TY - JOUR A1 - Belair, Cédric A1 - Baud, Jessica A1 - Chabas, Sandrine A1 - Sharma, Cynthia M A1 - Vogel, Jörg A1 - Staedel, Cathy A1 - Darfeuille, Fabien T1 - Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression JF - Silence : a Journal of RNA regulation N2 - Background MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. Results Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. Conclusions These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections. KW - MicroRNAs KW - cell cycle KW - Helicobacter pylori KW - gastric cancer Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140438 VL - 2 IS - 7 ER - TY - JOUR A1 - Okoro, Chinyere K. A1 - Barquist, Lars A1 - Connor, Thomas R. A1 - Harris, Simon R. A1 - Clare, Simon A1 - Stevens, Mark P. A1 - Arends, Mark J. A1 - Hale, Christine A1 - Kane, Leanne A1 - Pickard, Derek J. A1 - Hill, Jennifer A1 - Harcourt, Katherine A1 - Parkhill, Julian A1 - Dougan, Gordon A1 - Kingsley, Robert A. T1 - Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa JF - PLoS Neglected Tropical Diseases N2 - Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population. KW - genome sequence KW - infection KW - pathogenicity KW - children KW - disease KW - adults KW - identification KW - Escherichia coli KW - virulence Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143779 VL - 9 IS - 3 ER - TY - JOUR A1 - Dembek, Marcin A1 - Barquist, Lars A1 - Boinett, Christine J. A1 - Cain, Amy K. A1 - Mayho, Matthew A1 - Lawley, Trevor D. A1 - Fairweather, Neil F. A1 - Fagan, Robert P. T1 - High-throughput analysis of gene essentiality and sporulation in Clostridium difficile JF - mBio N2 - Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen. KW - Bacillus subtilis KW - expression KW - spores KW - toxin KW - transcription KW - germination KW - transposition KW - metabolism KW - infection KW - in vitro Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143745 VL - 6 IS - 2 ER - TY - JOUR A1 - Berg, Stefan A1 - Schelling, Esther A1 - Hailu, Elena A1 - Firdessa, Rebuma A1 - Gumi, Balako A1 - Erenso, Girume A1 - Gadisa, Endalamaw A1 - Mengistu, Araya A1 - Habtamu, Meseret A1 - Hussein, Jemal A1 - Kiros, Teklu A1 - Bekele, Shiferaw A1 - Mekonnen, Wondale A1 - Derese, Yohannes A1 - Zinsstag, Jakob A1 - Ameni, Gobena A1 - Gagneux, Sebastien A1 - Robertson, Brian D A1 - Tschopp, Rea A1 - Hewinson, Glyn A1 - Yamuah, Lawrence A1 - Gordon, Stephen V A1 - Aseffa, Abraham T1 - Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection JF - BMC Infectious Diseases N2 - Background: Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extra-pulmonary TB in Ethiopia. Methods: Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. Results: No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported "contact with other TB patient" more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. Conclusions: The study suggests a complex role for multiple interacting factors in the epidemiology of extra-pulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia. KW - zoonotic KW - Mycobacterium KW - Ethiopia KW - tuberculosis KW - Bovis KW - pulmonary KW - extrapulmonary KW - lymphadenitis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143935 VL - 15 IS - 112 ER - TY - JOUR A1 - Böhm, Lena A1 - Torsin, Sanda A1 - Tint, Su Hlaing A1 - Eckstein, Marie Therese A1 - Ludwig, Tobias A1 - Pérez, J. Christian T1 - The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice JF - PLoS Pathogens N2 - Many microorganisms that cause systemic, life-threatening infections in humans reside as harmless commensals in our digestive tract. Yet little is known about the biology of these microbes in the gut. Here, we visualize the interface between the human commensal and pathogenic fungus Candida albicans and the intestine of mice, a surrogate host. Because the indigenous mouse microbiota restricts C. albicans settlement, we compared the patterns of colonization in the gut of germ free and antibiotic-treated conventionally raised mice. In contrast to the heterogeneous morphologies found in the latter, we establish that in germ free animals the fungus almost uniformly adopts the yeast cell form, a proxy of its commensal state. By screening a collection of C. albicans transcription regulator deletion mutants in gnotobiotic mice, we identify several genes previously unknown to contribute