TY - JOUR A1 - Hughes, Simon M. A1 - Lillien, Laura E. A1 - Raff, Martin C. A1 - Rohrer, Hermann A1 - Sendtner, Michael T1 - Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture N2 - We have been studying a population of bipotential glial progenitor cells in the perinatal rat optic nerve and brain in an attempt to understand how cells choose between alternative fates in the developing mammalian central nervous system (CNS). This cell population gives rise initially to oligodendrocytes and then to type-2 astrocytes1 both of which apparently collaborate in sheathing axons in the CNS2,3. In vitro studies suggest that oligodendrocyte differentiation is the constitutive pathway of development for the oligodendrocyte-type-2-astrocyte (O-2A) progenitor cell4,5, whereas type-2 astrocyte differentiation depends on a specific inducing protein6. This protein is present in the developing optic nerve when type-2 astrocytes are differentiating and can induce 0-2A progenitor cells in vitro to express glial fibrillary acidic protein (GFAP)6, a marker of astrocyte differentiation7. Here we show that the type-2-astrocyte-inducing protein is similar or identical to ciliary neutrotrophic factor (CNTF)8,9, which promotes the survival of some types of peripheral neurons in vitro8, including ciliary ganglion neurons8,10. This suggests that CNTF, in addition to its effect on neurons, may be responsible for triggering type-2 astrocyte differentiation in the developing CNS. Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-42660 ER - TY - JOUR A1 - Saadat, S. A1 - Sendtner, Michael A1 - Rohrer, H. T1 - Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture N2 - Ciliary neurotrophic factor (CNTF) influences the levels of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) in cultures of dissociated sYmpathetic neurons from newborn rats. In the presence of CNTF both the total and specific activity of ChAT was increased 7 d after culture by 15- and 18-fold, respectively, as compared to cultures kept in the absence of CNTF. Between 3 and 21 d in culture in the presence of CNTF . the total ChAT activity increased by a factor of >100. Immunotitration demonstrated that the elevated ChAT levels were due to an increased number of enzyme molecules. In contrast to the increase in ChAT levels, the total and specific activity levels' of TH were decreased by 42 and 36 %, respectively, after 7 d in culture. Half-maximal effects for both ChAT increase and TH decrease were obtained at CNTF concentrations of rvO.6 ng and maximal levels were reached at I ng of CNTF per milliliter of medium. The effect of CNTF on TH and ChAT levels were seen in serum-containing medium as well as in serum-free medium. CNTF was shown to have only a small effect on the long-term s.urviVal of rat sympathetic neurons. We therefore concluded that the effects of CNTF on ChAT and TH are not due to selective survival of cells that acquire cholinergic traits in vitro, but are rather due to the induction of cholinergic differentiation of noradrenergic sympathetic neurons. Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32677 ER - TY - JOUR A1 - Sendtner, Michael A1 - Kreutzberg, Georg W. A1 - Thoenen, Hans T1 - Ciliary neurotrophic factor (CNTF) prevents the degeneration of motor neurons after axotomy N2 - The period of natural cell death in the development of rodent motor neurons is followed by a period of sensitivity to axonal injury1-3. In the rat this early postnatal period of vulnerability coincides with that of very low ciliary neurotrophic factor (CNTF) levels in the sciatic nerve before CNTF increases to the high, adult levels4. The developmental time course of CNTF expression, its regional tissue distribution and its cytosolic localization (as suggested by its primary structure)4*5 favour a role for CNTF as a lesion factor rather than a target-derived neurotrophic molecule like nerve growth factor. Nevertheless CNTF exhibits neurotrophic activity in vitro on different populations of embryonic neurons6. To determine whether the vulnerability of motor neurons to axotomy in the early postnatal phase is due to insufficient availability of CNTF, we transected the axons of newborn rat motor neurons and demonstrated that iocal application of CNTF prevents the degeneration of the corresponding cell bodies. Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32637 ER - TY - JOUR A1 - Sendtner, Michael A1 - Carroll, P. A1 - Holtmann, B A1 - Hughes, R. A. A1 - Thoenen, H. T1 - Ciliary Neurotrophic Factor N2 - No abstract available KW - ciliary neuron KW - ciliary neurotrophic factor KW - motoneuron KW - nonneuronaI cells KW - homologous recombination Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-42545 ER - TY - JOUR A1 - Düzel, Emrah A1 - van Praag, Henriette A1 - Sendtner, Michael T1 - Can physical exercise in old age improve memory and hippocampal function? JF - Brain N2 - Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer’s disease. While the long-term health-promoting and protective effects of exercise are encouraging, it’s potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer’s disease pathology, vascular and metabolic risk factors and genetic variability. KW - hippocampus KW - exercise KW - cerebral blood flow KW - Alzheimer's disease KW - memory Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190721 VL - 139 IS - 3 ER - TY - JOUR A1 - Sendtner, Michael A1 - Thoenen, Hans A1 - Holtmann, B. A1 - Kohlbeck, R. A1 - Barde, Y.-A. T1 - Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section N2 - Motoneurons innervating the skeletal musculature were among the first neurons shown to require the presence of their target cells to develop appropriatelyl,2. But the characterization of molecules allowing motoneuron survival has been difficult. Ciliary neurotrophic factor prevents the death of motoneurons3-6, but its gene is not expressed during development7. Although the presence of a neurotrophin receptor on developing motoneurons8-1O has suggested a role for neurotrophins, none could be shown to promote motoneuron survival in vitro3. We report here that brainderived neurotrophic factor can prevent the death of axotomized motoneurons in newborn rats, suggesting a role for this neurotrophin for motoneuron survival in vivo. Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-42673 ER - TY - RPRT A1 - Lütticken, Claudia A1 - Wegenka, Ursula M. A1 - Yuan, Juping A1 - Buschmann, Jan A1 - Schindler, Chris A1 - Ziemiecki, Andrew A1 - Harpur, Alisa G. A1 - Wilks, Andrew F. A1 - Yasukawa, Kiyoshi A1 - Taga, Tetsuya A1 - Kishimoto, Tadamitsu A1 - Barbieri, Giovanna A1 - Sendtner, Michael A1 - Pellegrini, Sandra A1 - Heinrich, Peter C. A1 - Horn, Friedemann T1 - Association of transcription factor APRF and protein kinase JAK1 with the IL-6 signal transducer gp130 N2 - Interleukin-6, leukemia inhibitory factor, oncostatin M. Interleukin-11, and cilialy neurotrophic factor bind to receptor complexes that share the signal transducer gp130. Upon binding, the ligands rapidly activate DNA binding of acute-phase response factor (APRF), a protein antigenicaly relaled to the p91 subunit of the interferon-stimulated gene factor-(ISGF-3a). These cytokines caused tyrosine phosphorylation of APRF and ISGF-3a p91. Protein kinases of the Jak family were also rapidly tyrosine phosphorylated, and both APRF and Jak1 associated with gp130. These data indicate that Jak family protein kinases may participate in IL-6 signaling and that APRF may be activated in a complex with gp130. Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-42577 ER - TY - JOUR A1 - von Collenberg, Cora R. A1 - Schmitt, Dominique A1 - Rülicke, Thomas A1 - Sendtner, Michael A1 - Blum, Robert A1 - Buchner, Erich T1 - An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance JF - Biology Open N2 - Synapse-associated protein 1 (Syap1) is the mammalian homologue of synapse-associated protein of 47 kDa (Sap47) in Drosophila. Genetic deletion of Sap47 leads to deficiencies in short-term plasticity and associative memory processing in flies. In mice, Syap1 is prominently expressed in the nervous system, but its function is still unclear. We have generated Syap1 knockout mice and tested motor behaviour and memory. These mice are viable and fertile but display distinct deficiencies in motor behaviour. Locomotor activity specifically appears to be reduced in early phases when voluntary movement is initiated. On the rotarod, a more demanding motor test involving control by sensory feedback, Syap1-deficient mice dramatically fail to adapt to accelerated speed or to a change in rotation direction. Syap1 is highly expressed in cerebellar Purkinje cells and cerebellar nuclei. Thus, this distinct motor phenotype could be due to a so-far unknown function of Syap1 in cerebellar sensorimotor control. The observed motor defects are highly specific since other tests in the modified SHIRPA exam, as well as cognitive tasks like novel object recognition, Pavlovian fear conditioning, anxiety-like behaviour in open field dark-light transition and elevated plus maze do not appear to be affected in Syap1 knockout mice. KW - Syap1 knockout KW - Motor behaviour KW - Associative learning KW - Fear conditioning KW - Object recognition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201986 N1 - PDF