TY - JOUR A1 - Hennessen, Fabienne A1 - Miethke, Marcus A1 - Zaburannyi, Nestor A1 - Loose, Maria A1 - Lukežič, Tadeja A1 - Bernecker, Steffen A1 - Hüttel, Stephan A1 - Jansen, Rolf A1 - Schmiedel, Judith A1 - Fritzenwanker, Moritz A1 - Imirzalioglu, Can A1 - Vogel, Jörg A1 - Westermann, Alexander J. A1 - Hesterkamp, Thomas A1 - Stadler, Marc A1 - Wagenlehner, Florian A1 - Petković, Hrvoje A1 - Herrmann, Jennifer A1 - Müller, Rolf T1 - Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin JF - Antibiotics N2 - The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound. KW - chelocardins KW - atypical tetracyclines KW - broad-spectrum antibiotics KW - clinical isolates KW - uropathogens KW - urinary tract infection (UTI) KW - resistance-breaking properties KW - mechanism of resistance KW - AcrAB-TolC efflux pump Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213149 SN - 2079-6382 VL - 9 IS - 9 ER - TY - JOUR A1 - Mühlberg, Eric A1 - Umstätter, Florian A1 - Domhan, Cornelius A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Krause, Andreas A1 - Kleist, Christian A1 - Beijer, Barbro A1 - Zimmermann, Stefan A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci JF - Pharmaceuticals N2 - Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure–activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria. KW - antibiotics KW - multidrug-resistant bacteria KW - enterococci KW - vancomycin KW - structural modification KW - fatty acids KW - polycationic peptides Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205879 SN - 1424-8247 VL - 13 IS - 6 ER - TY - THES A1 - Wencker, Freya Dorothea Ruth T1 - The methionine biosynthesis operon in \(Staphylococcus\) \(aureus\): Role of concerted RNA decay in transcript stability and T-box riboswitch turnover T1 - Das Methioninbiosynthese-Operon in \(Staphylococcus\) \(aureus\): Der Einfluss von koordiniertem RNA Abbau auf Transkriptstabilität und T-Box-Riboswitch-Prozessierung N2 - Methionine is the first amino acid of every newly synthesised protein. In combination with its role as precursor for the vital methyl-group donor S-adenosylmethionine, methionine is essential for every living cell. The opportunistic human pathogen Staphylococcus aureus is capable of synthesising methionine de novo, when it becomes scarce in the environment. All genes required for the de novo biosynthesis are encoded by the metICFE-mdh operon, except for metX. Expression is controlled by a hierarchical network with a methionyl-tRNA-specific T-box riboswitch (MET-TBRS) as centrepiece, that is also referred to as met leader (RNA). T-box riboswitches (TBRS) are regulatory RNA elements located in the 5’-untranslated region (5’-UTR) of genes. The effector molecule of T-box riboswitches is uncharged cognate tRNA. The prevailing mechanism of action is premature termination of transcription of the nascent RNA in the absence of the effector (i.e. uncharged cognate tRNA) due to formation of a hairpin structure, the Terminator stem. In presence of the effector, a transient stabilisation of the alternative structure, the Antiterminator, enables transcription of the downstream genes (‘read-through’). Albeit, after the read-through the thermodynamically more stable Terminator eventually forms. The Terminator and the Antiterminator are two mutually exclusive structures. Previous work of the research group showed that in staphylococci the MET-TBRS ensures strictly methionine-dependent control of met operon expression. Uncharged methionyl-tRNA that activates the system is only present in sufficient amounts under methionine-deprived conditions. In contrast to other bacterial TBRS, the staphylococcal MET-TBRS has some characteristic features regarding its length and predicted secondary structure whose relevance for the function are yet unkown. Aim of the present thesis was to experimentally determine the structure of the met leader RNA and to investigate the stability of the met operon-specific transcripts in the context of methionine biosynthesis control. Furthermore, the yet unknown function of the mdh gene within the met operon was to be determined. In the context of this thesis, the secondary structure of the met leader was determined employing in-line probing. The structural analysis revealed the presence of almost all highly conserved T-box riboswitch structural characteristics. Furthermore, three additional stems, absent in all T-box riboswitches analysed to date, could be identified. Particularly remarkable is the above average length of the