the most intimate examples of cross-kingdom interactions in biology. Infection processes are highly relevant from both a basic research as well as a clinical point of view. Sophisticated mechanisms have evolved in the pathogen to manipulate the host response and vice versa host cells have developed a wide range of anti-microbial defense strategies to combat bacterial invasion and clear infections. However, it is this diversity and complexity that makes infection research so challenging to technically address as common approaches have either been optimized for bacterial or eukaryotic organisms. Instead, methods are required that are able to deal with the often dramatic discrepancy between host and pathogen with respect to various cellular properties and processes. One class of cellular macromolecules that exemplify this host-pathogen heterogeneity is given by their transcriptomes: Bacterial transcripts differ from their eukaryotic counterparts in many aspects that involve both quantitative and qualitative traits. The entity of RNA transcripts present in a cell is of paramount interest as it reflects the cell’s physiological state under the given condition. Genome-wide transcriptomic techniques such as RNA-seq have therefore been used for single-organism analyses for several years, but their applicability has been limited for infection studies. The present work describes the establishment of a novel transcriptomic approach for infection biology which we have termed “Dual RNA-seq”. Using this technology, it was intended to shed light particularly on the contribution of non-protein-encoding transcripts to virulence, as these classes have mostly evaded previous infection studies due to the lack of suitable methods. The performance of Dual RNA-seq was evaluated in an in vitro infection model based on the important facultative intracellular pathogen Salmonella enterica serovar Typhimurium and different human cell lines. Dual RNA-seq was found to be capable of capturing all major bacterial and human transcript classes and proved reproducible. During the course of these experiments, a previously largely uncharacterized bacterial small non-coding RNA (sRNA), referred to as STnc440, was identified as one of the most strongly induced genes in intracellular Salmonella. Interestingly, while inhibition of STnc440 expression has been previously shown to cause a virulence defect in different animal models of Salmonellosis, the underlying molecular mechanisms have remained obscure. Here, classical genetics, transcriptomics and biochemical assays proposed a complex model of Salmonella gene expression control that is orchestrated by this sRNA. In particular, STnc440 was found to be involved in the regulation of multiple bacterial target mRNAs by direct base pair interaction with consequences for Salmonella virulence and implications for the host’s immune response. These findings exemplify the scope of Dual RNA-seq for the identification and characterization of novel bacterial virulence factors during host infection. N2 - Die Infektion einer eukaryontischen Wirtszelle mit einem bakteriellen Pathogen ist eines der komplexesten Beispiele einer Domänen-überschreitenden Wechselwirkung zweier Organismen. Infektionsprozesse sind in höchstem Maße relevant, sowohl in der Grundforschung als auch von einem klinischen Blickwinkel aus betrachtet. Im Laufe der Evolution entstanden komplizierte Mechanismen, die es einem Pathogen erlauben, die Wirtsantwort zu manipulieren. Umgekehrt haben potentielle Wirtszellen eine Reihe von anti-mikrobiellen Verteidigungsstrategien entwickelt, um bakterielle Infektionen zu bekämpfen und letztlich zu beseitigen. Es sind jedoch genau diese Verschiedenheit und Komplexität, welche die Infektionsforschung so anspruchsvoll und technisch schwer analysierbar machen. Gängige Analysemethoden wurden zumeist entweder für bakterielle oder aber eukaryontische Organismen entwickelt. Dagegen werden Techniken benötigt, welche es erlauben, mit den mitunter extremen Unterschieden zwischen Wirt und Pathogen umzugehen, die sich in etlichen zellulären Eigenschaften und Prozessen manifestieren. Eine Klasse zellulärer Makromoleküle, die diese Heterogenität zwischen Wirt und Pathogen widerspiegelt, sind ihre jeweiligen Transkriptome: Bakterielle Transkripte