TY - JOUR A1 - Schartl, Manfred T1 - Beyond the zebrafish: diverse fish species for modeling human disease JF - Disease Models & Mechanisms N2 - In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. KW - evolutionary mutant model KW - natural variation KW - cancer KW - fish model Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119919 SN - 1754-8411 VL - 7 IS - 2 ER - TY - JOUR A1 - Andreska, Thomas A1 - Aufmkolk, Sarah A1 - Sauer, Markus A1 - Blum, Robert T1 - High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons JF - Frontiers in Cellular Neuroscience N2 - In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity. KW - hippocampal neurons KW - synapse structure KW - presynapse KW - synaptic localization KW - BDNF Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119793 SN - 1662-5102 VL - 8 IS - 107 ER - TY - JOUR A1 - Proppert, Sven A1 - Wolter, Steve A1 - Holm, Thorge A1 - Klein, Theresa A1 - van de Linde, Sebastian A1 - Sauer, Markus T1 - Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging JF - Optics Express N2 - In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity. KW - three-dimensional microscopy KW - fluorescence microscopy KW - medical and biological imaging KW - superresolution Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119730 SN - 1094-4087 VL - 22 IS - 9 ER - TY - JOUR A1 - Batram, Christopher A1 - Jones, Nivola G. A1 - Janzen, Christian J. A1 - Markert, Sebastian M. A1 - Engstler, Markus T1 - Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei JF - eLife N2 - We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness. KW - antigenic variation KW - expression site attenuation KW - developmental reprogramming KW - cell biology KW - genes and chromosomes KW - Trypanosoma brucei KW - variant surface glycoprotein (VSG) KW - monoallelic expression Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119727 SN - 2050-084X VL - 3 IS - e02324 ER - TY - JOUR A1 - Yilmaz, Ayse A1 - Aksoy, Volkan A1 - Camlitepe, Yilmaz A1 - Giurfa, Martin T1 - Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants JF - Frontiers in Behavioral Neuroscience N2 - Insects have evolved physiological adaptations and behavioral strategies that allow them to cope with a broad spectrum of environmental challenges and contribute to their evolutionary success. Visual performance plays a key role in this success. Correlates between life style and eye organization have been reported in various insect species. Yet, if and how visual ecology translates effectively into different visual discrimination and learning capabilities has been less explored. Here we report results from optical and behavioral analyses performed in two sympatric ant species, Formica cunicularia and Camponotus aethiops. We show that the former are diurnal while the latter are cathemeral. Accordingly, F. cunicularia workers present compound eyes with higher resolution, while C. aethiops workers exhibit eyes with lower resolution but higher sensitivity. The discrimination and learning of visual stimuli differs significantly between these species in controlled dual-choice experiments: discrimination learning of small-field visual stimuli is achieved by F. cunicularia but not by C. aethiops, while both species master the discrimination of large-field visual stimuli. Our work thus provides a paradigmatic example about how timing of foraging activities and visual environment match the organization of compound eyes and visually-driven behavior. This correspondence underlines the relevance of an ecological/evolutionary framework for analyses in behavioral neuroscience. KW - visual learning KW - ant KW - activity rhythm KW - camponotus aethiops KW - formica cunicularia KW - compound eye Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119595 VL - 8 ER - TY - JOUR A1 - Dusik, Verena A1 - Senthilan, Pingkalai R. A1 - Mentzel, Benjamin A1 - Hartlieb, Heiko A1 - Wülbeck, Corina A1 - Yoshii, Taishi A1 - Raabe, Thomas A1 - Helfrich-Förster, Charlotte T1 - The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock JF - PLoS Genetics N2 - All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining ∼ 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase" phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways. KW - in vitro kinase assay KW - biological locomotion KW - circadian oscillators KW - MAPK signaling cascades KW - circadian rhythms KW - drosophila melanogaster KW - neurons KW - phosphorylation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119433 SN - 1553-7404 VL - 10 IS - 8 ER - TY - JOUR A1 - Adelfinger, Marion A1 - Gentschev, Ivaylo A1 - de Guibert, Julio Grimm A1 - Weibel, Stephanie A1 - Langbein-Laugwitz, Johanna A1 - Härtl, Barbara A1 - Escobar, Hugo Murua A1 - Nolte, Ingo A1 - Chen, Nanhai G. A1 - Aguilar, Richard J. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy JF - PLoS ONE N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. KW - antibodies KW - cancer treatment KW - carcinomas KW - vaccinia virus KW - oncolytic viruses KW - viral replication KW - cell cultures KW - enzyme-linked immunoassays Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119387 VL - 9 IS - 8 ER - TY - JOUR A1 - Leonhardt, Sara D. A1 - Kaltenpoth, Martin T1 - Microbial Communities of Three Sympatric Australian Stingless Bee Species JF - PLoS ONE N2 - Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association. KW - bacteria KW - lactic acid bacteria KW - sequence alignment KW - insects KW - lactobacillus KW - sequence databases KW - honey bees Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119341 VL - 9 IS - 8 ER - TY - JOUR A1 - Naseem, Muhammad A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection JF - Frontiers in Plant Science N2 - Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM) is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem, and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide) is perceived by FLS2 (FLAGELLIN SENSING 2) receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins (CKs) are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while CKs boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between CK signaling and CLV3p mediated immune response in the SAM. KW - auxin KW - stem cell niche KW - FLS2 receptor KW - CLAVATA3 KW - cytokinins Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118247 SN - 1664-462X VL - 5 ER - TY - JOUR A1 - Schülein-Völk, Christina A1 - Wolf, Elmar A1 - Zhu, Jing A1 - Xu, Wenshan A1 - Taranets, Lyudmyla A1 - Hellmann, Andreas A1 - Jänicke, Laura A. A1 - Diefenbacher, Markus E. A1 - Behrens, Axel A1 - Eilers, Martin A1 - Popov, Nikita T1 - Dual Regulation of Fbw7 Function and Oncogenic Transformation by Usp28 JF - CELL REPORTS N2 - Fbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates the turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-dependent substrate ubiquitination is antagonized by the Usp28 deubiquitinase. Here, we show that Usp28 preferentially antagonizes autocatalytic ubiquitination and stabilizes Fbw7, resulting in dose-dependent effects in Usp28 knockout mice. Monoallelic deletion of Usp28 maintains stable Fbw7 but drives Fbw7 substrate degradation. In contrast, complete knockout triggers Fbw7 degradation and leads to the accumulation of Fbw7 substrates in several tissues and embryonic fibroblasts. On the other hand, overexpression of Usp28 stabilizes both Fbw7 and its substrates. Consequently, both complete loss and ectopic expression of Usp28 promote Ras-driven oncogenic transformation. We propose that dual regulation of Fbw7 activity by Usp28 is a safeguard mechanism for maintaining physiological levels of proto-oncogenic Fbw7 substrates, which is equivalently disrupted by loss or overexpression of Usp28. KW - Fbw7 KW - oncogenic transformation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118219 SN - 2211-1247 N1 - The sequencing data have been submitted to the GEO repository under accession number GSE59354. VL - 9 IS - 3 ER - TY - THES A1 - Xian, Yibo T1 - Identification of essential genes and novel virulence factors of Neisseria gonorrhoeae by transposon mutagenesis T1 - Identifizierung von essentiellen Genen und neuen Virulenzfaktoren von Neisseria gonorrhoeae durch Transposonmutagenese N2 - Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial gene essentiality and novel virulence factors is urgently required in order to identify new targets for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing (Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are essential for Neisseria survival. A subset of the genes was experimentally verified to comprise essential genes and thus support the outcome of the study. The hereby identified candidate essential genes thus may constitute excellent targets for the development of new antibiotics or vaccines. In a second study, the transposon mutant library was applied in a genome-scale “negative-selection strategy” to identify genes that are involved in low phosphate-dependent invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI. N2 - Neisseria gonorrhoeae ist ein human-spezifisches Pathogen, das die Krankheit Gonorrhoe verursacht. Aufgrund der steigenden Anzahl antibiotikaresistenter Gonokokken und