Terminator stem which renders it a potential target of the double-strand-specific endoribonuclease III (RNase III). The RNase III-dependent cleavage of the met leader could be experimentally verified by the use of suitable mutants. Moreover, the exact cleavage site within the Terminator was determined. The unusual immediate separation of the met leader from the met operon mRNA via the RNase III cleavage within the Terminator stem induces the rapid degradation of the met leader RNA and, most likely, that of the 5’-region of the met mRNA. The met mRNA is degraded from its 5’-end by the exoribonuclease RNase J. The stability of the met mRNA was found to vary over the length of the transcript with an instable 5’-end (metI and metC) and a longer half-life towards the 3’-end (metE and mdh). The varying transcript stability is reflected by differences in the available cellular protein levels. The obtained data suggest that programmed mRNA degradation is another level of regulation in the complex network of staphylococcal de novo methionine biosynthesis control. In addition, the MET-TBRS was studied with regard to a future use as a drug target for novel antimicrobial agents. To this end, effects of a dysregulated methionine biosynthesis on bacterial growth and survival were investigated in met leader mutants that either caused permanent transcription of the met operon (‘ON’) or prevented operon transcription (‘OFF’), irrespective of the methionine status in the cell. Methionine deprivation turned out to be a strong selection pressure, as ‘OFF’ mutants acquired adaptive mutations within the met leader to restore met operon expression that subsequently re-enabled growth. The second part of the thesis was dedicated to the characterisation of the Mdh protein that is encoded by the last gene of the met operon and whose function is unknown yet. At first, co-transcription and -expression with the met operon could be demonstrated. Next, the Mdh protein was overexpressed and purified and the crystal structure of Mdh was solved to high resolution by the Kisker research group (Rudolf-Virchow-Zentrum Würzburg). Analysis of the structure revealed the amino acid residues crucial for catalytic activity, and zinc was identified as a co-factor of Mdh. Also, Mdh was shown to exist as a dimer. However, identification of the Mdh substrate was, in the context of this thesis, (still) unsuccessful. Nevertheless, interactions of Mdh with enzymes of the met operon could be demonstrated by employing the bacterial two-hybrid system. This fact and the high conservation of mdh/Mdh on nucleotide and amino acid level among numerous staphylococcal species suggests an important role of Mdh within the methionine metabolism that should be a worthwhile subject of future research. N2 - Methionin ist die erste Aminosäure in jedem neu gebildeten Protein. Zusammen mit seiner Funktion als Vorläufermolekül für die Synthese des essenziellen Methylgruppendonors S-Adenosylmethionin ist Methionin damit für jede lebende Zelle unverzichtbar. Staphylococcus aureus, ein opportunistisches Humanpathogen, ist in der Lage, Methionin de novo zu synthetisieren, wenn es nicht in ausreichender Menge in der Umgebung vorhanden ist. Mit Ausnahme von MetX sind alle für die Methioninsynthese benötigten Enzyme im metICFE-mdh-Operon kodiert. Die Expression des Operons wird durch ein komplexes hierarchisches Netzwerk reguliert, dessen zentrales Steuerelement ein Methionyl-tRNA-spezifischer T-Box-Riboswitch (MET-TBRS) ist, der auch als met-leader (RNA) bezeichnet wird. T-Box Riboswitches (TBRS) sind regulatorische RNA-Elemente, die in der untranslatierten Region am 5'-Ende (5'-UTR) ihrer zu kontrollierenden Gene liegen. Sie nutzen unbeladene tRNAs als Effektormoleküle. Die Funktionsweise der meisten TBRS beruht auf dem vorzeitigen Abbruch der Transkription der naszierenden mRNA, der durch die Ausbildung einer Haarnadelstruktur (Terminator) im Transkript herbeigeführt wird, wenn das Effektormolekül (i.e. unbeladene tRNA) fehlt. Sobald passende unbeladene tRNA verfügbar ist und bindet, wird eine alternative Struktur, der Antiterminator, kurzzeitig stabilisiert, der die Transkription und damit ein "Durchlesen" in die stromabwärtsliegenden Gene ermöglicht. Terminator und Antiterminator sind zwei sich gegenseitig ausschließende Strukturen, wobei der Terminator die thermodynamisch deutlich stabilere Struktur des TBRS ist, die sich dementsprechend auch in den vollständigen Transkripten erneut ausbildet. Bisherige Vorarbeiten der