unter-scheiden sich von ihren eukaryontischen Pendants in vielerlei Hinsicht, was sowohl quantitative als auch qualitative Aspekte miteinschließt. Die Gesamtheit zellulärer Transkripte ist von größter Bedeutung, da sie den physiologischen Zustand der jeweiligen Zelle unter den gegebenen Bedingungen reflektiert. Aus diesem Grund werden Genom-weite Transkriptom-techniken wie etwa die RNA-Sequenzierung seit etlichen Jahren erfolgreich angewandt, um biologische Prozesse zu untersuchen – jedoch ist deren Eignung für Infektionsstudien in starkem Maße limitiert. Die vorliegende Arbeit beschreibt die Etablierung eines neuartigen Ansatzes, „Duale RNA-Sequenzierung“ genannt, der Transkriptomstudien mit der Infektionsbiologie kompatibel macht. Mithilfe dieser Technologie wurde hier im Besonderen versucht, die Rolle nicht-proteinkodierender RNA-Moleküle für die Virulenz zu beleuchten, da die Charakterisierung dieser RNA-Klassen bisherigen Infektionsstudien weitgehend verwehrt blieb. Die Anwendbar-keit der Dualen RNA-Sequenzierung wurde innerhalb eines In-vitro-Infektionsmodells getestet, welches auf dem wichtigen, fakultativ intrazellulären Pathogen Salmonella enterica serovar Tyhimurium und verschiedenen humanen Zelllinien basiert. Die Duale RNA-Sequenzierung zeigte sich dabei in der Lage alle wesentlichen bakteriellen sowie humanen Transkriptklassen zu erfassen und erwies sich als reproduzierbar. Im Zuge dieser Experimente wurde ein Gen für eine zuvor kaum beschriebene kleine nicht-kodierende RNA (STnc440) als eines der am stärksten induzierten Gene intrazellulärer Salmonellen identifiziert. Interessanterweise hatten vorherige Studien gezeigt, dass die Inaktivierung dieses Gens zu einem Virulenzdefizit innerhalb unterschiedlicher Tiermodelle für Salmonellose führt. Die zugrunde liegenden molekularen Mechanismen blieben jedoch unbekannt. In der vorliegenden Arbeit wurden genetische, Transkriptom- sowie biochemische Analysen eingesetzt um das komplexe Regulationsnetzwerk dieser kleinen RNA erstmals näher zu beleuchten. Im Einzelnen konnte gezeigt werden, dass STnc440 die Expression mehrerer bakterieller mRNAs durch das Ausbilden zwischen-molekularer Basenpaarungen reguliert, was weitreichende Konsequenzen sowohl für die Virulenz des Pathogens als auch die Immunantwort des Wirts hat. Diese Ergebnisse veranschaulichen das Potential der Dualen RNA-Sequenzierung für das Auffinden und Charakterisieren neuer bakterieller Virulenzfaktoren während der Wirtsinfektion. KW - Transkriptomanalyse KW - Dual RNA-seq KW - Salmonella enterica KW - Wirtszelle Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112462 ER - TY - JOUR A1 - Vembar, Shruti S. A1 - Scherf, Artur A1 - Siegel, T. Nicolai T1 - Noncoding RNAs as emerging regulators of Plasmodium falciparum virulence gene expression JF - Current Opinion in Microbiology N2 - The eukaryotic unicellular pathogen Plasmodium falciparum tightly regulates gene expression, both during development and in adaptation to dynamic host environments. This regulation is evident in the mutually exclusive expression of members of clonally variant virulence multigene families. While epigenetic regulators have been selectively identified at active or repressed virulence genes, their specific recruitment remains a mystery. In recent years, noncoding RNAs (ncRNAs) have emerged as lynchpins of eukaryotic gene regulation; by binding to epigenetic regulators, they provide target specificity to otherwise non-specific enzyme complexes. Not surprisingly, there is great interest in understanding the role of ncRNA in P. falciparum, in particular, their contribution to the mutually exclusive expression of virulence genes. The current repertoire of P. falciparum ncRNAs includes, but is not limited to, subtelomeric ncRNAs, virulence gene-associated ncRNAs and natural antisense RNA transcripts. Continued improvement in high-throughput sequencing methods is sure to expand this repertoire. Here, we summarize recent advances in P. falciparum ncRNA biology, with an emphasis on ncRNA-mediated epigenetic modes of gene regulation. