TY - JOUR A1 - Hoppe, J. A1 - Sebald, Walter T1 - The proton conducting F0-part of bacterial ATP synthases N2 - No abstract available KW - Biologie Y1 - 1984 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-82019 ER - TY - JOUR A1 - Hoppe, J. A1 - Schairer, HU A1 - Sebald, Walter T1 - Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli N2 - The amino acid sequence of the proteolipid subunit of the A TP synthase was analyzed in six mutant strains from Escherichia coli K 12, selected for their increased resistance towards the inhibitor N,N'-dicyclohexylcarbodiimide. All six inhibitor-resistant mutants were found to be altered at the same position of the proteolipid, namely at the isoleucine at residue 28. Two substitutions could be identified. In type I this residue was substituted by a valine resulting in a moderate decrease in sensitivity to dicyclohexylcarbodiimide. Type II contained a threonine residue at this position. Here a strong resistance was observed. These two amino acid substitutions did not influence functional properties of the ATPase complex. ATPase as well as A TP-dependent proton-translocating activities of mutant membranes were indistinguishable from the wild type. At elevated concentrations, dicyclohexylcarbodiimide still bound specifically to the aspartic acid at residue 61 of the mutant proteolipid as in the wild type, and thereby inhibited the activity of the ATPase complex. It is suggested that the residue 28 substituted in the resistant mutants interacts with dicyclohexylcarbodiimide during the reactions leading to the covalent attachment of the inhibitor to the aspartic acid at residue 61. This could indicate that these two residues are in close vicinity and would thus provide a first hint on the functional conformation of the proteolipid. Its polypeptide chain would have to fold back to bring together these two residues separated by a segment of 32 residues. KW - Biochemie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47374 ER - TY - JOUR A1 - Hoppe, J. A1 - Schairer, H. U. A1 - Sebald, Walter T1 - The proteolipid of a mutant ATPase from Escherichia coli defective in H\(^+\)-conduction contains a glycine instead of the carbodiimide-reactive aspartyl residue N2 - No abstract available KW - Biochemie Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62769 ER - TY - JOUR A1 - Hoppe, J. A1 - Gatti, D. A1 - Weber, H. A1 - Sebald, Walter T1 - Labeling of individual amino acid residues in the membrane-embedded F\(_0\) part of the F\(_1\) F\(_0\) ATP synthase from Neurospora crassa. Influence of oligomycin and dicyclohexylcarbodiimide N2 - Three F0 subunits and the F\(_1\) subunit P of the ATP synthase from Neurospora crassa were labeled with the lipophilic photoactivatable reagent 3-(trifluoromethyl)-3-(m-[\(^{125}\)I]iodophenyl)diazirine ([\(^{125}\)I]TID). In the proteolipid subunit which was the most heavily labeled polypeptide labeling was confmed to five residues at the NH2-terminus and five residues at the C-terminus ofthe protein. Labeling occurred at similar positions compared with the homologaus protein (subunit c) in the ATP synthase from Escherichia coli, indicating a similar structure of the proteolipid subunits in their respective organisms. The inhibitors oligomycin and dicyclohexylcarbodiimide did not change the pattern of accessible surface residues in the proteolipid, suggesting that neither inhibitor induces gross conformational changes. However, in the presence of oligomycin, the extent oflabeling in some residues was reduced. Apparently, these residues provide part of the binding site for the inhibitor. After reaction with dicyclohexylcarbodiimide an additional labeled amino acid was found at position 65 corresponding to the invariant carbodümide-binding glutamic acid. These results and previous observations indicate that the carboxyl side chain of Glu-65 is located at the protein-lipid interphase. The idea is discussed that proton translocation occurs at the interphase between different types if F\(_0\) subunits. Dicyclohexylcarbodiimide or oligomycin might disturb this essential interaction between the F\(_0\) subunits. KW - Biochemie Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62598 