Arbeitsgruppe zeigten, dass in Staphylokokken der MET-TBRS die Kontrolle der Methioninsynthese in strikter Abhängigkeit von Methionin gewährleistet. Unbeladene Methionyl-tRNA, die nur unter Methioninmangelbedingungen in ausreichenden Konzentrationen vorliegt, aktiviert das System. Im Unterschied zu anderen bakteriellen TBRS weist der Staphylokokken-MET-TBRS (met-leader) hinsichtlich seiner Länge und vorhergesagten Struktur einige Besonderheiten auf, deren Bedeutung für die Funktion bislang unklar sind. Ziel der vorliegenden Arbeit war es daher, die Struktur der met-leader-RNA experimentell zu bestimmen und die Stabilität met-Operon-spezifischer Transkripte im Kontext der Methioninbiosynthesekontrolle zu untersuchen. Ebenso sollte die bisher unbekannte Funktion des mdh-Genes im Operon aufgeklärt werden. Im Rahmen dieser Doktorarbeit wurde die Sekundärstruktur der met-leader-RNA mit Hilfe des so genannten In-line Probings bestimmt. Die Sekundärstruktur weist neben fast allen hochkonservierten Strukturmerkmalen eines T-Box-Riboswitches auch drei zusätzliche Haarnadelstrukturen auf, die bisher in keinem anderen T-Box-Riboswitch gefunden wurden. Besonders auffällig ist die überdurchschnittliche Länge des met-leader-Terminators, der dadurch zur potentiellen Zielstruktur für die Doppelstrang-spezifische Endoribonuklease RNase III wird. Mittels geeigneter Mutanten konnte die RNase III-abhängige Prozessierung der met-leader-RNA experimentell bewiesen werden. Ebenso wurde die exakte Schnittstelle im Terminator bestimmt. Die ungewöhnliche Prozessierung des Terminators durch die RNase III spaltet die met-leader-RNA von der met-mRNA ab, was den raschen weiteren Abbau der met-leader-RNA und sehr wahrscheinlich auch den der met-mRNA einleitet. So wird die met-mRNA durch die Exoribonuklease RNase J vom 5'-Ende her abgebaut, wobei die Stabilität bezogen auf die Gesamtheit des Moleküls stark variiert: Das 5'-Ende mit den Genen metI und metC wird äußerst schnell degradiert, während das 3'-Ende mit metE und mdh deutlich stabiler ist. Die variierende mRNA-Stabilität spiegelt sich auch in Unterschieden hinsichtlich der verfügbaren zellulären Proteinmengen wider. Die Daten legen daher nahe, dass programmierte mRNA-Degradation eine weitere Ebene im komplexen Kontrollnetzwerk darstellt, durch die in Staphylokokken die Methioninbiosynthese sehr exakt den jeweiligen Bedürfnissen angepasst wird. Des Weiteren wurde der MET-TBRS im Hinblick auf eine zukünftige Nutzung als Angriffspunkt für neue antibakterielle Wirkstoffe untersucht. Dazu wurden die Auswirkungen einer dysregulierten Methioninbiosynthese auf das bakterielle Wachstum und Überleben mit Hilfe von met-leader-Mutanten analysiert, die entweder zu einer permanenten Aktivierung („ON“) oder Deaktivierung („OFF“) der met-Operon-Transkription, unabhängig vom Methioninstatus in der Zelle, führten. Es zeigte sich, dass Methioninmangel einen starken Selektionsdruck darstellt, da die „OFF“-Mutanten in der Lage waren, durch den Erwerb von adaptiven Mutationen innerhalb der met-leader-Sequenz, das met-Operon erneut zu aktivieren und wieder zu wachsen. Der zweite Teil dieser Arbeit widmete sich der Charakterisierung des Mdh-Proteins, das im letzten Gen des met-Operons kodiert ist und dessen Funktion derzeit gänzlich unbekannt ist. Zunächst konnte die Kotranskription und -expression von mdh mit dem met-Operon gezeigt werden. In Zusammenarbeit mit der Arbeitsgruppe Kisker (Rudolf-Virchow-Zentrum Würzburg) wurden anhand von Kristallstrukturanalysen die Aminosäuren identifiziert, die entscheidend für die katalytische Aktivität des Mdh-Enzyms sind, wobei Zink als ein Kofaktor fungiert. Ebenso zeigte sich, dass Mdh als Dimer vorliegt. Allerdings ist die Identifizierung des Mdh-Substrates im Rahmen dieser Arbeit (noch) nicht gelungen. Mittels eines bakteriellen Zwei-Hybridsystems wurde jedoch nachgewiesen, dass Mdh mit den anderen Enzymen des met-Operons interagiert. Dies und die hohe Konservierung von mdh/Mdh auf Nukleotid- und Aminosäureebene in verschiedenen Staphylokokkenarten legt eine wichtige Funktion von Mdh im Methioninstoffwechsel nahe, die lohnenswerter Gegendstand weiterer Untersuchungen sein sollte. KW - Staphylococcus aureus KW - RNA Abbau KW - Methioninbiosynthese KW - MET-T-box riboswitch KW - riboswitch KW - methionine biosynthesis KW - RNA decay Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207124 ER - TY - JOUR A1 - Wencker, Freya D. R A1 - Marincola, Gabriella A1 - Schoenfelder, Sonja M. K. A1 - Maaß, Sandra A1 - Becher, Dörte