TY - THES A1 - Cook, Mandy T1 - The neurodegenerative Drosophila melanogaster AMPK mutant loechrig T1 - The neurodegenerative Drosophila melanogaster AMPK Mutante loechrig N2 - In dieser Doktorarbeit wird die Drosophila Mutante loechrig (loe), die progressive Degeneration des Nervensystems aufweist, weiter beschrieben. In der loe Mutante fehlt eine neuronale Isoform der γ- Untereinheit der Proteinkinase AMPK (AMP-activated protein kinase). Die heterotrimere AMPK (auch als SNF4Aγ bekannt) kontrolliert das Energieniveau der Zelle, was ständiges Beobachten des ATP/AMP- Verhältnis erfordert. AMPK wird durch niedrige Energiekonzentrationen und Beeinträchtigungen im Metabolismus, wie zum Beispiel Sauerstoffmangel, aktiviert und reguliert mehrere wichtige Signaltransduktionswege, die den Zellmetabolismus kontrollieren. Jedoch ist die Rolle von AMPK im neuronalen Überleben noch unklar. Eines der Proteine, dass von AMPK reguliert wird, ist HMGR (hydroxymethylglutaryl-CoA- reductase), ein Schlüsselenzym in der Cholesterin- und Isoprenoidsynthese. Es wurde gezeigt, dass wenn die Konzentration von HMGR manipuliert wird, auch der Schweregrad des neurodegenerativen Phänotyps in loe beeinflusst wird. Obwohl die regulatorische Rolle von AMPK auf HMGR in Drosophila konserviert ist, können Insekten Cholesterin nicht de novo synthetisieren. Dennoch ist der Syntheseweg von Isoprenoiden zwischen Vertebraten und Insekten evolutionär konserviert. Isoprenylierung von Proteinen, wie zum Beispiel von kleinen G-Proteinen, stellt den Proteinen einen hydophobischen Anker bereit, mit denen sie sich an die Zellmembran binden können, was in anschließender Aktivierung resultieren kann. In dieser Doktorarbeit wird gezeigt, dass die loe Mutation die Prenylierung von Rho1 und den LIM-Kinasesignalweg beeinflusst, was eine wichtige Rolle im Umsatz von Aktin und axonalem Auswachsen spielt. Die Ergebnisse weisen darauf hin, dass die Mutation in LOE, Hyperaktivität des Isoprenoidsynthesewegs verursacht, was zur erhöhten Farnesylierung von Rho1 und einer dementsprechend höheren Konzentration von Phospho- Cofilin führt. Eine Mutation in Rho1 verbessert den neurodegenerativen Phänotyp und die Lebenserwartung von loe. Der Anstieg vom inaktiven Cofilin in loe führt zu einer Zunahme von filamentösen Aktin. Aktin ist am Auswachen von Neuronen beteiligt und Experimente in denen loe Neurone analysiert wurden, gaben wertvolle Einblicke in eine mögliche Rolle die AMPK, und dementsprechend Aktin, im Neuronenwachstum spielt. Des Weiteren wurde demonstriert, dass Neurone, die von der loe Mutante stamen, einen verlangsamten axonalen Transport aufweisen, was darauf hinweist dass Veränderungen, die durch den Einfluss von loe auf den Rho1 Signalweg im Zytoskelettnetzwerk hervorgerufen wurden, zur Störung des axonalen Transports und anschließenden neuronalen Tod führen. Es zeigte außerdem, dass Aktin nicht nur am neuronalen Auswachsen beteiligt ist, sondern auch wichtig für die Aufrechterhaltung von Neuronen ist. Das bedeutet, dass Änderungen der Aktindynamik zur progressiven Degeneration von Neuronen führen kann. Zusammenfassend unterstreichen diese Ergebnisse die wichtige Bedeutung von AMPK in den Funktionen und im Überleben von Neuronen und eröffnen einen neuartigen funktionellen Mechanismus in dem Änderungen in AMPK neuronale Degeneration hervorrufen kann. N2 - In this thesis the Drosophila mutant loechrig (loe), that shows progressive degeneration of the nervous system, is further described. Loe is missing a neuronal isoform of the protein kinase AMPK γ subunit (AMP-activated protein kinase- also known as SNF4Aγ) The heterotrimeric AMPK controls the energy level of the cell, which requires constant monitoring of the ATP/AMP levels. It is activated by low energy levels and metabolic insults like oxygen starvation and regulates multiple important signal pathways that control cell metabolism. Still, its role in neuronal survival is unclear. One of AMPK’s downstream targets is HMGR (hydroxymethylglutaryl-CoA- reductase), a key enzyme in cholesterol and isoprenoid synthesis. It has been shown that manipulating the levels of HMGR affects the severity of the neurodegenerative phenotype in loe. Whereas the regulatory role of AMPK on HMGR is conserved in Drosophila, insects cannot synthesize cholesterol de novo. However, the synthesis of isoprenoids is a pathway that is evolutionarily conserved between vertebrates and insects. Isoprenylation of target proteins like small G-proteins provides a hydrophobic anchor that allows the association of these proteins with membranes and following activation. This thesis shows that the loe mutation interferes with the prenylation of Rho1 and the regulation of the LIM kinase pathway, which plays an important role in actin turnover and axonal outgrowth. The results suggest that the mutation in LOE, causes hyperactivity of the isoprenoid synthesis pathway, which leads to increased farnesylation of RHO1 and therefore higher levels of phospho-cofilin. A mutation in Rho1 improves the neurodegenerative phenotype and life span. The increased inactive cofilin amount in loe leads to an up regulation of filamentous actin. Actin is involved in neuronal outgrowth and experiments analyzing loe neurons gave valuable insights into a possible role of AMPK and accordingly actin on neurite growth and stability. It was demonstrated that neurons derived from loe mutants exhibit reduces axonal transport suggesting that changes in the cytoskeletal network caused by the effect of loe on the Rho1 pathway lead to disruptions in axonal transport and subsequent neuronal death. It also shows that actin is not only involved in neuronal outgrowth, its also important in maintenance of neurons, suggesting that interference with actin dynamics leads to progressive degeneration of neurons. Together, these results further support the importance of AMPK in neuronal function and survival and provide a novel functional mechanisms how alterations in AMPK can cause neuronal degeneration KW - Taufliege KW - Nervendegeneration KW - AMP KW - Proteinkinasen KW - Molekulargenetik KW - Drosophila KW - Neurodegeneration KW - AMPK KW - Drosophila KW - Neurodegeneration KW - Rho Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72027 ER - TY - THES A1 - Tyagi, Anu T1 - Role of SWI/SNF in regulating pre-mRNA processing in Drosophila melanogaster T1 - Funktion von SWI/SNF in der Regulation der prämRNA-Prozessierung in Drosophila melanogaster N2 - ATP dependent chromatin remodeling complexes are multifactorial complexes that utilize the energy of ATP to rearrange the chromatin structure. The changes in chromatin structure lead to either increased or decreased DNA accessibility. SWI/SNF is one of such complex. The SWI/SNF complex is involved in both transcription activation and transcription repression. The ATPase subunit of SWI/SNF is called SWI2/SNF2 in yeast and Brahma, Brm, in Drosophila melanogaster. In mammals there are two paralogs of the ATPase subunit, Brm and Brg1. Recent studies have shown that the human Brm is involved in the regulation of alternative splicing. The aim of this study was to investigate the role of Brm in pre-mRNA processing. The model systems used were Chironomus tentans, well suited for in situ studies and D. melanogaster, known for its full genome information. Immunofluorescent staining of the polytene chromosome indicated that Brm protein of C. tentans, ctBrm, is associated with several gene loci including the Balbiani ring (BR) puffs. Mapping the distribution of ctBrm along the BR genes by both immuno-electron microscopy and chromatin immunoprecipitation showed that ctBrm is widely distributed along the BR genes. The results also show that a fraction of ctBrm is associated with the nascent BR pre-mRNP. Biochemical fractionation experiments confirmed the association of Brm with the RNP fractions, not only in C. tentans but also in D. melanogaster and in HeLa cells. Microarray hybridization experiments performed on S2 cells depleted of either dBrm or other SWI/SNF subunits show that Brm affects alternative splicing and 3´ end formation. These results indicated that BRM affects pre-mRNA processing as a component of SWI/SNF complexes. 