to in vivo fitness. We investigate three of these regulators—ZCF8, ZFU2 and TRY4—and show that indeed they favor the yeast form over other morphologies. Consistent with this finding, we demonstrate that genetically inducing non-yeast cell morphologies is detrimental to the fitness of C. albicans in the gut. Furthermore, the identified regulators promote adherence of the fungus to a surface covered with mucin and to mucus-producing intestinal epithelial cells. In agreement with this result, histology sections indicate that C. albicans dwells in the murine gut in close proximity to the mucus layer. Thus, our findings reveal a set of regulators that endows C. albicans with the ability to endure in the intestine through multiple mechanisms. KW - Candida albicans KW - deletion mutagenesis KW - gastrointestinal tract KW - fungi KW - regulator genes KW - gene regulation KW - mouse models KW - fungal genetics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159120 VL - 13 IS - 10 ER - TY - JOUR A1 - Hampe, Irene A. I. A1 - Friedman, Justin A1 - Edgerton, Mira A1 - Morschhäuser, Joachim T1 - An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses JF - PLoS Pathogens N2 - The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches. KW - antimicrobial resistance KW - transcriptional control KW - Candida albicans KW - transcription factors KW - mutation KW - hyperexpression techniques KW - antifungals KW - point mutation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158883 VL - 13 IS - 9 ER - TY - JOUR A1 - Tawk, Caroline A1 - Sharan, Malvika A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins JF - Scientific Reports N2 - Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins. KW - pathogens KW - bacterial secretion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158815 VL - 7 ER - TY - JOUR A1 - Rakette, Sonja A1 - Donat, Stefanie A1 - Ohlsen, Knut A1 - Stehle, Thilo T1 - Structural Analysis of Staphylococcus aureus Serine/Threonine Kinase PknB JF - PLoS One N2 - Effective treatment of infections caused by the bacterium Staphylococcus aureus remains a worldwide challenge, in part due to the constant emergence of new strains that are resistant to antibiotics. The serine/threonine kinase PknB is of particular relevance to the life cycle of S. aureus as it is involved in the regulation of purine biosynthesis, autolysis, and other central metabolic processes of the bacterium. We have determined the crystal structure of the kinase domain of PknB in complex with a non-hydrolyzable analog of the substrate ATP at 3.0 angstrom resolution. Although the purified PknB kinase is active in solution, it crystallized in an inactive, autoinhibited state. Comparison with other bacterial kinases provides insights into the determinants of catalysis, interactions of PknB with ligands, and the pathway of activation. KW - SER/THR kinase KW - domain KW - subunit KW - dependent protein-kinase KW - mycobacterium-tuberculosis KW - activation mechanism KW - crystal structure KW - antibiotic resistance KW - catalytic KW - methicillin KW - inhibitor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135369 VL - 7 IS - 6 ER - TY - THES A1 - Hampe, Irene Aurelia Ida T1 - Analysis of the mechanism and the regulation of histatin 5 resistance in \(Candida\) \(albicans\) T1 - Analyse des Mechanismus und der Regulierung von Histatin 5 Resistenz in \(Candida\) \(albicans\) N2 - Antimycotics such as fluconazole are frequently used to treat C. albicans infections of the oral mucosa. Prolonged treatment of the fungal infection with fluconazole pose a risk to resistance development. C. albicans can adapt to these stressful environmental changes by regulation of gene expression or by producing genetically altered variants that arise in the population. Adapted variants frequently carry activating mutations in zinc cluster transcription factors, which cause the upregulation of their target genes, including genes encoding efflux pumps that confer drug resistance. MDR1, regulated by the zinc cluster transcription factor Mrr1, as well as CDR1 and CDR2, regulated by the zinc cluster transcription factor Tac1, are well-known examples of genes encoding efflux pumps that extrude the antimycotic fluconazole from the fungal cell and thus contribute to the survival of the fungus. In this study, it was investigated