A1 - Ziebuhr, Wilma T1 - Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay JF - Nucleic Acids Research N2 - In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements. KW - allelic replacement KW - expression KW - translation KW - mechanism KW - acid KW - endoribonuclease KW - antitermination KW - transcription KW - proteins KW - geometry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259029 VL - 49 IS - 4 ER - TY - JOUR A1 - Gerova, Milan A1 - Wicke, Laura A1 - Chihara, Kotaro A1 - Schneider, Cornelius A1 - Lavigne, Rob A1 - Vogel, Jörg T1 - A grad-seq view of RNA and protein complexes in Pseudomonas aeruginosa under standard and bacteriophage predation conditions JF - mbio N2 - The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73% of all transcripts and ∼40% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell. IMPORTANCE Stable complexes by cellular proteins and RNA molecules lie at the heart of gene regulation and physiology in any bacterium of interest. It is therefore crucial to globally determine these complexes in order to identify and characterize new molecular players and regulation mechanisms. Pseudomonads harbor some of the largest genomes known in bacteria, encoding ∼5,500 different proteins. Here, we provide a first glimpse on which proteins and cellular transcripts form stable complexes in the human pathogen Pseudomonas aeruginosa. We additionally performed this analysis with bacteria subjected to the important and frequently encountered biological stress of a bacteriophage infection. We identified several molecules with established roles in a variety of cellular pathways, which were affected by the phage and can now be explored for their role during phage infection. Most importantly, we observed strong colocalization of phage transcripts and host ribosomes, indicating the existence of specialized translation mechanisms during phage infection. All data are publicly available in an interactive and easy to use browser. KW - Grad-seq KW - Pseudomonas KW - UKZ KW - bacteriophage KW - infection KW - Pseudomonas aeruginosa KW - RNA-binding proteins KW - noncoding RNA KW - phage Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259054 VL - 12 IS - 1 ER - TY - JOUR A1 - Seethaler, Marius A1 - Hertlein, Tobias A1 - Wecklein, Björn A1 - Ymeraj, Alba A1 - Ohlsen, Knut A1 - Lalk, Michael A1 - Hilgeroth, Andreas T1 - Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species JF - Antibiotics N2 - Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials. KW - antibacterial activity KW - synthesis KW - substituent KW - structure-activity KW - inhibition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193130 SN - 2079-6382 VL - 8 IS - 4 ER - TY - THES A1 - Matera, Gianluca T1 - Global mapping of RNA-RNA interactions in \(Salmonella\) via RIL-seq T1 - Globale Analyse der RNA-RNA-Interaktionen in \(Salmonella\) mittels RIL-seq N2 - RNA represents one of the most abundant macromolecules in both eukaryotic and prokaryotic cells. Since the discovery that RNA could play important gene regulatory functions in the physiology of a cell, small regulatory RNAs (sRNAs) have been at the center of molecular biology studies. Functional sRNAs can be independently transcribed or derived from processing of mRNAs and other non-coding regions and they often associate with RNA-binding proteins (RBPs). Ever since the two major bacterial RBPs, Hfq and ProQ, were identified, the way we approach the identification and characterization of sRNAs has drastically changed. Initially, a single sRNA was annotated and its function studied with the use of low-throughput biochemical techniques. However, the development of RNA-seq techniques over the last decades allowed for a broader identification of sRNAs and their functions. The process of studying a sRNA mainly focuses on the characterization of its interacting RNA partner(s) and the consequences of this binding. By using RNA interaction by ligation and sequencing (RIL-seq), the present thesis aimed at a high-throughput mapping of the Hfq-mediated RNA-RNA network in the major human pathogen Salmonella enterica. RIL-seq was at first performed in early stationary phase growing bacteria, which enabled the identification of ~1,800 unique interactions. In- depth analysis of such complex network was performed with the aid of a newly implemented RIL-seq browser. The interactome revealed known and new interactions involving sRNAs and genes part of the envelope regulon. A deeper investigation led to the