der damit verbundenen, rapide zunehmenden Anzahl von Infektionen erklärte die WHO Gonokokken 2012 zum Superbakterium. Daher ist eine genomweite Untersuchung der neisseriellen Genessentiatialität und neuer Virulenzfaktoren dringend erforderlich, um neue Ziele für die antineisserielle Therapie zu identifizieren. Hierzu wurde eine high-density Mutantenbibliothek in N. gonorrhoeae MS11 durch in vitro Transposonmutagenese generiert. Die Transposonbibliothek enthält mehr als 100.000 individuelle Mutanten - eine Dichte, die in der Gonokokken-Forschung beispiellos ist. Essentielle Gene von N. gonorrhoeae wurden durch die Ermittlung der Häufigkeit von Transposon insertion sites (TIS) mit Hilfe von Illumina deep sequencing (Tn-seq) bestimmt. Tn-seq ergab eine durchschnittliche Distanz von 25 Basenpaaren zwischen benachbarten TIS. Die statistische Analyse zeigte eindeutig 781 Gene, die signifikant weniger TIS aufwiesen und deshalb als essentiell für das Überleben der Neisserien verstanden werden können. Für ausgewählte Gene wurde experimentell bestätigt, dass sie essentielle Gene beinhalten, wodurch das Ergebnis der Tn-seq unterstützt wird. Die hierbei identifizierten essentiellen Gene könnten exzellente Targets für die Entwicklung neuer Antibiotika oder Impfstoffe darstellen. In einer zweiten Studie wurde die Transposon Mutanten Bibliothek für eine genomweite „negative Selektionsstrategie“ bereitgestellt. Es sollten Gene identifiziert werden, die an der phosphatfreien Invasion (low phosphate-dependent invasion = LPDI) beteiligt sind. Die LPDI ist vom neisseriellen Porin Subtyp PorBIA abhängig, welches bei Epithelzellen in Abwesenheit von Phosphat als Invasin fungiert und mit einer schweren Pathogenität in disseminierenden Gonokokkeninfektionen (DGI) assoziiert ist. Tn-seq ergab 98 Gene, die an der Adhärenz an die Wirtszelle, und 43 Gene, die an der Wirtszellinvasion beteiligt waren. Zum Beispiel wurden das hypothetische Protein NGFG_00506, ein ABC Transporter, das ATP-bindende Protein NGFG_01643, wie auch NGFG_04218, das für ein Homolog von mafI in N. gonorrhoeae FA1090 kodiert, experimentell als neue Invasionsfaktoren in der LPDI verifiziert. NGFG_01605, bei dem angenommen wird, dass es sich um eine Protease handelt, wurde als ein allgemeiner Faktor identifiziert, der an der PorBIA-, Opa50- and Opa57-vermittelten Einstülpung der Membran von Epithelzellen beteiligt ist. Die erste systematische Anwendung von Tn-seq in N. gonorrhoeae identifizierte eine Reihe bisher unbekannter Invasionsfaktoren von N. gonorrhoeae, die molekulare Mechanismen der DGI zeigen. KW - Neisseria gonorrhoeae KW - transposon mutagenesis KW - essential genes KW - virulence factors KW - Virulenzfaktor KW - Transposon KW - Mutagenese Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102659 ER - TY - JOUR A1 - Siegl, Christine A1 - Prusty, Bhupesh K. A1 - Karunakaran, Karthika A1 - Wischhusen, Jörg A1 - Rudel, Thomas T1 - Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection JF - Cell Reports N2 - Obligate intracellular bacteria depend entirely on nutrients from the host cell for their reproduction. Here, we show that obligate intracellular Chlamydia downregulate the central tumor suppressor p53 in human cells. This reduction of p53 levels is mediated by the PI3K-Akt signaling pathway, activation of HDM2, and subsequent proteasomal degradation of p53. The stabilization of p53 in human cells severely impaired chlamydial development and caused the loss of infectious particle formation. DNA-damage-induced p53 interfered with chlamydial development through downregulation of the pentose phosphate pathway (PPP). Increased expression of the PPP key enzyme glucose-6-phosphate dehydrogenase rescued the inhibition of chlamydial growth induced by DNA damage or stabilized p53. Thus, downregulation of p53 is a key event in the chlamydial life cycle that reprograms the host cell to create a metabolic environment supportive of chlamydial growth. KW - chlamydia trachomatis KW - tumor Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118200 SN - 2211-1247 VL - 9 IS - 3 ER - TY - JOUR A1 - Peter, Stefanie A1 - Bultinck, Jennyfer A1 - Myant, Kevin A1 - Jaenicke, Laura A. A1 - Walz, Susanne A1 - Müller, Judith A1 - Gmachl, Michael A1 - Treu, Matthias A1 - Boehmelt, Guido A1 - Ade, Casten P. A1 - Schmitz, Werner A1 - Wiegering, Armin A1 - Otto, Christoph A1 - Popov, Nikita A1 - Sansom, Owen A1 - Kraut, Norbert A1 - Eilers, Martin T1 - H Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase JF - EMBO Molecular Medicine N2 - Deregulated expression of MYC is a driver of colorectal