if C. albicans can develop resistance to the antimicrobial peptide histatin 5, which serves as the first line of defence in the oral cavity of the human host. Recently, it was shown that C. albicans transports histatin 5 outside of the Candia cell via the efflux pump Flu1. As efflux pumps are often regulated by zinc cluster transcription factors, the Flu1 efflux pump could also be regulated by a zinc cluster transcription factor which could in a hyperactive form upregulate the expression of the efflux pump, resulting in increased export of histatin 5 and consequently in histatin 5 resistance. In order to find a zinc cluster transcription factor that upregulates FLU1 expression, a comprehensive library of C. albicans strains containing artificially activated forms of zinc cluster transcription factors was screened for suitable candidates. The screening was conducted on medium containing mycophenolic acid because mycophenolic acid is also a substrate of Flu1 and a strain expressing a hyperactive zinc cluster transcription factor that upregulates FLU1 expression should exhibit an easily recognisable mycophenolic acid-resistant phenotype. Further, FACS analysis, quantitative real-time RT-PCR analysis, broth microdilution assays as well as histatin 5 assays were conducted to analyse the mechanism and the regulation of histatin 5 resistance. Several zinc cluster transcription factors caused mycophenolic acid resistance and upregulated FLU1 expression. Of those, only hyperactive Mrr1 was able to confer increased histatin 5 resistance. Finding Mrr1 to confer histatin 5 resistance was highly interesting as fluconazole-resistant strains with naturally occurring Mrr1 gain of function mutations exist, which were isolated from HIV-infected patients with oral candidiasis. These Mrr1 gain of function mutations as well as artificially activated Mrr1 cause fluconazole resistance by upregulation of the efflux pump MDR1 and other target genes. In the course of the study, it was found that expression of different naturally occurring MRR1 gain-of-function mutations in the SC5314 wild type background caused increased FLU1 expression and increased histatin 5 resistance. The same was true for fluconazole-resistant clinical isolates with Mrr1 gain of function mutations, which also caused the overexpression of FLU1. Those cells were less efficiently killed by histatin 5 dependent on Mrr1. Surprisingly, FLU1 contributed only little to histatin 5 resistance, rather, overexpression of MDR1 mainly contributed to the Mrr1-mediated histatin 5 resistance, but also additional Mrr1-target genes were involved. These target genes are yet to be uncovered. Moreover, if a link between the yet unknown Mrr1-target genes contributing to fluconazole resistance and increased histatin 5 resistance can be drawn remains to be discovered upon finding of the responsible target genes. Collectively, this study contributes to the understanding of the impact of prolonged antifungal exposure on the interaction between host and fungus. Drug therapy can give rise to resistance evolution resulting in strains that have not only developed resistance to fluconazole but also to an innate host mechanism, which allows adaption to the host niche even in the absence of the drug. N2 - Antimykotika wie Fluconazol werden häufig zur Behandlung von C. albicans Infektionen der Mundschleimhaut verwendet. Dabei stellt eine langzeitige Behandlung der Pilzinfektion mit Fluconazol ein Risiko zur Resistenzentwicklung dar. C. albicans kann sich an solche Umweltveränderungen anpassen, indem es die Genexpression reguliert oder genetisch veränderte Varianten produziert, welche in der Population entstehen. Adaptierte Varianten tragen häufig aktivierende Mutationen in Zink-Cluster-Transkriptionsfaktoren, welche die Hochregulierung der Expression von Genen verursachen, darunter solche, die für Multidrug-Effluxpumpen kodieren und dadurch Antimykotikaresistenz verleihen können. MDR1, reguliert durch den Zink-Cluster-Transkriptionsfaktor Mrr1, sowie CDR1 und CDR2, reguliert durch den Zink-Cluster-Transkriptionsfaktor Tac1, sind bekannte Beispiele für Effluxpumpen, die das Antimykotikum Fluconazol aus der Pilzzelle extrudieren und somit zum Überleben der Pilzzelle beitragen. In dieser Arbeit wurde untersucht, ob C. albicans eine Resistenz gegen das antimikrobielle