identification of a new RNA sponge of the MicF sRNA, namely OppX, involved in establishing a cross-talk between the permeability at the outer membrane and the transport capacity at the periplasm and the inner membrane. Additionally, RIL-seq was applied to Salmonella enterica grown in SPI-2 medium, a condition that mimicks the intracellular lifestyle of this pathogen, and finally extended to in vivo conditions during macrophage infection. Collectively, the results obtained in the present thesis helped unveiling the complexity of such RNA networks. This work set the basis for the discovery of new mechanisms of RNA-based regulation, for the identification of a new physiological role of RNA sponges and finally provided the first resource of RNA interactions during infection conditions in a major human pathogen. N2 - RNA ist eines der am häufigsten vorkommenden Makromoleküle sowohl in eukaryontischen als auch in prokaryontischen Zellen. Seit der Entdeckung, dass RNA wichtige genregulatorische Funktionen in der Physiologie einer Zelle spielen könnte, stehen kleine regulatorische RNAs (sRNAs) im Mittelpunkt molekularbiologischer Studien. Funktionelle sRNAs können alleinstehend von nicht-codierenden oder codierenden Bereichen des Genoms transkribiert werden, aber sie können auch durch die Prozessierung einer mRNA entstehen. Des Weiteren sind sRNAs häufig mit RNA- bindenden Proteinen (RBPs) assoziiert. Seitdem die beiden wichtigsten bakteriellen RBPs, Hfq und ProQ, identifiziert wurden, hat sich die Art und Weise, wie wir an die Identifizierung und Charakterisierung von sRNAs herangehen, drastisch verändert. Ursprünglich wurden sRNAs annotiert und anschließend für einzelne sRNAs die Funktion mit biochemischen Techniken untersucht. Die Entwicklung von RNA-seq-Techniken in den letzten Jahrzehnten ermöglichte nun jedoch eine globale Identifizierung von sRNAs und ihren Funktionen. Der Prozess der Untersuchung einer sRNA konzentriert sich hauptsächlich auf die Charakterisierung ihrer interagierenden RNA-Partner und die Folgen dieser Bindung. Mit Hilfe der RNA-Interaktion durch Ligation und Sequenzierung (RIL-seq) wurde in der vorliegenden Arbeit eine Hochdurchsatzkartierung des Hfq-vermittelten RNA-RNA-Netzwerks in dem wichtigen humanen Krankheitserreger Salmonella enterica durchgeführt. RIL-seq wurde zunächst in Bakterien in der frühen stationären Wachstumsphase durchgeführt, was die Identifizierung von ~1.800 einzigartigen Interaktionen ermöglichte. Mit Hilfe eines neu implementierten RIL-seq-Browsers wurde daraufhin eine eingehende Analyse dieses komplexen Netzwerks durchgeführt. Das Interaktom enthüllte bekannte und neue Interaktionen zwischen sRNAs und mRNAs, die Teil des Zellwand-Regulons sind. Eine tiefergehende Untersuchung führte zur Identifizierung eines neuen RNA-Schwammes, OppX, welcher mit der sRNA MicF bindet und so die Herstellung eines Cross-Talks zwischen der Permeabilität an der äußeren Membran und der Transportkapazität am Periplasma und der inneren Membran ermöglicht. Darüber hinaus wurde RIL-seq für Salmonella enterica angewandt, welche in SPI-2-Medium gewachsen waren, wobei diese Bedingung, die den intrazellulären Lebensstil dieses Erregers nachahmt. Durch die Infektion von Makrophagen mit dem Bakterium, wurde das RIL-seq Protokoll des Weiteren unter in vivo Bedingungen getestet. Insgesamt trugen die in dieser Arbeit erzielten Ergebnisse dazu bei, die Komplexität solcher RNA- Netzwerke zu enthüllen. Diese Arbeit bildete die Grundlage für die Entdeckung neuer Mechanismen der RNA-basierten Regulierung als auch für die Identifizierung einer neuen physiologischen Rolle von RNA- Schwämmen und lieferte letztendlich die erste Untersuchung für RNA- Interaktionen unter Infektionsbedingungen in einem wichtigen menschlichen Krankheitserreger. KW - Small RNA KW - RNA KW - infection biology KW - Salmonella KW - MicF Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268776 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Boyny, Aziza A1 - Hertlein, Tobias A1 - Sroka, Aneta A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kessie, David A1 - Mehling, Helene A1 - Potempa, Jan A1 - Ohlsen, Knut A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A. KW - Staphylococcus aureus KW - Staphylococcal infection KW - host cells KW - HeLa cells KW - cytotoxicity KW - intracellular pathogens KW - apoptosis KW - epithelial cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263908 VL - 17 IS - 9 ER - TY - JOUR A1 - Kayisoglu, Özge A1 - Schlegel, Nicolas A1 - Bartfeld, Sina