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121416 SN - 1369-5274 VL - 20 IS - 100 ER - TY - JOUR A1 - Jäger, Dominik A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Santangelo, Thomas J. A1 - Reeve, John N. T1 - Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis JF - BMC Genomics N2 - Background Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Results Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. Conclusion The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon. KW - riboswitch KW - hyperthermophile KW - hydrogen regulation KW - transcriptome KW - archaea KW - promoters KW - antisense RNAs KW - small non-coding RNAs Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120966 SN - 1471-2164 VL - 15 IS - 684 ER - TY - JOUR A1 - Adelfinger, Marion A1 - Gentschev, Ivaylo A1 - de Guibert, Julio Grimm A1 - Weibel, Stephanie A1 - Langbein-Laugwitz, Johanna A1 - Härtl, Barbara A1 - Escobar, Hugo Murua A1 - Nolte, Ingo A1 - Chen, Nanhai G. A1 - Aguilar, Richard J. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy JF - PLoS ONE N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. KW - antibodies KW - cancer treatment KW - carcinomas KW - vaccinia virus KW - oncolytic viruses KW - viral replication KW - cell cultures KW - enzyme-linked immunoassays Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119387 VL - 9 IS - 8 ER - TY - JOUR A1 - Siegel, T. Nicolai A1 - Hon, Chung-Chau A1 - Zhang, Qinfeng A1 - Lopez-Rubio, Jose-Juan A1 - Scheidig-Benatar, Christine A1 - Martins, Rafeal M. A1 - Sismeiro, Odile A1 - Coppée, Jean-Yves T1 - Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum JF - BMC Genomics N2 - Background Advances in high-throughput sequencing have led to the discovery of widespread transcription of natural antisense transcripts (NATs) in a large number of organisms, where these transcripts have been shown to play important roles in the regulation of gene expression. Likewise, the existence of NATs has been observed in Plasmodium but our understanding towards their genome-wide distribution remains incomplete due to the limited depth and uncertainties in the level of strand specificity of previous datasets. Results To gain insights into the genome-wide distribution of NATs in P. falciparum, we performed RNA-ligation based strand-specific RNA sequencing at unprecedented depth. Our data indicate that 78.3% of the genome is transcribed during blood-stage development. Moreover, our analysis reveals significant levels of antisense transcription from at least 24% of protein-coding genes and that while expression levels of NATs change during the intraerythrocytic developmental cycle (IDC), they do not correlate with the corresponding mRNA levels. Interestingly, antisense transcription is not evenly distributed across coding regions (CDSs) but strongly clustered towards the 3′-end of CDSs. Furthermore, for a significant subset of NATs, transcript levels correlate with mRNA levels of neighboring genes. Finally, we were able to identify the polyadenylation sites (PASs) for a subset of NATs, demonstrating that at least some NATs are polyadenylated. We also mapped the PASs of 3443 coding genes, yielding an average 3′ untranslated region length of 523 bp. Conclusions Our strand-specific analysis of the P. falciparum transcriptome expands and strengthens the existing body of evidence that antisense transcription is a substantial phenomenon in P. falciparum. For a subset of neighboring genes we find that sense and antisense transcript levels are intricately linked while other NATs appear to be regulated independently of mRNA transcription. Our deep strand-specific dataset will provide a valuable resource for the precise determination of expression levels as it separates sense from antisense transcript levels, which we find to often significantly differ. In addition, the extensive novel data on 3′ UTR length will allow others to perform searches for regulatory motifs in the UTRs and help understand post-translational regulation in P. falciparum. KW - directional RNA-Seq KW - ncRNA KW - natural antisense transcripts KW - 3′ UTR KW - polyadenylation sites KW - genes KW - antisense RNA KW - plasmodium falciparum Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119892 VL - 15 ER - TY - JOUR A1 - Rico, Sergio A1 - Yepes, Ana A1 - Rodriguez, Hector A1 - Santamaria, Jorge A1 - Antoraz, Sergio A1 - Krause, Eva M. A1 - Diaz, Margarita A1 - Santamaria, Ramon I. T1 - Regulation of the AbrA1/A2 Two-Component System in Streptomyces