1 N2 - ATP abhängige Chromatin Remodelling Komplexe bestehen aus diversen Faktoren, welche die bei der Umsetzung von ATP freiwerdende Energie dazu nutzen, die Chromatinstruktur neu zu ordnen. Diese Veränderungen führen zu einer Zu- bzw. Abnahme in der Zugänglichkeit der DNA. Ein Beispiel dafür ist der SWI/SNF-Komplex, der sowohl in die Aktivierung als auch die Inhibierung der Transkription involviert ist. Die ATPase-Untereinheit von SWI/SNF heißt in Hefe SWI2/SNF2 und in Drosophila melanogaster Brahma (Brm). Im Gegensatz dazu besitzen Säuger zwei Paraloge der ATPase-Einheit, nämlich Brm und Brg1. Neueste Studien haben gezeigt, dass das humane Brm in der Regulation des Alternativen Spleißen beteiligt ist. Ziel dieser Arbeit ist es, die Rolle von Brm in der prä-mRNA-Prozessierung zu untersuchen. Als Versuchssysteme wurden Chironomus tentans und D. melanogaster herangezogen. Dabei eignete sich C. tentans vor allem für die in situ Studien während bei D. melanogaster das vollständig sequenzierte Genom von Vorteil war. Immunfluoreszenzfärbungen von Polytän-Chromosomen zeigen eine Assoziation von Brm von C. tentans, ctBrm; mit unterschiedlichen Genloci, einschließlich der Balbiani-Ringe (BR). Mit Hilfe von Immun-Elektronenmikroskopie und Chromatin-Immunpräzipitation (ChIP) wird die Verteilung von ctBrm entlang der BR-Gene untersucht. Dabei zeigt ctBrm eine weite Streuung. Die Ergebnisse lassen außerdem darauf schließen, dass ein Teil des ctBrm-Proteins mit naszierenden BRprä- mRNPs interagiert. Biochemische Fraktionierungs-experimente bestätigen die Assoziation von Brm mit RNP-Fraktionen nicht nur in C. tentans, sondern auch in D. melanogaster und in HeLa-Zellen. Microarray-Untersuchungen in S2-Zellen, in denen entweder dBrm oder eine andere Untereinheit von SWI/SNF depletiert war, zeigen, dass BRM als eine Komponente des SWI/SNF-Komplexes sowohl Alternatives Spleißen und die Formierung des 3´ Endes, als auch die prä-mRNA-Prozessierung beeinflusst. KW - Taufliege KW - Messenger-RNS KW - Prozessierung KW - SWI/SNF KW - mRNA processing KW - SWI/SNF KW - mRNA processing Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72253 ER - TY - THES A1 - Kapustjansky, Alexander T1 - In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster T1 - In vivo Imaging und der optogenetische Ansatz zu Untersuchung der Gedächtnissbildung und lokomotorischem Verhalten bei Drosophila melanogaster N2 - Understanding of complex interactions and events in a nervous system, leading from the molecular level up to certain behavioural patterns calls for interdisciplinary interactions of various research areas. The goal of the presented work is to achieve such an interdisciplinary approach to study and manipulate animal behaviour and its underlying mechanisms. Optical in vivo imaging is a new constantly evolving method, allowing one to study not only the local but also wide reaching activity in the nervous system. Due to ease of its genetic accessibility Drosophila melanogaster represents an extraordinary experimental organism to utilize not only imaging but also various optogenetic techniques to study the neuronal underpinnings of behaviour. In this study four genetically encoded sensors were used to investigate the temporal dynamics of cAMP concentration changes in the horizontal lobes of the mushroom body, a brain area important for learning and memory, in response to various physiological and pharmacological stimuli. Several transgenic lines with various genomic insertion sites for the sensor constructs Epac1, Epac2, Epac2K390E and HCN2 were screened for the best signal quality, one line was selected for further experiments. The in vivo functionality of the sensor was assessed via pharmacological application of 8-bromo-cAMP as well as Forskolin, a substance stimulating cAMP producing adenylyl cyclases. This was followed by recording of the cAMP dynamics in response to the application of dopamine and octopamine, as well as to the presentation of electric shock, odorants or a simulated olfactory signal, induced by acetylcholine application to the observed brain area. In addition the interaction between the shock and the simulated olfactory signal by simultaneous presentation of both stimuli was studied. Preliminary results are supporting a coincidence detection mechanism at the level of the adenylyl cyclase as postulated by the present model for classical olfactory conditioning. In a second series of experiments an effort was made to selecticvely activate a subset of neurons via the optogenetic tool Channelrhodopsin (ChR2). This was achieved by recording the behaviour of the fly in a walking ball paradigm. A new method was developed to analyse the walking behaviour of the animal whose brain was made optically accessible via a dissection technique, as used for imaging, thus allowing one to target selected brain areas. Using the Gal4-UAS system the protocerebral bridge, a substructure of the central complex, was highlighted by expressing the ChR2 tagged by fluorescent protein EYFP. First behavioural recordings of such specially prepared animals were made. Lastly a new experimental paradigm for single animal conditioning was developed (Shock Box). Its design is based on the established Heat Box paradigm, however in addition to spatial and operant conditioning available in the Heat Box, the design of the new paradigm allows one to set up experiments to study classical and semioperant olfactory conditioning, as well as semioperant place learning and operant no idleness experiments. First experiments involving place learning were successfully performed in the new apparatus. N2 - Das Verständniss für die komplexen Interaktionen und Zusammenhänge, die von der molekularen Ebene bis zum Auftreten von bestimmten Verhaltensmustern führen, erfordert die interdisziplinäre Zusammenarbeit unterschiedlicher Forschungsrichtungen. Das Ziel der vorgelegten Arbeit war es einen solchen interdisziplinären Ansatz für die Erforschung und die Manipulation von Verhalten und ihm zu Grunde liegenden Mechanismen zu verwirklichen. Optisches in vivo Imaging ist eine neue, sich ständig weiterentwickelnde Methode, welche es ermöglicht, nicht nur lokale sondern auch weitläufige Aktivitäten innerhalb des Nervensystem zu untersuchen. Drosophila melanogaster stellt aufgrund der leichten genetischen Zugänglichkeit einen herausragenden experimentellen Organismus dar, bei welchem neben optischem Imaging eine ganze Reihe optogenetischer Methoden angewandt werden kann, um die neuronalen Grundlagen des Verhaltens zu erforschen. Im Rahmen dieser Arbeit wurde mit Hilfe von vier genetisch kodierten Sensoren in vivo die Dynamik der cAMP Konzentration in den horizontalen Loben des Pilzkörpers, bei Applikation unterschiedlicher physiologischer und pharmazeutischer Stimuli untersucht. Dabei wurden mehrere transgene Fliegenlinien mit Sensorkonstrukten Epac1, Epac2, Epac2K390E und HCN2 an unterschiedlichen genomischen Insertionsorten, hinsichtlich ihrer Signalqualität untersucht, eine der Linien wurde für weitere Experimente ausgewählt. Zunächst wurde an dieser die in vivo Tauglichkeit des Sensors gezeigt, indem die Konzentration von cAMP durch pharmakologische Applikationen von 8-Bromo-cAMP und Forskolin, einer Substanz welche die Aktivität von cAMP produzierenden Adenylatcyclasen stimuliert, appliziert wurden. Anschließend wurde eine Untersuchung der cAMP Dynamik als Antwort auf einen elektrischen Schock, unterschiedliche Düfte, sowie einen durch Applikation von Acetylcholin simulierten Duftstimulus durchgeführt. Vorläufige Ergebnisse bestärken das aktuelle Modell der klassischen olfaktorischen Konditionierung durch die Koinzidenzdetektion auf der Ebene der Adenylatcyclase. In einem weiteren Experiment wurde der Versuch einer optogenetischen neuronalen Aktivierung unternommen, dabei wurde basierend auf einem Laufball Paradigma eine Methode entwickelt, das Laufverhalten der Fliegen zu analysieren während ihr Gehirn durch eine Imaging-Präparation freigelegt wurde, um gezielt bestimmte durch fluoreszierende Proteine markierte Gehirnbereiche anzuregen. Erste Aufzeichnungen des Laufverhaltens bei Aktivierung der protocerebrallen Brücke, einer Substruktur des Zentralkomplexes, wurden durchgeführt. Schließlich wurde eine neue Apparatur (Shock Box) für die Konditionierung von Einzeltieren entwickelt und gebaut, das Design beruht auf dem der sogenannten Heat Box, ermöglicht jedoch klassische und semioperante olfaktorische Konditionierung zusätzlich zu der in der Heat Box möglichen räumlichen und operanten Konditionierung. Die ersten Versuche für räumliches Lernen wurden in der Apparatur durchgeführt. KW - Taufliege KW - Pilzkörper KW - Cyclo-AMP KW - Gedächtnis KW - In vivo KW - Imaging KW - Drosophila KW - Memory KW - In vivo KW - Imaging KW - Drosophila KW - Memory Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69535 ER - TY - THES A1 - Halder, Partho T1 - Identification and characterization of synaptic proteins of Drosophila melanogaster using monoclonal antibodies of the Wuerzburg Hybridoma Library