T1 - Gastrointestinal epithelial innate immunity-regionalization and organoids as new model JF - Journal of Molecular Medicine N2 - The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development. KW - regionalization and organoids KW - immunity KW - gastrointestinal tract Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265220 VL - 99 IS - 4 ER - TY - JOUR A1 - Pernitzsch, Sandy R. A1 - Alzheimer, Mona A1 - Bremer, Belinda U. A1 - Robbe-Saule, Marie A1 - De Reuse, Hilde A1 - Sharma, Cynthia M. T1 - Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori JF - Nature Communications N2 - The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB. KW - bacterial genetics KW - bacterial immune evasion KW - pathogens KW - small RNAs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261536 VL - 12 IS - 1 ER - TY - JOUR A1 - El Mouali, Youssef A1 - Gerovac, Milan A1 - Mineikaitė, Raminta A1 - Vogel, Jörg T1 - In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid JF - Nucleic Acids Research N2 - FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level. KW - antisense RNA KW - Escherichia coli KW - chromosomal genes KW - protein KW - chaperone KW - virulence KW - family KW - HFQ KW - specificity KW - inhibition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261072 VL - 49 IS - 9 ER - TY - JOUR A1 - Mottola, Austin A1 - Ramírez-Zavala, Bernardo A1 - Hünninger, Kerstin A1 - Kurzai, Oliver A1 - Morschhäuser, Joachim T1 - The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans JF - Molecular Microbiology N2 - The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall. KW - cell wall KW - zinc cluster transcription factor KW - Candida albicans KW - protein kinases Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259583 VL - 116 IS - 2 ER - TY - JOUR A1 - Svensson, Sarah L. A1 - Sharma, Cynthia M. T1 - Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria JF - Molecular Microbiology N2 - Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators that control bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologs can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologs in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3’UTR (untranslated region) of an upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways. KW - sRNA biogenesis KW - Campylobacter jejuni KW - Helicobacter pylori KW - pathogenesis KW - RNase III Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259602 VL - 117 ER - TY - JOUR A1 - Prezza, Gianluca A1 - Ryan, Daniel A1 - Mädler, Gohar A1 - Reichardt, Sarah A1 - Barquist, Lars A1 - Westermann, Alexander J. T1 - Comparative genomics provides structural and functional insights into Bacteroides RNA biology JF - Molecular Microbiology N2 - Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homolog to have an RNA-related function. We apply an in silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic coconservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members. KW - BT_1884 KW - cold-shock protein KW - GibS KW - RNA-binding proteins KW - secondary structure KW - 6S RNA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259594 VL - 117 IS - 1 ER - TY - JOUR A1 - Masota, Nelson E. A1 - Vogg, Gerd A1 - Ohlsen, Knut A1 - Holzgrabe, Ulrike T1 - Reproducibility challenges in the search for antibacterial compounds from nature JF - PLoS One N2 - Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts’ solutions in 10% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256–1024 μg/mL was observed in only 15.4% of identical plant species. These values were 4–16-fold higher than those reported earlier. Further, 18.2% of related plant species had MICs of 128–256 μg/mL. Besides, 29.2% and 95.8% of the extracts were soluble to sparingly soluble in 10% DMSO and acetone, respectively. Extracts’ solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65% and 95% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30% of the articles, whereas 40% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants’ extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges. KW - acetones KW - antibacterials KW - leaves KW - phytochemicals KW - solubility KW - plants KW - liquid chromatography-mass spectrometry KW - ethanol Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260239 VL - 16 IS - 7 ER - TY - JOUR A1 - Wallaschek, Nina A1 - Reuter, Saskia A1 - Silkenat, Sabrina A1 - Wolf, Katharina A1 - Niklas, Carolin A1 - Özge, Kayisoglu A1 - Aguilar, Carmen A1 - Wiegering, Armin A1 - Germer, Christoph-Thomas A1 - Kircher, Stefan