coelicolor and the Potential of Its Deletion Strain as a Heterologous Host for Antibiotic Production JF - PLOS ONE N2 - The Two-Component System (TCS) AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR) gene in the mutant DabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs) or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the DabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry. KW - signal-transduction systems KW - biosynthetic gene-cluster KW - escherichia coli KW - response regulator KW - oviedomycin KW - expression KW - organization KW - integration KW - bacteria KW - sequence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115151 SN - 1932-6203 VL - 9 IS - 10 ER - TY - JOUR A1 - Bischler, Thorsten A1 - Kopf, Matthias A1 - Voss, Bjoern T1 - Transcript mapping based on dRNA-seq data JF - BMC Bioinformatics N2 - Background: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. Results: We present RNASEG, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. Conclusions: With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics. KW - transcriptional start site KW - dynamic programming KW - RNA-seq KW - differential KW - segmentation KW - transcriptional uni KW - transcriptome KW - reveals KW - model Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116663 SN - 1471-2105 VL - 15 IS - 122 ER - TY - JOUR A1 - Talman, Arthur M. A1 - Prieto, Judith H. A1 - Marques, Sara A1 - Ubaida-Mohien, Ceereena A1 - Lawniczak, Mara A1 - Wass, Mark N. A1 - Xu, Tao A1 - Frank, Roland A1 - Ecker, Andrea A1 - Stanway, Rebecca S. A1 - Krishna, Sanjeev A1 - Sternberg, Michael J. E. A1 - Christophides, Georges K. A1 - Graham, David R. A1 - Dinglasan, Rhoel R. A1 - Yates, John R., III A1 - Sinden, Robert E. T1 - Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility JF - Malaria Journal N2 - Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization. KW - glycolysis KW - gamete KW - energy metabolism KW - tandem mass-spectra KW - YoelII-Nigeriensis KW - haemoproteus-columbae KW - chlamydomonas flagella KW - life cycle KW - microtubule motor KW - hexose transporter KW - membrane-protein topology KW - malaria parasite KW - subcellular localization KW - flagellum KW - plasmodium Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115572 N1 - Additional files are available here: http://www.malariajournal.com/content/13/1/315/additional VL - 13 IS - 315 ER - TY - JOUR A1 - Wagner, Ines A1 - Volkmer, Michael A1 - Sharan, Malvika A1 - Villaveces, Jose M. A1 - Oswald, Felix A1 - Surendranath, Vineeth A1 - Habermann, Bianca H. T1 - morFeus: a web-based program to detect remotely conserved orthologs using symmetrical best hits and orthology network scoring JF - BMC Bioinformatics N2 - Background: Searching the orthologs of a given protein or DNA sequence is one of the most important and most commonly used Bioinformatics methods in Biology. Programs like BLAST or the orthology search engine Inparanoid can be used to find orthologs when the similarity between two sequences is sufficiently high. They however fail when the level of conservation is low. The detection of remotely conserved proteins oftentimes involves sophisticated manual intervention that is difficult to automate. Results: Here, we introduce morFeus, a search program to find remotely conserved orthologs. Based on relaxed sequence similarity searches, morFeus selects sequences based on the similarity of their alignments to the query, tests for orthology by iterative reciprocal BLAST searches and calculates a network score for the resulting network of orthologs that is a measure of orthology independent of the E-value. Detecting remotely conserved orthologs of a protein using morFeus thus requires no manual intervention. We demonstrate the performance of morFeus by comparing it to state-of-the-art orthology resources and methods. We provide an example of remotely conserved orthologs, which were experimentally shown to be functionally equivalent in the respective organisms and therefore meet the criteria of the orthology-function conjecture. Conclusions: Based on our results, we conclude that morFeus is a powerful and specific search method for detecting remotely conserved orthologs. KW - reciprocal best hit KW - finder using symmetrical best hits KW - sequences KW - annotation