T1 - Identifikation und Charakterisierung von synaptischen Proteinen von Drosophila melanogaster mit Hilfe von monoklonalen Antikörpern der Würzburger Hybridoma-Bibliothek N2 - For a large fraction of the proteins expressed in the human brain only the primary structure is known from the genome project. Proteins conserved in evolution can be studied in genetic models such as Drosophila. In this doctoral thesis monoclonal antibodies (mAbs) from the Wuerzburg Hybridoma library are produced and characterized with the aim to identify the target antigen. The mAb ab52 was found to be an IgM which recognized a cytosolic protein of Mr ~110 kDa on Western blots. The antigen was resolved by two-dimensional gel electrophoresis (2DE) as a single distinct spot. Mass spectrometric analysis of this spot revealed EPS-15 (epidermal growth factor receptor pathway substrate clone 15) to be a strong candidate. Another mAb from the library, aa2, was already found to recognize EPS-15, and comparison of the signal of both mAbs on Western blots of 1D and 2D electrophoretic separations revealed similar patterns, hence indicating that both antigens could represent the same protein. Finally absence of the wild-type signal in homozygous Eps15 mutants in a Western blot with ab52 confirmed the ab52 antigen to be EPS-15. Thus both the mAbs aa2 and ab52 recognize the Drosophila homologue of EPS-15. The mAb aa2, being an IgG, is more suitable for applications like immunoprecipitation (IP). It has already been submitted to the Developmental Studies Hybridoma Bank (DSHB) to be easily available for the entire research community. The mAb na21 was also found to be an IgM. It recognizes a membrane associated antigen of Mr ~10 kDa on Western blots. Due to the membrane associated nature of the protein, it was not possible to resolve it by 2DE and due to the IgM nature of the mAb it was not possible to enrich the antigen by IP. Preliminary attempts to biochemically purify the endogenously expressed protein from the tissue, gave promising results but could not be completed due to lack of time. Thus biochemical purification of the protein seems possible in order to facilitate its identification by mass spectrometry. Several other mAbs were studied for their staining pattern on cryosections and whole mounts of Drosophila brains. However, many of these mAbs stained very few structures in the brain, which indicated that only a very limited amount of protein would be available as starting material. Because these antibodies did not produce signals on Western blots, which made it impossible to enrich the antigens by electrophoretic methods, we did not attempt their purification. However, the specific localization of these proteins makes them highly interesting and calls for their further characterization, as they may play a highly specialized role in the development and/or function of the neural circuits they are present in. The purification and identification of such low expression proteins would need novel methods of enrichment of the stained structures. N2 - Für einen Großteil der Proteine, die im menschlichen Gehirn exprimiert werden, ist lediglich die Primärstruktur aus dem Genomprojekt bekannt. Proteine, die in der Evolution konserviert wurden, können in genetischen Modellsystemen wie Drosophila untersucht werden. In dieser Doktorarbeit werden monoklonale Antikörper (mAk) aus der Würzburger Hybridoma Bibliothek produziert und charakterisiert, mit dem Ziel, die erkannten Proteine zu identifizieren. Der mAk ab52 wurde als IgM typisiert, das auf Western Blots ein zytosolisches Protein von Mr ~110 kDa erkennt. Das Antigen wurde durch zwei-dimensionale Gelelektrophorese (2DE) als einzelner Fleck aufgelöst. Massenspektrometrische Analyse dieses Flecks identifizierte dass EPS-15 (epidermal growth factor receptor pathway substrate clone 15) als viel versprechenden Kandidaten. Da für einen anderen mAk aus der Bibliothek, aa2, bereits bekannt war, dass er EPS-15 erkennt, wurden die Western-Blot-Signale der beiden Antikörper nach 1D und 2D Trennungen von Kopfhomogenat verglichen. Die Ähnlichkeit der beiden Muster deuteten darauf hin, dass beide Antigene dasselbe Protein erkennen. Das Fehlen des Wildtyp-Signals in homozygoten Eps15 Mutanten in einem Western Blot mit mAk ab52 bestätigten schließlich, dass EPS-15 das Antigen zu mAk ab52 darstellt. Demnach erkennen beide mAk, aa2 und ab52, das Drosophila Homolog zu EPS-15. Da mAk aa2 ein IgG ist, dürfte er für Anwendungen wie Immunpräzipitation (IP) besser geeignet sein. Er wurde daher bereits bei der Developmental Studies Hybridoma Bank (DSHB) eingereicht, um ihn der ganzen Forschergemeinde leicht zugänglich zu machen. Der mAk na21 wurde ebenfalls als IgM typisiert. Er erkennt ein Membran assoziiertes Antigen von Mr ~10 kDa auf Western Blots. Aufgrund der Membranassoziierung des Proteins war es nicht möglich, es in 2DE aufzulösen und da es sich um ein IgM handelt, war eine Anreicherung des Antigens mittels IP nicht erfolgreich. Vorversuche zur biochemischen Reinigung des endogenen Proteins aus Gewebe waren Erfolg versprechend, konnten aber aus Zeitmangel nicht abgeschlossen werden. Daher erscheint eine biochemische Reinigung des Proteins für eine Identifikation durch Massenspektrometrie möglich. Eine Reihe weiterer mAk wurden hinsichtlich ihrer Färbemuster auf Gefrierschnitten und in Ganzpräparaten von Drosophila Gehirnen untersucht. Allerdings färbten viele dieser mAk sehr wenige Strukturen im Gehirn, so dass nur eine sehr begrenzte Menge an Protein als Startmaterial verfügbar wäre. Da diese Antikörper keine Signale auf Western Blots produzierten und daher eine Anreicherung des Antigens durch elektrophoretische Methoden ausschlossen, wurde keine Reinigung versucht. Andererseits macht die spezifische Lokalisation dieser Proteine sie hoch interessant für eine weitere Charakterisierung, da sie eine besonders spezialisierte Rolle in der Entwicklung oder für die Funktion von neuralen Schaltkreisen, in denen sie vorkommen, spielen könnten. Die Reinigung und Identifikation solcher Proteine mit niedrigem Expressionsniveau würde neue Methoden der Anreicherung der gefärbten Strukturen erfordern. KW - Taufliege KW - Synapse KW - Proteine KW - Monoklonaler Antikörper KW - synaptische Proteine KW - monoklonale Antikörper KW - Drosophila melanogaster KW - synaptic proteins KW - monoclonal antibodies Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67325 N1 - korrigierte Ausgabe der Arbeit aus dem Jahr 2022 unter: https://doi.org/10.25972/OPUS-27020 ER - TY - THES A1 - Saumweber, Timo T1 - Mechanism of Learning and Plasticity in Larval Drosophila T1 - Lern- und Plastizitätsmechanismen in Drosophila Larven N2 - According to a changing environment it is crucial for animals to make experience and learn about it. Sensing, integrating and learning to associate different kinds of modalities enables animals to expect future events and to adjust behavior in the way, expected as the most profitable. Complex processes as memory formation and storage make it necessary to investigate learning and memory on different levels. In this context Drosophila melanogaster represents a powerful model organism. As the adult brain of the fly is still quite complex, I chose the third instar larva as model - the more simple the system, the easier to isolate single, fundamental principles of learning. In this thesis I addressed several kinds of questions on different mechanism of olfactory associative and synaptic plasiticity in Drosophila larvae. I focused on short-term memory throughout my thesis. First, investigating larval learning on behavioral level, I developed a one-odor paradigm for olfactory associative conditioning. This enables to estimate the learnability of single odors, reduces the complexity of the task and simplify analyses of "learning mutants". It further allows to balance learnability of odors for generalization-type experiments to describe the olfactory "coding space". Furthermore I could show that innate attractiveness and learnability can be dissociated and found finally that paired presentation of a given odor with reward increase performance, whereas unpaired presentations of these two stimuli decrease performance, indicating that larva are able to learn about the presence as well as about the absence of a reward. Second, on behavioral level, together with Thomas Niewalda and colleagues we focussed on salt processing in the context of choice, feeding and learning. Salt is required in several physiological processes, but can neither be synthesized nor stored. Various salt concentrations shift the valence from attraction