A1 - Rosenwald, Andreas A1 - Shannon-Lowe, Claire A1 - Bartfeld, Sina T1 - Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids JF - PLoS Pathogens N2 - Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes an asymptomatic lifelong infection, but is also associated with the development of multiple B cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undifferentiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8% of gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin receptor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines. Although we confirm some of these results, we demonstrate that EBV does not infect healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-derived organoids from the same patient, EBV only reproducibly infected the cancer organoids. While there was no clear pattern of differential expression between normal and cancer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet to be identified receptor may become accessible following cellular changes induced by inflammation or transformation, rendering changes in the cellular architecture an essential prerequisite to EBV infection. KW - Organoids KW - ephitelial cells KW - gastrointestinal infections KW - cancers and neoplasms KW - Epstein-Barr virus KW - flow cytometry KW - epithelium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259206 VL - 17 IS - 2 ER - TY - JOUR A1 - Correia Santos, Sara A1 - Bischler, Thorsten A1 - Westermann, Alexander J. A1 - Vogel, Jörg T1 - MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT JF - Cell Reports N2 - A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs. KW - gene expression KW - nondocing RNA KW - chaperone HFQ KW - soluble-RNA KW - SEQ KW - interactome KW - repression KW - secretion KW - infection KW - biology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259134 VL - 34 IS - 5 ER - TY - THES A1 - Reuter-Weissenberger, Philipp T1 - The role of a fungal-specific transcription regulator on vacuolar biology and host interaction in \(Candida\) \(albicans\) T1 - Die Rolle eines pilzspezifischen Transkriptionsfaktors für die Vakuole und Wirtsinteraktion von \(Candida\) \(albicans\) N2 - Microorganisms that colonize the human body face large fluctuations in their surroundings. Therefore, those microbes developed sophisticated mechanisms that allow them to adapt their cell biology and maintain cellular homeostasis. One organelle vital to preserve cell physiology is the vacuole. The vacuole exhibits a wide range of functions and is able to adjust itself in response to both external and internal stimuli. Moreover, it plays an important role in host interaction and virulence in fungi such as Candida albicans. Despite this connection, only a few regulatory proteins have been described to modulate vacuolar biology in fungal pathogens. Furthermore, whether such regulation alters fungus-host interplay remains largely unknown. This thesis focuses on the characterization of ZCF8, a fungus-specific transcription regulator in the human-associated yeast C. albicans. To this end, I combined genome-wide protein-DNA interaction assays and gene expression analysis that identified genes regulated by Zcf8p. Fluorescence microscopy uncovered that several top targets of Zcf8p localize to the fungal vacuole. Moreover, deletion and overexpression of ZCF8 resulted in alterations in vacuolar morphology and in luminal pH and rendered the fungus resistant or susceptible to a vacuole-disturbing drug. Finally, in vitro adherence assays showed that Zcf8p modulates the attachment of C. albicans to human epithelial cells in a vacuole-dependent manner. Given those findings, I posit that the previously uncharacterized transcription regulator Zcf8p modulates fungal attachment to epithelial cells in a manner that depends on the status of the fungal vacuole. Furthermore, the results highlight that vacuolar physiology is a substantial factor influencing the physical interaction between Candida cells and mammalian mucosal surfaces. N2 - Mikroorganismen, die den Menschen besiedeln, sind großen Schwankungen in ihrer Umgebung ausgesetzt. Daher haben sie ausgeklügelte Mechanismen entwickelt, die es ihnen ermöglichen, ihre Zellbiologie anzupassen und die zelluläre Homöostase aufrechtzuerhalten. Eine für die Aufrechterhaltung der Zellphysiologie wichtige Organelle ist die Vakuole. Sie verfügt über ein breites Spektrum an Funktionen und ist in der Lage, auf externe und interne Stimuli zu reagieren. Außerdem spielt dieses Organell eine wichtige Rolle