Peptid Histatin 5 entwickeln kann, das in der Mundhöhle des menschlichen Wirtes als erste Verteidigungsbarriere gegen den Pilz dient. Kürzlich wurde gezeigt, dass C. albicans Histatin 5 über die Effluxpumpe Flu1 aus der Candia-Zelle heraustransportiert (Li et al., 2013). Da Effluxpumpen häufig durch Zink-Cluster-Transkriptionsfaktoren reguliert werden, könnte auch die Flu1-Effluxpumpe durch solch einen Transkriptionsfaktor reguliert werden, der in einer hyperaktiven Form die Expression der Effluxpumpe hochregulieren könnte, was wiederrum zu einem erhöhten Export von Histatin 5 und folglich zur Histatin 5 Resistenz führen könnte. Um einen Zink-Cluster-Transkriptionsfaktor zu finden, der die FLU1-Expression hochreguliert, wurde mit Hilfe einer Bibliothek von C. albicans-Stämmen, die künstlich aktivierte Formen von Zink-Cluster-Transkriptionsfaktoren enthält, nach geeigneten Kandidaten gesucht. Das Screening wurde auf Mycophenolsäure-haltigem Medium durchgeführt, da Mycophenolsäure ebenfalls ein Substrat von Flu1 ist. Folglich sollte ein Stamm mit hyperaktivem Zink-Cluster-Transkriptionsfaktor, welcher die FLU1-Expression hochreguliert, einen leicht erkennbaren Mycophenolsäure-resistenten Phänotyp aufweisen. Weiterhin wurden FACS-Analysen, quantitative real-time RT-PCR-Analysen, Broth microdilution-Assays sowie Histatin 5-Assays durchgeführt, um den Mechanismus und die Regulierung der Histatin-5-Resistenz zu analysieren. Mehrere Zink-Cluster-Transkriptionsfaktoren verursachten Mycophenolsäure-Resistenz und erhöhten die FLU1-Expression. Von diesen war nur hyperaktives Mrr1 in der Lage, eine erhöhte Histatin-5-Resistenz zu verleihen. Das Auffinden von Mrr1 als Regulator der Histatin 5-Resistenz war hochinteressant, da fluconazolresistente Stämme mit natürlich vorkommenden MRR1 gain-of-function Mutationen existieren, die aus HIV-infizierten Patienten mit oropharyngealer Candidiasis isoliert wurden. Diese gain-of-function Mutationen sowie künstlich aktivierendes Mrr1 verursachen Fluconazol-Resistenz durch Hochregulation der Effluxpumpe MDR1 und anderer Zielgene. Im Verlauf der Studie wurde herausgefunden, dass verschiedene natürlich vorkommende MRR1 gain-of-function Mutationen im SC5314 Wildtyp Hintergrund eine erhöhte FLU1-Expression und eine erhöhte Histatin-5-Resistenz verursachten. Das Gleiche galt für Fluconazol-resistente klinische Isolate mit Mrr1 gain-of-function Mutationen, welche die Überexpression von FLU1 verursachten. Zellen dieser Isolate wurden, abhängig von Mrr1, weniger wirksam durch Histatin 5 abgetötet. Überraschenderweise trug FLU1 nur wenig zur Histatin-5-Resistenz bei, vielmehr trug die Überexpression von MDR1 hauptsächlich zur Mrr1-vermittelten Histatin-5-Resistenz bei, aber auch weitere Mrr1-Zielgene waren daran beteiligt. Diese Mrr1-Zielgene gilt es nun noch zu entdecken. Ob ein Zusammenhang zwischen diesen noch unbekannten Mrr1-Zielgenen hergestellt werden kann, die zur Fluconazolresistenz sowie zu einer erhöhten Histatin-5-Resistenz beitragen, wird erst nach dem Auffinden der verantwortlichen Zielgene geprüft werden können. Zusammenfassend trägt diese Studie zum Verständnis der Auswirkungen einer anhaltenden antimykotischen Exposition auf die Interaktion zwischen Wirt und Pilz bei. Eine medikamentöse Therapie kann zu einer Resistenzentwicklung führen, aus der Stämme hervorgehen, welche nicht nur eine Resistenz gegen Fluconazol entwickelt haben, sondern gleichzeitig eine Resistenz gegen einen angeborenen Wirtsabwehrmechanismus, der eine Adaption an die Wirtsnische auch in Abwesenheit des Antimykotikums ermöglicht. KW - Histatin 5 KW - Candida albicans KW - Efflux pump KW - MDR1 KW - MRR1 KW - Mrr1 KW - MDR1 KW - Fluconazole KW - Efflux pump Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159634 ER - TY - JOUR A1 - Sunkavalli, Ushasree A1 - Aguilar, Carmen A1 - Silva, Ricardo Jorge A1 - Sharan, Malvika A1 - Cruz, Ana Rita A1 - Tawk, Caroline A1 - Maudet, Claire A1 - Mano, Miguel A1 - Eulalio, Ana T1 - Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia JF - PLoS Pathogens N2 - MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells. KW - hos tcells KW - Salmonellosis KW - Shigellosis KW - microRNAs KW - Shigella KW - small interfering RNAs KW - HeLa cells KW - Cell binding Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158204 VL - 13 IS - 4 ER -