to repulsion in reflexive behaviour. Interestingly, the reinforcing effect of salt in learning is shifted by more than one order of magnitude toward higher concentrations. Thus, the input pathways for gustatory behavior appear to be more sensitive than the ones supporting gustatory reinforcement, which is may be due to the dissociation of the reflexive and the reinforcing signalling pathways of salt. Third, in cooperation with Michael Schleyer we performed a series of behavioral gustatory, olfactory preference tests and larval learning experiments. Based on the available neuroanatomical and behavioral data we propose a model regarding chemosensory processing, odor-tastant memory trace formation and the 'decision' like process. It incorporates putative sites of interaction between olfactory and gustatory pathways during the establishment as well as behavioral expression of odor-tastant memory. We claim that innate olfactory behavior is responsive in nature and suggest that associative conditioned behavior is not a simple substitution like process, but driven more likely by the expectation of its outcome. Fourth, together with Birgit Michels and colleagues we investigated the cellular site and molecular mode of Synapsin, an evolutionarily conserved, presynaptic vesicular phosphoprotein and its action in larval learning. We confirmed a previously described learning impairment upon loss of Synapsin. We localized this Synapsin dependent memory trace in the mushroom bodies, a third-order "cortical" brain region, and could further show on molecular level, that Synapsin is as a downstream element of the AC-cAMP-PKA signalling cascade. This study provides a comprehensive chain of explanation from the molecular level to an associative behavioral change. Fifth, in the main part of my thesis I focused on molecular level on another synaptic protein, the Synapse associated protein of 47kDa (Sap47) and its role in larval behavior. As a member of a phylogenetically conserved gene family of hitherto unknown function. It is localized throughout the whole neuropil of larval brains and associated with presynaptic vesicles. Upon loss of Sap47 larvae exhibit normal sensory detection of the to-be-associated stimuli as well as normal motor performance and basic synaptic transmission. Interestingly, short-term plasticity is distorted and odorant–tastant associative learning ability is reduced. This defect in associative function could be rescued by restoring Sap47 expression. Therefore, this report is the first to suggest a function for Sap47 and specifically argues that Sap47 is required for synaptic as well as for behavioral plasticity in Drosophila larva. This prompts the question whether its homologs are required for synaptic and behavioral plasticity also in other species. Further in the last part of my thesis I contributed to the study of Ayse Yarali. Her central topic was the role of the White protein in punishment and relief learning in adult flies. Whereas stimuli that precede shock during training are subsequently avoided as predictors for punishment, stimuli that follow shock during training are later on approached, as they predict relief. Concerning the loss of White we report that pain-relief learning as well as punishment learning is changed. My contribution was a comparison between wild type and the white1118 mutant larvae in odor-reward learning. It turned out that a loss of White has no effect on larval odorant-tastant learning. This study, regarding painrelief learning provides the very first hints concerning the genetic determinants of this form of learning. N2 - In einer belebten, sich stetig wandelnden Umwelt ist es essenziell für Lebewesen, Informationen wahrzunehmen und Erfahrungen zu sammeln, um ihr Verhalten entsprechend zu modifizieren. Verschiedene Arten von Reizen werden wahrgenommen, integriert und gespeichert. Dies ermöglicht Tieren künftige Ereignisse vorherzusehen und ihr Verhalten entsprechend ihren Erwartungen anzupassen. Die Komplexität von Lernprozessen und Gedächtnisspeicherung macht es notwendig, diese Prozesse auf unterschiedlichen Ebenen zu untersuchen. In diesem Zusammenhang hat sich Drosophila melanogaster als besonders geeigneter Modellorganismus herauskristallisiert. Trotz einer relativ geringen neuronalen Komplexität im Vergleich zu höheren Organismen, zeigt sie ein reichhaltiges Verhaltensrepertoire. Dennoch ist das Gehirn von adulten Furchtfliegen ein hoch komplexes System. Je einfacher ein System ist, umso vielversprechender ist es scheinbar, einzelne fundamentale Aspekte dieses Systems zu isolieren und zu untersuchen. In meiner Arbeit nutzte ich daher als Modelorganismus das dritte Larvenstadium der Fliege und untersuchte auf verschiedenen Ebenen unterschiedliche Mechanismen olfaktorischer, assoziativer und synaptischer Plastizität. Dabei fokussierte ich mich stets auf Kurzzeitgedächtnis. Zunächst untersuchte ich assoziatives Lernen auf Verhaltensebene. Hierfür entwickelte ich ein Ein-Duft-Lernparadigma für olfaktorische klassische Konditionierung von Drosophila Larven. Dies ermöglicht, die Lernbarkeit von einzelnen Düften zu untersuchen, reduziert die Komplexität der Aufgabenstellung für die Larven und vereinfacht die Analyse von Lernmutanten. Weiterhin erlaubt es die Lernbarkeit von Düften für Generalisierungs-experimente zu balancieren, um zu beschreiben, wie Duftidentitäten im Nervensystem kodiert werden. Ich konnte zeigen, dass die Lernbarkeit von Düften nicht unmittelbar mit der naiven Duftpräferenz korreliert. Ferner konnte in dieser Studie nachgewiesen werden, dass durch gepaarte Präsentation von Duft und Zuckerbelohnung die Präferenz im Bezug auf diesen Duft zunimmt, wohingegen ungepaarte Präsentation dieser beiden Reize zu einer Abnahme der Duftpräferenz führt. Dies weist darauf hin, dass es Larven auch möglich ist etwas über die Abwesenheit der Belohnung zu lernen. In einer zweiten Studie befasste ich mich, in Zusammenarbeit mit Thomas Niewalda, mit der Verarbeitung von Salz im Bezug auf das Wahl-, Fress- und Lernverhalten von Drosophila Larven. Salze spielen in mehreren physiologischen Prozessen eine bedeutende Rolle, können von Larven aber weder synthetisiert noch gespeichert werden. Unterschiedliche Salzkonzentrationen haben unterschiedliche Auswirkungen auf das Larvenverhalten. Während niedrige Konzentrationen von Larven bevorzugt werden, werden hohe Salzkonzentrationen vermieden. Lernexperimente zeigten, dass Salz ebenfalls dosisabhängig als positiver oder negativer Verstärker wirkt. Interessanterweise zeigt sich im Vergleich zum Wahl- und Fressverhalten, dass der Punkt, an dem Salz von einem appetitiven zu einem aversiven Stimulus wird, um mehr als eine Größenordnung in Richtung höherer Konzentrationen verschoben ist. Die Sensitivität der gustatorischen Transduktion ist somit höher als die Transduktion des Verstärkersignals. Möglicherweise liegt dies an der Dissoziation dieser beiden Transduktionswege. In der dritten Studie dieser Arbeit wurden, in Kooperation mit Michael Schleyer, eine Vielzahl an olfaktorischen und gustatorischen Präferenztests, sowie eine Reihe an Lernexperimenten durchgeführt. Basierend auf bekannten Neuroanatomiestudien und unseren Verhaltensdaten, propagieren wir ein Model für Duft- und Geschmacksprozessierung, die Etablierung von Gedächtnisspuren, sowie Entscheidungsprozessen. Sowohl mögliche Interaktionen zwischen olfaktorischen und gustatorischen Transduktionswegen, sowie der Abruf von Gedächtnisinhalten werden berücksichtigt. Wir schlagen vor, dass naives olfaktorisches Verhalten natürlicherweise reflexiv ist. Assoziativ konditioniertes Verhalten kann allerdings nicht als reiner Substitutionsprozess betrachtet werden, sondern wird besser interpretiert im Hinblick auf die Erwartung, die er auslöst, woraufhin ein bestimmtes Verhaltensprogramm gestartet wird. In Zusammenarbeit mit Birgit Michels untersuchte ich auf zellulärer Ebene die molekulare Funktion von Synapsin im assoziativen Lernen von Drosophila Larven. Synapsin gehört zu den hochkonservierten, präsynaptischen, vesikulären Phosphoproteinen. Wir konnten einen früher bereits beschriebenen Lernphänotyp von Synapsin Mutanten Larven bestätigen. Die Synapsin abhängige Gedächtnisspur konnten wir auf wenige Zellen im Pilzkörper, einer dem olfaktorischen Cortex der Vertebraten homologen Struktur, lokalisieren. Auf molekularer Ebene wurde nachgewiesen, dass Synapsin ein Zielprotein in der bekannten AC-cAMP-PKA Lernkaskade ist. Diese Studie zeigt einen Zusammenhang zwischen molekularen Mechanismen assoziativer Plastizität und einer daraus resultierenden Verhaltensänderung der Tiere. In