bei der Pilz-Wirt-Interaktion und somit für die Pathogenität von Pilzen wie Candida albicans. Trotz dieses Zusammenhangs wurden bisher nur wenige regulatorische Proteine beschrieben, welche die Biologie der Vakuolen in pathogenen Pilzen modulieren. Zudem ist weitgehend unbekannt, ob eine solche Regulierung das Zusammenspiel von Pilz und Wirt verändert. Diese Arbeit konzentriert sich auf die Charakterisierung von ZCF8, einem pilzspezifischen Transkriptionsregulator in der pathogenen Hefe C. albicans. Zu diesem Zweck wurden Protein-DNA-Interaktionstests und Genexpressionsanalysen kombiniert, um Gene zu identifizieren, die direkt von Zcf8p reguliert werden. Fluoreszenzmikroskopie zeigte zudem, dass mehrere der wichtigsten Ziele von Zcf8p in der Pilzvakuole lokalisiert sind. Darüber hinaus führte die Deletion und Überexpression von ZCF8 zu Veränderungen der Morphologie und des luminalen pH-Werts der Vakuole, und veränderte die Sensitivität des Pilzes gegenüber Stoffen, welche Funktionen der Vakuole beeinträchtigen. Schließlich deuteten In-vitro-Adhärenztests daraufhin, dass Zcf8p die Anheftung von C. albicans an menschliche Epithelzellen auf eine Weise moduliert, die abhängig von der Vakuole ist. Angesichts dieser Ergebnisse kann davon ausgegangen werden, dass der bisher unbekannte Transkriptionsregulator ZCF8 die Interaktion zwischen Pilz- und Epithelzellen des Wirts kontrolliert, und das auf eine Weise, die von der Pilzvakuole abhängig ist. Des Weiteren, unterstreichen die Ergebnisse, dass die Physiologie der Vakuole ein wesentlicher Faktor ist, welcher die Interaktion zwischen C. albicans und dem Wirt beeinflusst. KW - Vakuole KW - Transkriptionsfaktor KW - Candida albicans KW - vacuole KW - host colonization KW - Candida albicans KW - transcription regulator Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259287 ER - TY - JOUR A1 - Marincola, Gabriella A1 - Liong, Olivia A1 - Schoen, Christoph A1 - Abouelfetouh, Alaa A1 - Hamdy, Aisha A1 - Wencker, Freya D. R. A1 - Marciniak, Tessa A1 - Becker, Karsten A1 - Köck, Robin A1 - Ziebuhr, Wilma T1 - Antimicrobial Resistance Profiles of Coagulase-Negative Staphylococci in Community-Based Healthy Individuals in Germany JF - Frontiers in Public Health N2 - Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but also ubiquitous human and animal commensals. Infection-associated CoNS from healthcare environments are typically characterized by pronounced antimicrobial resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is known about AMR patterns of CoNS colonizing the general population. Here we report on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region of Germany with a high livestock density. Among the 69 individuals colonized with CoNS, 29 had reported contacts to either companion or farm animals. CoNS were selectively cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were isolated and Staphylococcus epidermidis (75%) was the most common CoNS species identified. Nine isolates (7%) were methicillin-resistant (MR) and carried the mecA gene, with seven individuals (10%) being colonized with at least one MR-CoNS isolate. While resistance against gentamicin, phenicols and spectinomycin was rare, high resistance rates were found against tetracycline (39%), erythromycin (33%) and fusidic acid (24%). In the majority of isolates, phenotypic resistance could be associated with corresponding AMR gene detection. Multidrug-resistance (MDR) was observed in 23% (29/127) of the isolates, with 33% (23/69) of the individuals being colonized with MDR-CoNS. The combined data suggest that MR- and MDR-CoNS are present in the community, with previous animal contact not significantly influencing the risk of becoming colonized with such isolates. KW - coagulase-negative staphylococci KW - antimicrobial resistance KW - One Health KW - community settings KW - Germany Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240881 SN - 2296-2565 VL - 9 ER - TY - JOUR A1 - Marincola, Gabriella A1 - Jaschkowitz, Greta A1 - Kieninger, Ann-Katrin A1 - Wencker, Freya D.R. A1 - Feßler, Andrea T. A1 - Schwarz, Stefan A1 - Ziebuhr, Wilma T1 - Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation JF - Frontiers in Cellular and Infection Microbiology N2 - Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens. KW - biofilm regulation KW - PIA/ica KW - IcaR KW - horizontal gene transfer KW - plasmid-chromosome crosstalk KW - Staphylococcus aureus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232903 SN - 2235-2988 VL - 11 ER -