TY - JOUR A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Benjamin, Caryl A1 - Dhillon, Maninder Singh A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Hovestadt, Thomas A1 - Kollmann, Johannes A1 - Koellner, Thomas A1 - Kübert‐Flock, Carina A1 - Kunstmann, Harald A1 - Menzel, Annette A1 - Moning, Christoph A1 - Peters, Wibke A1 - Riebl, Rebekka A1 - Rummler, Thomas A1 - Rojas‐Botero, Sandra A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan‐Dewenter, Ingolf T1 - Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi‐scale experimental design JF - Methods in Ecology and Evolution N2 - Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs. KW - study design KW - biodiversity KW - climate change KW - ecosystem functioning KW - insect monitoring KW - land use KW - space-for-time approach KW - spatial scales Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258270 VL - 13 IS - 2 ER - TY - JOUR A1 - Hovestadt, Thomas T1 - Die Bedeutung zufälligen Aussterbens für die Naturschutzplanung N2 - No abstract available Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30136 ER - TY - JOUR A1 - Mühlenberg, Michael A1 - Hovestadt, Thomas T1 - Das Zielartenkonzept N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30140 ER - TY - JOUR A1 - Joschinski, Jens A1 - Hovestadt, Thomas A1 - Krauss, Jochen T1 - Coping with shorter days: do phenology shifts constrain aphid fitness? JF - PeerJ N2 - Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change. KW - Homoptera aphididae KW - clock reproduction ecology KW - phenotypic plasticity KW - phenology shifts KW - insect timing KW - physiological constraints KW - day length KW - circadian rhythms KW - Acyrthosiphon pisum KW - climate change Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148382 VL - 3 IS - e1103 ER - TY - JOUR A1 - Chipperfield, Joseph D. A1 - Dytham, Calvin A1 - Hovestadt, Thomas T1 - An Updated Algorithm for the Generation of Neutral Landscapes by Spectral Synthesis N2 - Background: Patterns that arise from an ecological process can be driven as much from the landscape over which the process is run as it is by some intrinsic properties of the process itself. The disentanglement of these effects is aided if it possible to run models of the process over artificial landscapes with controllable spatial properties. A number of different methods for the generation of so-called ‘neutral landscapes’ have been developed to provide just such a tool. Of these methods, a particular class that simulate fractional Brownian motion have shown particular promise. The existing methods of simulating fractional Brownian motion suffer from a number of problems however: they are often not easily generalisable to an arbitrary number of dimensions and produce outputs that can exhibit some undesirable artefacts. Methodology: We describe here an updated algorithm for the generation of neutral landscapes by fractional Brownian motion that do not display such undesirable properties. Using Monte Carlo simulation we assess the anisotropic properties of landscapes generated using the new algorithm described in this paper and compare it against a popular benchmark algorithm. Conclusion/Significance: The results show that the existing algorithm creates landscapes with values strongly correlated in the diagonal direction and that the new algorithm presented here corrects this artefact. A number of extensions of the algorithm described here are also highlighted: we describe how the algorithm can be employed to generate landscapes that display different properties in different dimensions and how they can be combined with an environmental gradient to produce landscapes that combine environmental variation at the local and macro scales. KW - Landschaft KW - Monte-Carlo-Simulation KW - Brownsche Bewegung Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68938 ER - TY - JOUR A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Elmes, Graham A1 - Thomas, Jeremy A. A1 - Hochberg, Michael E. T1 - An Evolutionarily Stable Strategy model for the evolution of dimorphic development in the butterfly Maculinea rebeli, a social parasite of Myrmica Ant Colonies N2 - Caterpillars of the butterfly Maculinea rebeli develop as parasites inside ant colonies. In intensively studied French populations, about 25% of caterpillars mature within 1 year (fast-developing larvae [FDL]) and the others after 2 years (slow-developing larvae [SDL]); all available evidence indicates that this ratio is under the control of egg-laying females. We present an analytical model to predict the evolutionarily stable fraction of FDL (pESS). The model accounts for added winter mortality of SDL, general and kin competition among caterpillars, a competitive advantage of SDL over newly entering FDL (priority effect), and the avoidance of renewed infection of ant nests by butterflies in the coming season (segregation). We come to the following conclusions: (1) all factors listed above can promote the evolution of delayed development; (2) kin competition and segregation stabilize pESS near 0.5; and (3) a priority effect is the only mechanism potentially selecting for. However, given the empirical data, pESS is predicted to fall closer to 0.5 than to the 0.25 that has been observed. In this particular system, bet hedging cannot explain why more than 50% of larvae postpone growth. Presumably, other fitness benefits for SDL, for example, higher fertility or longevity, also contribute to the evolution of delayed development. The model presented here may be of general applicability for systems where maturing individuals compete in small subgroups. KW - delayed development KW - growth dimorphism KW - evolutionarily stable strategy (ESS) KW - ant-butterfly interaction KW - social parasitism Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48165 ER - TY - JOUR A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Hölker, Franz T1 - Altered sex-specific mortality and female mating success: ecological effects and evolutionary responses JF - Ecosphere N2 - Theory predicts that males and females should often join the mating pool at different times (sexual dimorphism in timing of emergence [SDT]) as the degree of SDT affects female mating success. We utilize an analytical model to explore (1) how important SDT is for female mating success, (2) how mating success might change if either sex's mortality (abruptly) increases, and (3) to what degree evolutionary responses in SDT may be able to mitigate the consequences of such mortality increase. Increasing male pre‐mating mortality has a non‐linear effect on the fraction of females mated: The effect is initially weak, but at some critical level a further increase in male mortality has a stronger effect than a similar increase in female mortality. Such a change is expected to impose selection for reduced SDT. Increasing mortality during the mating season has always a stronger effect on female mating success if the mortality affects the sex that emerges first. This bias results from the fact that enhancing mortality of the earlier emerging sex reduces female–male encounter rates. However, an evolutionary response in SDT may effectively mitigate such consequences. Further, if considered independently for females and males, the predicted evolutionary response in SDT could be quite dissimilar. The difference between female and male evolutionary response in SDT leads to marked differences in the fraction of fertilized females under certain conditions. Our model may provide general guidelines for improving harvesting of populations, conservation management of rare species under altered environmental conditions, or maintaining long‐term efficiency of pest‐control measures. KW - evolutionary response KW - sexual dimorphism in timing KW - sex-specific mortality KW - reproductive asynchrony KW - mating success Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170953 VL - 8 IS - 5 ER -