carcinogenesis, necessitating novel strategies to inhibit MYC function. The ubiquitin ligase HUWE1 (HECTH9, ARF-BP1, MULE) associates with both MYC and the MYC-associated protein MIZ1. We show here that HUWE1 is required for growth of colorectal cancer cells in culture and in orthotopic xenograft models. Using high-throughput screening, we identify small molecule inhibitors of HUWE1, which inhibit MYC-dependent transactivation in colorectal cancer cells, but not in stem and normal colon epithelial cells. Inhibition of HUWE1 stabilizes MIZ1. MIZ1 globally accumulates on MYC target genes and contributes to repression of MYC-activated target genes upon HUWE1 inhibition. Our data show that transcriptional activation by MYC in colon cancer cells requires the continuous degradation of MIZ1 and identify a novel principle that allows for inhibition of MYC function in tumor cells. KW - colorectal cancer KW - HUWE1 KW - MIZ1 KW - MYC KW - ubiquitination KW - cancer KW - digestive system KW - pharmacology KW - drug discovery Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118132 SN - 1757-4684 VL - 6 IS - 12 ER - TY - JOUR A1 - Sommerlandt, F. M. J. A1 - Huber, W. A1 - Spaethe, J. T1 - Social Information in the Stingless Bee, Trigona corvina Cockerell (Hymenoptera: Apidae): The Use of Visual and Olfactory Cues at the Food Site JF - Sociobiology N2 - For social insects, colony performance is largely dependent on the quantity and quality of food intake and thus on the efficiency of its foragers. In addition to innate preferences and previous experience, foragers can use social information to decide when and where to forage. In some stingless bee (Meliponini) species, individual foraging decisions are shown to be influenced by the presence of social information at resource sites. In dual choice tests, we studied whether visual and/or olfactory cues affect individual decision-making in rigona corvina Cockerell and if this information is species-specific. We found that T. corvina foragers possess local enhancement: they are attracted by olfactory and visual cues released by conspecifics but avoid feeders associated with heterospecific individuals of the species Tetragona ziegleri (Friese). Overall, olfactory cues seem to be more important than visual cues, but information by visual cues alone is sufficient for discrimination. KW - visual cues KW - recruitment KW - local enhancement KW - odor marks KW - communication Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118120 VL - 61 IS - 4 ER - TY - JOUR A1 - Benz, Roland A1 - Maier, Elke A1 - Bauer, Susanne A1 - Ludwig, Albrecht T1 - The Deletion of Several Amino Acid Stretches of Escherichia coli Alpha-Hemolysin (HlyA) Suggests That the Channel-Forming Domain Contains Beta-Strands JF - PLOS ONE N2 - Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures. KW - membrane potential KW - molecular mass KW - cations KW - membrane structures KW - membrane proteins KW - lipid bilayer KW - red blood cells KW - toxins Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118115 SN - 1932-6203 VL - 9 IS - 12 ER - TY - JOUR A1 - Oervoessy, Noemi A1 - Koroesi, Adam A1 - Batary, Peter A1 - Vozar, Agnes A1 - Peregovits, Laszlo T1 - Habitat Requirements of the Protected Southern Festoon (Zerynthia Polysena); Adult, Egg and Larval Distribution in a Highly Degraded Habitat Complex JF - Acta Zoologica Academiae Scientiarum Hungaricae N2 - Habitat quality affects the presence and size of butterfly populations. Resources for all life stages must be found in a given or few habitat patches. Southern festoon (Zerynthia polyxena) is a vulnerable, but locally abundant species in Hungary. The larva requires birthwort (Aristolochia clematitis) as food plant. We examined the small scale habitat use of adults and distribution of eggs and larvae among different vegetation types to reveal the requirements of the species in all life stages. Transect counts were conducted in a tree plantation complex comprising four types of vegetation. Number (+/- SE) of adults, eggs and larvae were lowest in poplar plantation (adult 0.3 +/- 0.2, egg 1.1 +/- 1.1, larva 0.6 +/- 0.3). Medium amount of butterflies were observed in open (adult 8.3 +/- 2.9, egg 3.1 +/- 2.6, larva 3.1 +/- 1.9) and black-locust (adult 9.4 +/- 4.2, egg 12.7 +/- 4.9, larva 4.1 +/- 1.1) habitat. Number of butterflies was highest in hummocks (adult 13.5 +/- 1.5, egg 12.9 +/- 5.7, larva 8.4 +/- 2.1). Adults avoided bare ground. We encountered most eggs in dense food plant patches with high plants. Food plant height also positively influenced the occurrence of the