KW - identification KW - database KW - genomes KW - proteins KW - homologs KW - hidden markov-models KW - phylogenetic trees KW - PSI-blast KW - eigenvector centrality KW - meta-analysis based orthology KW - orthology KW - remote sequence conservation KW - alignment clustering KW - orthology network Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115590 VL - 15 IS - 263 ER - TY - JOUR A1 - Jun, Kyong-Hwa A1 - Gholami, Spedideh A1 - Song, Tae-Jin A1 - Au, Joyce A1 - Haddad, Dana A1 - Carson, Joshua A1 - Chen, Chun-Hao A1 - Mojica, Kelly A1 - Zanzonico, Pat A1 - Chen, Nanhai G. A1 - Zhang, Qian A1 - Szalay, Aladar A1 - Fong, Yuman T1 - A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter JF - Journal of Experimental & Clinical Cancer Research N2 - Background: Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with Tc-99m pertechnetate scintigraphy and I-124 positron emission tomography (PET). Methods: GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. Tc-99m pertechnetate scintigraphy and I-124 microPET imaging were performed. Results: GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70% cytotoxicity in MNK-45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by Tc-99m pertechnetate scintigraphy and I-124 microPET imaging 2 days after treatment. Conclusions: GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings. KW - oncolytic viral therapy KW - GLV-1 h153 KW - gastric cancer KW - human sodium iodide symporter (hNIS) KW - radioiodine therapy KW - gene therapy KW - expression KW - replication KW - stomach KW - tumors KW - surgery Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117716 SN - 1756-9966 VL - 33 IS - 2 ER - TY - JOUR A1 - Reynolds, David A1 - Cliffe, Laura A1 - Förstner, Konrad U. A1 - Hon, Chung-Chau A1 - Siegel, T. Nicolai A1 - Sabatini, Robert T1 - Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei JF - Nucleic Acids Research N2 - Base J, beta-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase ( RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters. KW - RNA-polymerase-II KW - variant surface glycoprotein KW - SWI2/SNF2-like protein KW - messenger RNA KW - polycistronic transcription KW - DNA glycosation KW - hela cells KW - gene expression KW - genome KW - 5-bromodeoxyuridine Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117863 VL - 42 IS - 15 ER - TY - JOUR A1 - Nguyen, Tu N. A1 - Müller, Laura S. M. A1 - Park, Sung Hee A1 - Siegel, T. Nicolai A1 - Günzl, Arthur T1 - Promoter occupancy of the basal class I transcription factor A differs strongly between active and silent VSG expression sites in Trypanosoma brucei JF - Nucleic Acid Research N2 - Monoallelic expression within a gene family is found in pathogens exhibiting antigenic variation and in mammalian olfactory neurons. Trypanosoma brucei, a lethal parasite living in the human bloodstream, expresses variant surface glycoprotein (VSG) from 1 of 15 bloodstream expression sites (BESs) by virtue of a multifunctional RNA polymerase I. The active BES is transcribed in an extranucleolar compartment termed the expression site body (ESB), whereas silent BESs, located elsewhere within the nucleus, are repressed epigenetically. The regulatory mechanisms, however, are poorly understood. Here we show that two essential subunits of the basal class I transcription factor A (CITFA) predominantly occupied the promoter of the active BES relative to that of a silent BES, a phenotype that was maintained after switching BESs in situ. In these experiments, high promoter occupancy of CITFA was coupled to high levels of both promoter-proximal RNA abundance and RNA polymerase I occupancy. Accordingly, fluorescently tagged CITFA-7 was concentrated in the nucleolus and the ESB. Because a ChIP-seq analysis found that along the entire BES, CITFA-7 is specifically enriched only at the promoter, our data strongly indicate that monoallelic BES transcription is activated by a mechanism that functions at the level of transcription initiation. KW - RNA-polymerase-I KW - blood-stream forms KW - acrican trypanosomes KW - gene expression KW - antigenic variation KW - ribosomal RNA KW - plasmodium falciparum KW - virulence genes KW - subunit KW - complex Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117232 SN - 1362-4962 VL - 42 IS - 5 ER -