includes: Correction: An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance - February 15, 2020. Biology Open (2020) 9, bio048942. doi:10.1242/bio.048942 VL - 8 ER - TY - JOUR A1 - Sendtner, Michael A1 - Dittrich, F. A1 - Hughes, R. A. A1 - Thoenen, H. T1 - Actions of CNTF and neurotrophins on degenerating motoneurons : preclinical studies and clinical implications N2 - Spinal motoneurons innervating skeletal muscle were amongst the first neurons shown to require the presence of their target cells to develop appropriately. Isolated embryonie chick and rat motoneurons have been used to identify neurotrophic factors and cytokines capable of supporting the survival of developing motoneurons. Such factors include ciliary neurotrophic factor (CNTF), which is present physiologically in high amounts in myelinating Schwann cells of peripheral nerves, and brain-derived neurotrophic factor (BDNF) which is synthesized in skeletal muscle and, after peripheral nerve lesion. in Schwann cells. These factors have been further analyzed for their physiological significance in maintaining motoneuron function in vivo, and for their potential therapeutic usefulness in degenerative motoneuron disease. Both CNTF and BDNF are capable of rescuing injured facial motoneurons in newbom rats. Furthermore, CNTF prolongs survival and improves motor function of pmn mice, an animal model for degenerative motoneuron disease, by preventing degeneration of motoneuron axons and somata. Thus treatment of human motoneuron disease with neurotrophic factors should be possible, provided that rational means for application of these factors can be established considering also the appearance of potential side effects. KW - Neurobiologie KW - Motor neuron disease; Ciliary neurotrophic factor; Brain-derived neurotrophic factor; Animal models; Neurotrophic factors Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62939 ER - TY - JOUR A1 - Lüningschrör, Patrick A1 - Slotta, Carsten A1 - Heimann, Peter A1 - Briese, Michael A1 - Weikert, Ulrich M. A1 - Massih, Bita A1 - Appenzeller, Silke A1 - Sendtner, Michael A1 - Kaltschmidt, Christian A1 - Kaltschmidt, Barbara T1 - Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves JF - Frontiers in Cellular Neuroscience N2 - Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4\(^+\) and CD8\(^+\) T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders. KW - Schwann cells KW - autophagy KW - immune response KW - myelin KW - PLEKHG5 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207538 SN - 1662-5102 VL - 14 ER - TY - JOUR A1 - Massih, Bita A1 - Veh, Alexander A1 - Schenke, Maren A1 - Mungwa, Simon A1 - Seeger, Bettina A1 - Selvaraj, Bhuvaneish T. A1 - Chandran, Siddharthan A1 - Reinhardt, Peter A1 - Sterneckert, Jared A1 - Hermann, Andreas A1 - Sendtner, Michael A1 - Lüningschrör, Patrick T1 - A 3D cell culture system for bioengineering human neuromuscular junctions to model ALS JF - Frontiers in Cell and Developmental Biology N2 - The signals that coordinate and control movement in vertebrates are transmitted from motoneurons (MNs) to their target muscle cells at neuromuscular junctions (NMJs). Human NMJs display unique structural and physiological features, which make them vulnerable to pathological processes. NMJs are an early target in the pathology of motoneuron diseases (MND). Synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is the starting point of the pathophysiological cascade leading to MN death. Therefore, the study of human MNs in health and disease requires cell culture systems that enable the connection to their target muscle cells for NMJ formation. Here, we present a human neuromuscular co-culture system consisting of induced pluripotent stem cell (iPSC)-derived MNs and 3D skeletal muscle tissue derived from myoblasts. We used self-microfabricated silicone dishes combined with Velcro hooks to support the formation of 3D muscle tissue in a defined extracellular matrix, which enhances NMJ function and maturity. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the function of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and found a decrease in neuromuscular coupling and muscle contraction in co-cultures with MNs harboring ALS-linked SOD1 mutation. In summary, the human 3D neuromuscular cell culture system presented here recapitulates aspects of human physiology in a controlled in vitro setting and is suitable for modeling of MND. KW - NMJ–neuromuscular junction KW - motoneuron (MN) KW - skeletal muscle KW - iPSC (induced pluripotent stem cells) KW - 3D cell culture Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304161 SN - 2296-634X VL - 11 ER -