larvae. Although distribution of adults and juvenile forms showed quite similar patterns, we could also reveal some differences that caused by different environmental conditions in distinct vegetation types. Our study stresses the importance of habitat quality, which affects population size of butterflies even in a highly degraded habitat complex. KW - habitat quality KW - resource use KW - life stage KW - butterfly euphydryas-aurinia KW - ecology KW - metapopulation KW - conservation KW - quality KW - management KW - population KW - nympahlidae KW - fragmented landscapes KW - lepidoptera KW - tree plantations KW - habitat patch Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117810 VL - 60 IS - 4 ER - TY - JOUR A1 - Breeze, Tom D. A1 - Vaissiere, Bernhard E. A1 - Bommarco, Riccardo A1 - Petanidou, Theodora A1 - Seraphides, Nicos A1 - Kozak, Lajos A1 - Scheper, Jeroen A1 - Biesmeijer, Jacobus C. A1 - Kleijn, David A1 - Gyldenkærne, Steen A1 - Moretti, Marco A1 - Holzschuh, Andrea A1 - Steffan-Dewenter, Ingolf A1 - Stout, Jane C. A1 - Pärtel, Meelis A1 - Zobel, Martin A1 - Potts, Simon G. T1 - Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe JF - PLOS ONE N2 - Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. KW - economy services KW - fruit set KW - sequential introduction KW - enhance KW - biodiversity KW - abundance KW - declines KW - crops KW - colonies KW - density Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117692 SN - 1932-6203 VL - 9 IS - 1 ER - TY - JOUR A1 - Wäschke, Nicole A1 - Hardge, Kerstin A1 - Hancock, Christine A1 - Hilker, Monika A1 - Obermaier, Elisabeth A1 - Meiners, Torsten T1 - Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation? JF - PlOS ONE N2 - Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weevils capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weevils foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. KW - dentichasmias busseolae KW - nonhost plant KW - volatiles KW - selection KW - invertebrate herbivory KW - location behavior KW - foraging behavior KW - background odor KW - natural enemies Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117687 SN - 1932-6203 VL - 9 IS - 1 ER - TY - JOUR A1 - Sanz-Moreno, Adrian A1 - Fuhrmann, David A1 - Wolf, Elmar A1 - von Eyss, Björn A1 - Eilers, Martin A1 - Elsässer, Hans-Peter T1 - Miz1 Deficiency in the Mammary Gland Causes a Lactation Defect by Attenuated Stat5 Expression and Phosphorylation JF - PLOS ONE N2 - Miz1 is a zinc finger transcription factor with an N-terminal POZ domain. Complexes with Myc, Bcl-6 or Gfi-1 repress expression of genes like Cdkn2b (p15(Ink4)) or Cd-kn1a (p21(Cip1)). The role of Miz1 in normal mammary gland development has not been addressed so far. Conditional knockout of the Miz1 POZ domain in luminal cells during pregnancy caused a lactation defect with a transient reduction of glandular tissue, reduced proliferation and attenuated differentiation. This was recapitulated in vitro using mouse mammary gland derived HC11 cells. Further analysis revealed decreased Stat5 activity in Miz1 Delta POZ mammary glands and an attenuated expression of Stat5 targets. Gene expression of the Prolactin receptor (PrlR) and ErbB4, both critical for Stat5 phosphorylation (pStat5) or pStat5 nuclear translocation, was decreased in Miz1 Delta POZ females. Microarray, ChIP-Seq and gene set enrichment analysis revealed a down-regulation of Miz1 target genes being involved in vesicular transport processes. Our data suggest that deranged intracellular transport and localization of PrlR and ErbB4 disrupt the Stat5 signalling pathway in mutant glands and cause the observed lactation phenotype. KW - C-MYC KW - transcription factor MIZ-1 KW - breast-cancer cells KW - gene expression KW - epithelial cells KW - prolactin KW - transgenic mice KW - growth KW - differentiation KW - proliferation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117286 VL - 9 IS - 2 ER - TY - JOUR A1 - Pascoalino, Bruno A1 - Dindar, Gülcin A1 - Vieira-da-Rocha, João P. A1 - Machado, Carlos Renato A1 - Janzen, Christian J. A1 - Schenkman, Sergio T1 - Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei JF - Nucleic Acids Research N2 - The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes. KW - chromatin assembly factors KW - DNA-damage checkpoint KW - tousled-like kinases KW - saccharomyes cerevisiae KW - gene expression KW - acetyltransferase RTT109 KW - african trypanosomes KW - antigenetic variation KW - cycle regulation KW - nuclear import Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117220 SN - 1362-4962 VL - 42 IS - 5 ER -