meinem Hauptprojekt befasste ich mich auf molekularer Ebene mit einem weiteren synaptischen Protein, dem Synapsen assoziierten Protein von 47kDa (Sap47) und seiner Rolle im Verhalten von Drosophila Larven. Sap47 wird in allen neuropilen Bereichen expremiert und ist mit synaptischen Vesikeln assoziiert. Das Fehlen von Sap47 beeinflusst weder die Detektion der zu assoziierenden Reize, noch das Kriechverhalten der Larven. Auch die synaptische Übertragung, ausgelöst durch einzelne Stimulationen an der neuromuskulären Synapse, ist nicht beeinträchtigt. Interessanterweise führt das Fehlen von Sap47 sowohl zu veränderter Kurzzeit-Plastizität an dieser Synapse, sowie zu einer Einschränkung in der Bildung von Duft-Zucker-Gedächtnis. Diese Studie liefert einen ersten Hinweis auf eine Funktion von Sap47 in synaptischer und assoziativer Plastizität. Es stellt sich die Frage, ob auch in anderen Organismen die zu Drosophila Sap47-homologen Proteine notwendig für synaptische und Lernplastizität sind. Im letzten Teil meiner Dissertation war ich an einem Projekt von Ayse Yarali beteiligt. Die zentrale Fragestellung in dieser Studie war, ob eine Mutation im white Gen Bestrafungs- und/ oder Erleichterungslernen beeinflusst. Wird ein neutraler Reiz während einer Trainingsphase mit einem Elektroschock bestraft, wird dieser später konsequent vermieden, da er einen Elektroschock vorhersagt (Bestrafungslernen). Eine Umkehrung der Reihenfolge der Stimulipräsentation, sodass dem Schock stets ein neutraler Stimulus folgt, führt später, in der Testphase, zu einer positiven Reaktion auf diesen naiv neutralen Reiz (Erleichterungslernen). Ein Verlust des White Proteins in white1118 Mutanten verändert beide Arten von Gedächtnissen in adulten Fliegen. Meine Beteiligung an dieser Arbeit war ein Vergleich zwischen wildtypischen Larven und white1118 mutanten Larven in Duft-Zucker Assoziationsexperimenten. Es zeigte sich, dass der Verlust dieses Proteins auf larvale Duft-Zucker Konditionierung keinen Einfluss hat. Im Larvenlernen kann somit das Verhalten von transgenen Tieren, die zumeist eine Mutation im white Gen als Markergen tragen, interpretiert werden, ohne die Funktion des white Gens berücksichtigen zu müssen. Im Bezug auf Erleichterungslernen liefert diese Arbeit einen ersten Hinweis auf eine genetische Komponente, der entscheidend für diese Art des assoziativen Lernens ist. KW - Taufliege KW - Larve KW - Verhalten KW - Lernen KW - Geruchswahrnehmung KW - Drosophila Larve KW - Olfaktion KW - Attraktion KW - Drosophila Larva KW - Behavior KW - Learning KW - Olfaction KW - Attraction Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66354 ER - TY - THES A1 - Niewalda, Thomas T1 - Neurogenetic analyses of pain-relief learning in the fruit fly T1 - Neurogenetische Analyse von pain-relief Lernen in der Fruchtfliege N2 - All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. Völler and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry. N2 - Tiere müssen lernen, damit sie sich in ihrer Umwelt zurechtfinden und die Herausforderungen meistern können, die ihre Umwelt ihnen bietet. Dies gilt auch für Taufliegen im larvalen und erwachsenen Stadium, wie man mit der Pavlovschen Konditionierung zeigen kann. Der Schwerpunkt dieser Doktorarbeit liegt auf verschiedenen Aspekten der Lernfähigkeit von Taufliegen. In meinem Hauptprojekt erforsche ich die Arten von Lernprozessen, die stattfinden, wenn die Fliegen entweder den Beginn oder das Ende eines Elektroschocks mit einem Duft assoziieren. Wenn Taufliegen einen Duft wahrnehmen, der von einem Elektroschock gefolgt wird, lernen sie, dass dieser Duft Schmerz signalisiert, und werden ihn konsequenterweise in Zukunft vermeiden. Man kann die Abfolge dieser beiden Reize so umkehren, dass der Duft auf den Elektroschock folgt. Durch ein solches Training wird der Duft für die Fliegen zu einem Signal für das Ende des schmerzhaften Elektroschocks und sie werden, wenn sie diesen Duft später wieder einmal wahrnehmen, auf ihn zugehen. Ich berichte im ersten Kapitel über Experimente, die qualitative und parametrische Besonderheiten der letzteren Lernform untersuchen. Ich finde heraus, dass (i) das Lernen über das Ende des Elektroschocks echtes assoziatives Lernen ist, (ii) dass es eine relativ hohe Anzahl von Trainingsdurchgängen erfordert, (iii) dass Kontext-Schock-Training unbedeutend für anschließendes Schock-Duft-Lernen ist. Im zweiten Kapitel gehe ich der Frage nach, ob die genannten beiden Typen von Lernvorgängen gemeinsame genetische Determinanten haben. Was die Genetik anbelangt, teste ich die Lernfähigkeit eines Synapsin-Mutantenstammes, dem das Synapsinprotein fehlt. Lernen über den Beginn des Elektroschocks ist stark reduziert, und Lernen über das Ende des Elektroschocks fehlt gänzlich. Die Reduzierung des Synapsinproteins im Fliegengehirn durch RNAi resultiert in mutantenähnlichen Phänotypen. Dieser Befund bestätigt, dass der Lernphänotyp auf einem Mangel an Synapsin beruht. Die Expression von Synapsin im Pilzkörper der Mutante erlaubt der Fliege, wieder normal zu lernen; dies weist auf die Hinlänglichkeit von Synapsin im Pilzkörper für beide Arten von Lernen hin. In einem weiteren Projekt untersuche ich den Zusammenhang zwischen Wahrnehmung und Physiologie in erwachsenen Taufliegen. Ich benutze Duft-Schock-Konditionierungsexperimente, um basierend auf dem Verhalten der Tiere Ähnlichkeitsränge von Düften zu ermitteln, und finde eine einheitliche Rangfolge der untersuchten Düfte für verschiedene Generalisierungs- und Diskriminierungs-Aufgaben von unterschiedlichem Schwierigkeitsgrad. Schließlich erforsche ich in Kooperation mit T. Völler and A. Fiala, wie der Grad der Verhaltensähnlichkeit /-unähnlichkeit von Düften mit der Physiologie der Fliege in Beziehung steht. Ich kombiniere die Verhaltensdaten mit Daten, die mittels funktioneller Bildgebung unter Verwendung genetisch codierter Kalziumsensoren erhalten wurden. Diese Methode erlaubt, Aktivitätsmuster, die von den untersuchten Düften verursacht werden, entweder in den sensorischen Neuronen oder in den Projektionsneuronen des Antennallobus zu messen. Unsere Interpretation der Ergebnisse ist, dass die Verhaltensähnlichkeit der Düfte auf Ebene der Interneuronen im Antennallobus organisiert wird. Weiterhin erforsche ich die Wirkung von Kochsalz (Natriumchlorid) auf das Reflexverhalten und die Rolle von Natriumchlorid als Belohnung oder Bestrafung im Larvenlernen. Larven der Taufliege verändern ihr Reflexverhalten in Gegenwart von Natriumchlorid in hohem Maße. Larven bevorzugen niedrige Salzkonzentrationen gegenüber einem Substrat ohne Salz; erhöht man die Salzkonzentration jedoch, kehrt sich das Wahlverhalten ins Gegenteil um, bis die Tiere das salzhaltige Substrat stark vermeiden. Ein ähnlicher Zusammenhang zwischen Konzentration und Verhalten wird auch für das Fressverhalten gefunden: Larven fressen von einem Substrat mit niedrigen Salzkonzentrationen geringfügig mehr, von einem Substrat mit hohen Salzkonzentrationen jedoch deutlich weniger als von einem Kontrollsubstrat ganz ohne Salz. Was das Lernen betrifft, wirken relativ schwache Salzkonzentrationen als Belohnung, während hohe Salzkonzentrationen als Bestrafung wirken. Interessanterweise ist die Verhaltens-Konzentrations-Kurve von Reflexverhalten (Wahlverhalten, Fressverhalten) verglichen mit assoziativem Lernen in Richtung höherer Konzentrationen verschoben. Diese Dissoziation könnte eine verschiedenartige Sensitivität der Schaltkreise widerspiegeln. KW - Taufliege KW - Assoziatives Gedächtnis KW - Lernverhalten KW - Synapsine KW - Molekulargenetik KW - Drosophila melanogaster KW - olfaction KW - learning KW - memory KW - synapsin Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65035 ER - TY - THES A1 - Aso, Yoshinori T1 - Dissecting the neuronal circuit for olfactory learning in Drosophila T1 - Die neuronale Schaltung für olfaktorisches Lernen in Drosophila N2 - This thesis consists of three major chapters, each of which has been separately published or under the process for publication. The first chapter is about anatomical characterization of the mushroom body of adult Drosophila melanogaster. The mushroom body is the center for olfactory learning and many other functions in the insect brains. The functions of the mushroom body have been studied by utilizing the GAL4/UAS gene expression system. The present study characterized the expression patterns of the commonly used GAL4 drivers for the mushroom body intrinsic neurons, Kenyon cells. Thereby, we revealed the numerical composition of the different types of Kenyon cells and found one subtype of the Kenyon cells that have