TY - JOUR A1 - Michel, R. A1 - Wachter, E. A1 - Sebald, Walter T1 - Synthesis of a larger precursor for the proteolipid subunit of the mitochondrial ATPase complex of Neurospora crassa in a cell-free wheat germ system N2 - No abstract available KW - Biochemie Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62789 ER - TY - JOUR A1 - Sebald, Walter A1 - Graf, T. A1 - Lukins, H. B. T1 - The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae. Identification and isolation N2 - Incubation of mitochondria from Neuraspara crassa and Saccharomyces cerevisiae with the radioactive ATPase inhibitor [14C]dicyclohexylcarbodiimide results in the irreversible and rather specific labelling of a low-molecular-weight polypeptide. This dicyclohexylcarbodiimide-binding protein is identical with the smallest subunit (Mr 8000) of the mitochondrial ATPase complex, and it occurs as oligomer, probably as hexamer, in the enzyme protein. The dicyclohexylcarbodiimide-binding protein is extracted from whole mitochondria with neutral chloroformjmethanol both in the free and in the inhibitor-modified form. In Neuraspara and yeast, this extraction is highly selective and the protein is obtained in homogeneaus form when the mitochondria have been prewashed with certain organic solvents. The bound dicyclohexylcarbodiimide Iabel is enriched in the purified protein up to 50-fold compared to whole mitochondria. Based on the amino acid analysis, the dicyclohexylcarbodiimide-binding protein from Neurospora and yeast consists of at least 81 and 76 residues, respectively. The content of hydrophobic residues is extremely high. Histidine and tryptophan are absent. The N-terminal ~mino acid is tyrosine in Neuraspara and formylmethionine in yeast. KW - Biochemie Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62792 ER - TY - JOUR A1 - Tzagoloff, A. A1 - Macino, G. A1 - Sebald, Walter T1 - Mitochondrial genes and translation products N2 - No abstract available KW - Biochemie Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47408 ER - TY - JOUR A1 - Sebald, Walter A1 - Werner, S A1 - Weiss, H T1 - Biogenesis of mitochondrial membrane proteins in Neurospora crassa N2 - no abstract available KW - Biochemie KW - Neurospora crassa Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-82055 ER - TY - JOUR A1 - Sebald, Walter A1 - Wild, G. T1 - Mitochondrial ATPase complex from Neurospora crassa N2 - The A TPase eomplex has been isolated from mitoehondria of N eurospora crassa by immunologieal teehniques. The protein ean be obtained rapidly and qua ntitatively in high purity by miero- or large-seale immunopreeipitation. Immunopreeipitation has been applied to labeled and doubly labeled mitoehondrial proteins in order to investigate the number and moleeular weights of subunit polypeptides , the site of synthesis of subunit polypeptides, and the dieycIohexyIcarbodiimide-binding protein . The A TPase complex obtained by large-seale immunopreeipitation has been used as starting ma terial for the isolation of hydrophobie polypeptides. KW - Biochemie Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-82065 ER - TY - JOUR A1 - Sebald, Walter A1 - Neupert, W. A1 - Weiss, H. T1 - Preparation of Neurospora crassa mitochondria N2 - The fungus Neurospora crassa represents a eukaryotic cell with high biosynthetic activities. Cell mass doubles in 2-4 hr during expone ntial growth , even in simple salt media with sucrose as the sole carbon source. The microorgani sm forms a mycelium of long hyphae durlng vegetative growth . The mitochondria can be isolated under relatively gentle condi tions since a few breaks in the threadlike hyphae are sufficient to cause the outflow of the organelles. This article describes two methods for the physical disruption of the hyphae : (I) The cell s are opened in a grind mill between two rotating corundum di sks. This is a continuous and fast procedure and allows large- and small-scale preparations of mitochondria. (2) Hyphae are ground with sand in a mortar and pestle. This procedure can be applied to microscale preparations of mitochondria starting with minute amounts of cells. Other procedures for the isolation of Neurospora mitochondria after the physical di sruption or the enzymatic degradation of the cell wall have been described elsewhere KW - Biochemie Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-82070 ER - TY - JOUR A1 - Hoppe, J. A1 - Sebald, Walter T1 - Amino acid sequence of the proteolipid subunit of the proton-translocating ATPase complex from the thermophilic bacterium PS-3 N2 - No abstract available KW - Biochemie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62754 ER - TY - JOUR A1 - Hoppe, J. A1 - Schairer, H. U. A1 - Sebald, Walter T1 - The proteolipid of a mutant ATPase from Escherichia coli defective in H\(^+\)-conduction contains a glycine instead of the carbodiimide-reactive aspartyl residue N2 - No abstract available KW - Biochemie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62769 ER - TY - JOUR A1 - Hoppe, J. A1 - Schairer, HU A1 - Sebald, Walter T1 - Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli N2 - The amino acid sequence of the proteolipid subunit of the A TP synthase was analyzed in six mutant strains from Escherichia coli K 12, selected for their increased resistance towards the inhibitor N,N'-dicyclohexylcarbodiimide. All six inhibitor-resistant mutants were found to be altered at the same position of the proteolipid, namely at the isoleucine at residue 28. Two substitutions could be identified. In type I this residue was substituted by a valine resulting in a moderate decrease in sensitivity to dicyclohexylcarbodiimide. Type II contained a threonine residue at this position. Here a strong resistance was observed. These two amino acid substitutions did not influence functional properties of the ATPase complex. ATPase as well as A TP-dependent proton-translocating activities of mutant membranes were indistinguishable from the wild type. At elevated concentrations, dicyclohexylcarbodiimide still bound specifically to the aspartic acid at residue 61 of the mutant proteolipid as in the wild type, and thereby inhibited the activity of the ATPase complex. It is suggested that the residue 28 substituted in the resistant mutants interacts with dicyclohexylcarbodiimide during the reactions leading to the covalent attachment of the inhibitor to the aspartic acid at residue 61. This could indicate that these two residues are in close vicinity and would thus provide a first hint on the functional conformation of the proteolipid. Its polypeptide chain would have to fold back to bring together these two residues separated by a segment of 32 residues. KW - Biochemie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47374 ER - TY - JOUR A1 - von Jagow, Gerhard A1 - Sebald, Walter T1 - b-Type cytochromes N2 - No abstract available KW - Biochemie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47383 ER -