not been described. The second and third chapters together demonstrate that the multiple types of dopaminergic neurons mediate the aversive reinforcement signals to the mushroom body. They induce the parallel memory traces that constitute the different temporal domains of the aversive odor memory. In prior to these chapters, “General introduction and discussion” section reviews and discuss about the current understanding of neuronal circuit for olfactory learning in Drosophila. N2 - Diese Dissertation umfasst drei Kapitel. Das erste Kapitel handelt von der anatomischen Charakterisierung des Pilzkörpers in adulten Drosophila melanogaster. Der Pilzkörper ist das Zentrum für olfaktorisches Lernen und viele andere Funktionen im Insektengehirn. Diese wurden mit Hilfe des GAL4/UAS Genexpressionssystems untersucht. Die vorliegende Arbeit charakterisiert die Expressionsmuster der gewöhnlich verwendeten GAL4 Treiberlinien für die Pilzkörperintrinsischen Neurone, den Kenyonzellen. Dabei zeigten ich die zahlenmäßige Zusammensetzung der unterschiedlichen Kenyonzelltypen und fanden einen Kenyonzellsubtyp, welcher bisher noch nicht beschrieben wurde. Das zweite und dritte Kapitel zeigen, dass verschiedene Typen dopaminerger Neurone aversive Verstärkungssignale (Unkonditionierte Stimuli) zum Pilzkörper übermitteln. Sie induzieren parallele Gedächtnisspuren, welche den unterschiedlichen zeitlichen Komponenten von aversivem Duftgedächtnis zugrunde liegen. Vor diesen Kapiteln enthält der Abschnitt „General introduction and discussion” einen Überblick und eine Diskussion über das derzeitige Verständnis des neuronalen Netzwerks, welches olfaktorischem Lernen in Drosophila zugrunde liegt. KW - Taufliege KW - Geruchswahrnehmung KW - Lernverhalten KW - Pilzkörper KW - olfaktorisches Lernen KW - Drosophila KW - olfactory learning KW - Drosophila KW - mushroom body KW - Dopamine Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55483 ER - TY - THES A1 - Jauch, Mandy T1 - Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen T1 - The serine/arginine protein kinase 79D (SRPK79D) of Drosophila melanogaster and its role in the formation of active zones of synapses N2 - Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche – Aktive Zonen (AZs) genannt –, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie für den Prozess der Neurotransmitter-Ausschüttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein für die T-förmigen Bänder („T-Bars“) der präsynaptischen Aktiven Zonen. BRP ist notwendig für eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeinträchtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von Säugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolutionär hoch konservierte zweigeteilte Kinasedomäne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolutionär hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren gehören und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) führt zu auffälligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter Bänder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gewährleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antikörpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier möglichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Phänotyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer Überexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In Köpfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich verändert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der präsynaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf verändertes Spleißen der entsprechenden prä-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente für die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugfähigkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunfähigen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelfärbungen mit Antikörpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neurohämal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Ausschüttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose möglicherweise eine Rolle bei der Ausschüttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei Färbung gegen BRP weist keine deutlichen Veränderungen zum Wildtyp auf. N2 - Synapses as sites of communication between neurons contain specialized regions termed active zones (AZs) which are composed of a highly complex network of proteins comprising the exocytotic machinery for neurotransmitter release and vesicle recycling. In Drosophila the Bruchpilot (BRP) protein is an important building block of the T-shaped ribbons („T-bars“) at presynaptic active zones. By screening for mutations affecting the tissue distribution of Bruchpilot, a P-transposon insertion in the Srpk gene at the position 79D has been identified (Srpk79D, CG11489). This gene codes for a kinase which shows high homology to the mammalian family of serine/arginine protein kinases (SRPKs). Members of this family have an evolutionarily highly conserved bipartite kinase domain in common which is separated by a non-conserved spacer sequence. SRPKs phosphorylate SR proteins, an evolutionarily highly conserved family of serine/arginine-rich splicing factors that control the processes of constitutive and alternative splicing. Mutation of the Srpk79D gene caused by the P-element insertion (Srpk79DP1) or by a deletion in the gene (Srpk79DVN null mutant) leads to conspicuous accumulations of BRP in larval and adult axons. This thesis shows that these BRP accumulations at the ultrastructural level correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Using immuno electron microscopy, these accumulation were characterized as BRP immuno-reactive structures. To prevent the assembly of BRP containing agglomerates in axons and to maintain intact brain function the SRPK79D seems to be expressed only at low levels because the endogenous kinase was not detectable using various antibodies. It was shown in other thesis that the expression of the PB, PC or PF isoform of the four possible SRPK79D variants resulting from two alternative transcription start sites in exon one and three, respectively, and alternative splicing of exon seven is sufficient to rescue the phenotype of BRP accumulation in the Srpk79DVN null-mutant background. Cloning of the cDNA for the SRPK79D-PE isoform into a UAS vector has been started in order to characterize the ability of this isoform to rescue the BRP-phenotype. It seems as if the formation of axonal BRP agglomerates is not due to BRP overexpression in the affected neurons as was shown by reduced expression of the BRP protein in the Srpk79DVN null-mutant background which still leads to BRP agglomerates. The overall amount of Bruchpilot protein in adult heads of the Srpk79DVN null mutant is not clearly altered compared to wild type. No clear alteration was observed between Srpk79DVN null-mutant and wild-type flies comparing the expression of different presynaptic proteins like Synapsin, Synapse-associated protein of 47 kDa (Sap47), and Cysteine string protein (CSP). The experiment does not point towards altered splicing of the corresponding pre-mRNAs. Each of the seven known SR proteins of Drosophila is a potential target protein of the SRPK79D. Pan-neuronal knock-down experiments for the three SR proteins SC35, X16/9G8, and B52/SRp55 investigated in this thesis by RNA interference did not show an effect on the tissue distribution of BRP. It was shown that the Srpk79DVN null mutation has no additive effect on the knock-down of the BRP protein regarding the flight ability of the respective animals because the double mutants showed similar values of non-flyers as each of the single mutants with either null mutation of the Srpk79D gene or knock-down of BRP. Presumably, Bruchpilot and the SR protein kinase 79D are part of the same signaling pathway. Performing double fluorescence stainings with antibodies against BRP and the CAPA peptides it was shown that Bruchpilot is also present in the median and transverse nerve system (MeN/TVN) of Drosophila containing the neurohaemal organs. These organs are responsible for storage and release of neuropeptide hormones. In contrast to the larval segmental and intersegmental nerves of the Srpk79DVN null mutant which show characteristic BRP agglomerates, mutation of the Srpk79D gene does not affect the distribution of BRP in the axons of the Va neurons which form the MeN/TVN system. The staining pattern of BRP in these nerves does not show clear alterations in the Srpk79DVN null mutant compared to wild type. The finding that BRP is present in the median and transverse nerve system opens the field for speculation of a role for the Bruchpilot protein not only in the neurotransmitter exocytosis but also in the release of neuropeptides. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - Synapse KW - Genexpression KW - Aktive Zone KW - Serin/Arginin Proteinkinase KW - SRPK KW - Bruchpilot KW - Drosophila KW - Synapse KW - Motorische Endplatte KW - Nervenzelle KW - Neurotransmitter KW - active zone KW - serine/arginine protein kinase KW - SRPK KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53974 ER - TY - THES A1 - Schubert, Alice T1 - Immunhistochemische und funktionelle Charakterisierung der Serin/Arginin-Proteinkinase SRPK79D mit Identifizierung von Interaktionspartnern in Drosophila melanogaster T1 - Immunohistochemical and functional characterisation of the serine/arginine protein kinase SRPK79D with identification of interaction partners in Drosophila melanogaster N2 - Auf der Suche nach Mutanten mit einer vom Wildtyp abweichenden Verteilung des Aktive Zone-Proteins Bruchpilot wurde die Serin/Arginin-Proteinkinase SRPK79D identifiziert. Hier zeigte sich, dass die Mutation im Srpk79D-Gen zu einer Agglomeration von Bruchpilot in den larvalen segmentalen und intersegmentalen Nerven führt. In der vorliegenden Arbeit sollte die SRPK79D genauer charakterisiert werden. Nach Präadsorptionen und Affinitätsreinigungen von in einer früheren Arbeit erzeugten Antiseren, gelang es die Lokalisation der überexprimierten SRPK79D-GFP-Isoformen zu bestimmen. Dabei zeigte sich, dass keines der Antiseren die endogene Kinase im Western Blot oder immunhistocheimisch detektieren konnte. Dies legt den Schluss nahe, dass die Expression der SRPK79D in einer geringen Konzentration erfolgt. Es war jedoch möglich die endogene SRPK79D-PC-Isoform mittels einer Immunpräzipitation soweit anzureichern, dass sie im Western Blot nachweisbar war. Für die SRPK79D-PB-Isoform gelang dies allerdings nicht. Anhand von larvalen Nerv-Muskel-Präparaten konnte gezeigt werden, dass die panneural überexprimierte SRPK79D-PC-GFP-Isoform an die Aktiven Zone transportiert wird und dort mit Bruchpilot, sowie den Interaktionspartnern von Bruchpilot Liprin-α und Rab3 kolokalisiert. Außerdem liegt sie diffus im Zytoplasma von neuronalen Zellkörpern vor. In adulten Gehirnen lokalisiert die transgen überexprimierte SRPK79D-PC-GFP im Fanshaped body, Ringkomplex und in neuronalen Zellkörpern. Die panneural überexprimierte SRPK79D-PB-GFP-Isoform liegt im larvalen und adulten Gehirn lokal im Zytoplasma der Perikaryen akkumuliert vor und wird nicht an die Aktive Zone transportiert. Das PB-Antiserum erkennt im adulten Gehirn neuronale Zellkörper und das Neuropil in der Calyxregion der Pilzkörper. Immunhistochemische Färbungen von larvalen Nerv-Muskel-Präparaten mit verschiedenen Antikörpern gegen neuronale Proteine belegen, dass die Agglomerate in der Srpk79D-Mutante für Bruchpilot spezifisch sind. Es konnten bisher keine weiteren Komponenten der Agglomerate detektiert werden. Auch ein genereller axonaler Defekt konnte durch Färbungen gegen CSP, Synaptotagmin und Experimenten mit dem Mitochondrienfarbstoff MitoTracker® FM Green ausgeschlossen werden. Die quantitative Auswertung der Präparate zeigte, dass die Morphologie der synaptischen Boutons und die Zahl der Aktiven Zonen durch die Mutation im Srpk79D-Gen nicht beeinflusst werden. Um gesicherte Kenntnis darüber zu erlangen, ob die Mutation im Srpk79D-Gen die beobachteten Phänotypen verursacht, wurden Rettungsexperimente durchgeführt. Es konnte sowohl für das hypomorphe Srpk79DP1-Allel, als auch für die Nullmutante Srpk79DVN eine nahezu vollständige Rettung des Agglomerat-Phänotyps mit der panneural exprimierten SRPK79D-PF- oder der SRPK79D-PB-Isoform erreicht werden. Aus diesen Ergebnissen folgt, dass beide Isoformen der SRPK79D in der Lage sind den Bruchpilot-Agglomerat-Phänotyp zu retten, die Rettung der Verhaltensdefizite jedoch alle Isoformgruppen benötigen. Um zu untersuchen, ob der Agglomerations-Phänotyp der Srpk79D-Mutanten auf einer Überexpression des Bruchpilotgens oder auf Fehlspleißen seiner prä-mRNA beruht, wurden Immunpräzipitationen, semiquantitative RT-PCRs und Real Time-PCRs durchgeführt. Ausgehend von den Ergebnissen kann eine mögliche Überexpression bzw. Spleißdefekte von Bruchpilot weitgehend ausgeschlossen werden. Die simultane Überexpression von SRPK79D und Bruchpilot konnte den Phänotyp der Bruchpilot-Überexpression nicht retten. Anhand der stimulated emission depletion-Mikroskopie konnte gezeigt werden, dass die gebildeten Agglomerate das charakteristische Donut-förmige Muster der T-bars zeigen und wahrscheinlich als fusionierte Ketten von T-bars in den larvalen Nerven vorliegen. Beim in vivo Imaging Versuch konnte demonstriert werden, dass das verkürzte Bruchpilot-D3-Strawberry in die Bruchpilot-Agglomerate der Srpk79D-Nullmutante eingebaut wird und dass größere Agglomerate unbewegt im Nerv verharren. Der anterograde und retrograde Transport kleinerer Agglomerate konnte verzeichnet werden. Bei CytoTrap-Yeast-two-hybrid-Experimenten konnten für die SRPK79D-PB Isoform vier potentielle Interaktionspartner identifiziert werden: das Hitzeschockprotein Hsp70Bbb, die mitochondriale NADH-Dehydrogenase mt:ND5, das large ribosomal RNA Gen in Mitochondrien und das am Spleißen beteiligte Protein 1.3CC/Caper. Die Sequenzierung zeigte, dass nur das letzte Exon von Caper im pMyr-Vektor vorliegt. Der für die PC-Isoform durchgeführte CytoTrap-Versuch ergab nur Temperatur-Revertanten. SR-Proteinkinasen phosphorylieren die RS-Domäne von SR-Proteinen und sind dadurch an der Regulation des konstitutiven und alternativen Spleißens beteiligt. Somit stellen die acht identifizierten SR-Proteine in Drosophila potentielle Interaktionspartner der SRPK79D dar. Die durch RNAi-vermittelte Reduktion von sieben SR-Proteinen führte zu keiner Agglomeration von Bruchpilot. Jedoch führte die RNAi-vermittelte Reduktion des SR-Proteins Spleißfaktor 2 (SF2) zu kleineren Bruchpilot-Agglomeraten in den axonalen Nerven. SF2 ist selbst kein Bestandteil der Agglomerate der Srpk79D-Nullmutante. Die Überexpression von SF2 führt wahrscheinlich zu einem axonalen Transportdefekt, wie die Färbung gegen das Cysteine string protein zeigte. Weiterhin führt die Überexpression zu einer Akkumulation von SF2 in larvalen Axonen und im adulten Gehirn der Fliegen. SF2 ist nicht nur in Zellkernen sämtlicher Zellen nachweisbar, sondern es konnte auch ein spezifisches Signal im subsynaptischen Retikulum der Postsynapse detektiert werden, wie die Färbungen gegen Disc large bestätigten. N2 - In a Screen for mutations which affect the distribution of the active zone protein Bruchpilot, the serine/arginine protein kinase 79D (SRPK79D) was identified. A mutation in the Srpk79D gene leads to conspicuous agglomeration of Bruchpilot in the larval segmental and intersegmental nerves. The aim of this thesis was to characterize the function of SRPK79D and to identify its interaction partners. The isoform specific antisera which were generated in an earlier PhD thesis recognized only the pan-neuraly overexpressed GFP-tagged SRPK79D isoforms in Western blots and immunhistochemical stainings. After preabsorption and affinity purification the antisera could uncover the localization of the overexpressed SRPK79D-GFP. Without enrichment of the endogenous SRPK79D concentration seems to be too low to be detected with the antisera. However, the endogenous SRPK79D-PC isoform could be detected in a Western blot after immunoprecipitation, but not the SRPK79D-PB isoform. The panneural overexpressed SRPK79D-PC-GFP isoform co-localizes with Bruchpilot as well as with the Bruchpilot interaction partners Liprin-α and Rab3 at active zones and showed a diffuse pattern in the cytoplasm of neuronal cell bodies. In adult brains the panneural overexpressed SRPK79D-PC isoform is detectable in the fanshaped body, ring complex and neuronal cell bodies. The panneural overexpressed SRPK79D-PB isoform is not present at the active zone but is detectable in larval and adult CNS accumulating in discrete spots in the cytoplasm of neuronal cells. The panneural overexpressed SRPK79D-PB isoform is also present in the neuronal cell bodies and calyces of the mushroom body. Larval dissections followed by stainings with different antibodies against synaptic proteins showed that the agglomerates in the Srpk79D mutants are quite specific for Bruchpilot. No other components of the agglomerates could be revealed until now. General impairments of axonal transport could be excluded by stainings against cysteine string protein (CSP), Synaptotagmin, and experiments with the dye MitoTracker® Green FM. These synaptic proteins are uniformly distributed along the larval nerves. The quantification of boutons revealed that the basic synaptic structure is not altered in Srpk79D-mutants. Stainings on frozen head sections of null mutant Srpk79D revealed a spot like Bruchpilot accumulation in the antennal nerves. The mutation of Srpk79D causes behavioral deficits in adult flies as well as a shortened life span. In order to test if expression of either isoform (SRPK79D-PC/PF or –PB) is able to rescue the obtained phenotypes, rescue experiments were performed. A nearly complete rescue of the agglomerate phenotype was achieved with both SRPK79D isoforms. Rescue experiments for the observed behavioral phenotype in the null mutant background did not significant by improve the defect, neither when using the pannreural driver lines elav-GAL4 nor the newly generated nSyb-GAL4. Alkaline Phosphatase treatment followed by 1D- or 2D-gelelecrophoresis could not detect a possible phosphorylation of SRPK79D. Also the vesicle-associated protein Synapsin showed a normal isoform pattern which indicates that Synapsin is not a substrate for SRPK79D. In experiments to detect overexpression or splicing defects of the active zone protein Bruchpilot as possible cause for the agglomeration phenotype in mutant Srpk79D animals, immunoprecipitations, semiquantitative RT-PCRs and Real Time-PCRs were performed. The results showed that overexpression or splicing deficits could be largely excluded. In stainings with the new Bruchpilot antisera N-Term and D2 the staining pattern did not differ from the nc82 staining showing that the PF isoform of Bruchpilot is not forming separate agglomerates in Srpk79DVN mutants. The overexpression of D2-4 and D1-3, truncated Bruchpilot proteins without either the N- or C-terminus, respectively, showed an agglomeration of the corresponding proteins in larval and adult CNS. However the overexpression of D1-3 is not affecting the endogenous Bruchpilot distribution. The simultaneous overexpression of SRPK79D and Bruchpilot could not rescue the phenotype caused by Bruchpilot overexpression. With the stimulated emission depletion microscope the pattern of the Bruchpilot agglomerates in the Srpk79DVN mutant revealed electron-dense donut-shaped structures in larval nerves, presumably fused T-bars. With in vivo imaging experiments anterograde as well as retrograde movement of D3-labeled agglomerates in the Srpk79DVN mutant was observed whereas large agglomerates are immobile. To identify substrates or interaction partners of SRPK79D the Yeast-two-hybrid screen CytoTrap was performed. The CytoTrap screen for the SRPK79D-PB isoform identified four interaction partners: the heat shock protein Hsp70Bbb, the mitochondrial NADH-Dehydrogenase mt:ND5, the large ribosomal RNA gene in mitochondria and 1.3CC/Caper. Caper is involved in splicing via the spliceosome. Sequencing revealed that the pMyr vector includes only the last exon of Caper. The performed CytoTrap for the RC-Isoform detected only temperature revertants. The RNAi mediated knock down of each of the eight known SR proteins in Drosophila showed that seven of them do not produce a phenotype whereas the reduction of SF2 leads to Bruchpilot agglomerates in larval nerves. The SR-Protein SF2 is not included in the agglomerates of the Srpk79D mutant but showed expression in nuclei of all cell types. The overexpression of SF2 leads to an agglomeration of SF2 in the larval nerves probably due to an impairment of general axonal transport. SF2 is not only a nuclear protein; it is also associated with post synaptic structures. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - RNS-Spleißen KW - Genmutation KW - Drosophila melanogaster KW - SRPK79D KW - Serin-Arginin Proteinkinase KW - Spleißen KW - Bruchpilot KW - Drosophila melanogaster KW - SRPK79D KW - serine-arginine protein kinase KW - splicing KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53841 ER - TY - THES A1 - Schmid, Benjamin T1 - Computational tools for the segmentation and registration of confocal brain images of Drosophila melanogaster T1 - Software Tools für die Segmentierung und Registrierung konfokaler Gehirnbilder von Drosophila melanogaster N2 - Neuroanatomical data in fly brain research are mostly available as spatial gene expression patterns of genetically distinct fly strains. The Drosophila standard brain, which was developed in the past to provide a reference coordinate system, can be used to integrate these data. Working with the standard brain requires advanced image processing methods, including visualisation, segmentation and registration. The previously published VIB Protocol addressed the problem of image registration. Unfortunately, its usage was severely limited by the necessity of manually labelling a predefined set of neuropils in the brain images at hand. In this work I present novel tools to facilitate the work with the Drosophila standard brain. These tools are integrated in a well-known open-source image processing framework which can potentially serve as a common platform for image analysis in the neuroanatomical research community: ImageJ. In particular, a hardware-accelerated 3D visualisation framework was developed for ImageJ which extends its limited 3D visualisation capabilities. It is used for the development of a novel semi-automatic segmentation method, which implements automatic surface growing based on user-provided seed points. Template surfaces, incorporated with a modified variant of an active surface model, complement the segmentation. An automatic nonrigid warping algorithm is applied, based on point correspondences established through the extracted surfaces. Finally, I show how the individual steps can be fully automated, and demonstrate its application for the successful registration of fly brain images. The new tools are freely available as ImageJ plugins. I compare the results obtained by the introduced methods with the output of the VIB Protocol and conclude that our methods reduce the required effort five to ten fold. Furthermore, reproducibility and accuracy are enhanced using the proposed tools. N2 - Expressionsmuster genetisch manipulierter Fliegenstämme machen den Großteil neuroanatomischer Daten aus, wie sie in der Gehirnforschung der Taufliege Drosophila melanogaster entstehen. Das Drosophila Standardgehirn wurde u.a. entwickelt, um die Integration dieser Daten in ein einheitliches Referenz-Koordinatensystem zu ermöglichen. Die Arbeit mit dem Standardgehirn erfordert hochentwickelte Bildverarbeitungsmethoden, u.a. zur 3D Visualisierung, Segmentierung und Registrierung. Das bereits publizierte "VIB Protocol" stellte bisher eine Möglichkeit für die Registrierung zur Verfügung, die aber duch die Notwendigkeit manueller Segmentierung bestimmter Neuropile nur eingeschränkt verwendbar war. In der vorliegenden Arbeit stelle ich neue Werkzeuge vor, die den Umgang mit dem Standardgehirn erleichtern. Sie sind in ein bekanntes, offenes Bildverarbeitungsprogramm integriert, das potentiell als Standardsoftware in der neuroanatomischen Forschung dienen kann: ImageJ. Im Zuge dieser Arbeit wurde eine hardwarebeschleunigte 3D Visualisierungs-Bibliothek entwickelt, die die Visualisierungsmöglichkeiten von ImageJ ergänzt. Auf Basis dieser Entwicklung wurde anschließend ein neuer halbautomatischer Segmentierungs-Algorithmus erstellt. In diesem Algorithmus werden Neuropil-Oberflächen, ausgehend von ausgewählten Ausgangspunkten, aufgebaut und erweitert. Vorlagen von Neuropil-Oberflächen aus der Segmentierung eines Referenz-Datensatzes, die anhand eines modifizierten "Active Surface" Modells einbezogen werden können, ergänzen die aktuelle Segmentierung. Die so erhaltenen Oberflächen ermöglichen es, korrespondierende Landmarken in den Bildern zu ermitteln, die für eine nicht-rigide Registrierung verwendet werden. Schließlich wird dargelegt, wie die einzelnen Schritte voll automatisiert werden können, um die Bilder der Fliegengehirne aufeinander abzubilden. Die vorgestellten Methoden sind frei als Erweiterungen für ImageJ verfügbar (Plugins). Ein direkter Vergleich mit dem VIB Protokoll zeigt, dass durch die vorgestellten Methoden nicht nur der Benutzeraufwand auf ein Sechstel reduziert, sondern dass gleichzeitig auch die Genauigkeit und Reproduzierbarkeit erhöht wird. KW - Taufliege KW - Segmentierung KW - Bildverarbeitung KW - Gehirn KW - Drosophila KW - Gehirnanatomie KW - Konfokalmikroskopie KW - Deformable models KW - Drosophila KW - brain anatomy KW - confocal microscopy KW - deformable models Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51490 ER -