ER - TY - JOUR A1 - Hoppe, J. A1 - Friedl, P. A1 - Schairer, H. U. A1 - Sebald, Walter A1 - Meyenburg, K. von A1 - Jorgensen, B. B. T1 - The topology of the proton translocating F\(_0\) component of the ATP synthase from E. coli K12: studies with proteases N2 - The accessibility of the three F\(_0\) subunits a, b and c from the Escherichia coli Kll A TP synthase to various proteases was studied in F\(_1\)-depleted inverted membrane vesicles. Subunit b was very sensitive to all applied proteases. Chymotrypsin produced a defined fragment of mol. wt. 1S 000 which remained tightly bound to the membrane. The cleavage site was located at the C-terminal region of subunit b. Larger amounts of proteases were necessary to attack subunit a (mol. wt. 30 000). There was no detectable deavage of subunit c. It is suggested that the major hydrophilic part of subunit b extends from the membrane into the cytoplasm and is in contact with the F\(_1\) sector. The F\(_1\) sector was found to afford some protection against proteolysis oftheb subunit in vitro andin vivo. Protease digestion bad no influence on the electro-impelled H\(^+\) conduction via F\(_0\) bot ATP-dependent H\(^+\) translocation could not be reconstituted upon binding of F\(_1\)• A possible role for subunit b as a linker between catalytic events on the F\(_1\) component and the proton pathway across the membrane is discussed. KW - Biochemie KW - protein pathway KW - ATPase mutants Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62718 ER - TY - JOUR A1 - Harnisch, U. A1 - Weiss, H. A1 - Sebald, Walter T1 - The primary structure of the iron-sulfur subunit of ubiquinol-cytochrome c reductase from Neurospora, determined by cDNA and gene sequencing N2 - No abstract available KW - Biochemie Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62631 ER - TY - JOUR A1 - Graf, T. A1 - Sebald, Walter T1 - The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from beef heart. Isolation and amino acid composition N2 - No abstract available KW - Biochemie Y1 - 1978 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62806 ER - TY - JOUR A1 - Gabellini, N. A1 - Sebald, Walter T1 - Nucleotide sequence and transcription of the fbc operon from Rhodopseudomonas sphaeroides. Evaluation of the deduced amino acid sequences of the FeS protein, cytochrome b and cytochrome c\(_1\) N2 - No abstract available KW - Biochemie Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62615 ER - TY - JOUR A1 - Gabellini, N. A1 - Harnisch, U. A1 - McCarthy, J. E. A1 - Hauska, G. A1 - Sebald, Walter T1 - Cloning and expression of the fbc operon encoding the FeS protein, cytochrome b and cytochrome c\(_1\) from the Rhodopseudomonas sphaeroides b/c\(_1\) complex N2 - The gene for the FeS protein of the Rhodopseudomonas sphaeroides b/c1 complex was identified by means of crosshybridization with a segment of the gene encoding the corresponding FeS protein of Neurospora crassa. Plasmids (pRSF1-14) containing the cross-hybridizing region, covering in total 13.5 kb of chromosomal DNA, were expressed in vitro in a homologous system. One RSF plasmid directed the synthesis of all three main polypeptides of the R. sphaeroides blc1 complex: the FeS protein, cytochrome b and cytochrome c1• The FeS protein and cytochrome c1 were apparently synthesized as precursor fonns. None of the pRSF plasmids directed the synthesis of the 10-kd polypeptide found in b/c1 complex preparations. Partial sequencing of the cloned region was performed. Several sites of strong homology between R. sphaeroides and eukaryotic polypeptides of the b/c1 complex were identified. The genes encode the three b/c1 polypeptides in the order: (5') FeS protein, cytochrome b, cytochrome c1• The three genes are transcribed to give a polycistronic mRNA of 2.9 kb. This transcriptional unit has been designated the jbc operon; its coding capacity corresponds to the size of the polycistronic mRNA assuming that only the genes for the FeS protein (jbcF), cytochrome b (jbcß) and cytochrome c1 (jbcC) are present. This could indicate that these three subunits constitute the minimal catalytic unit of the b/c1 complex from photosynthetic membranes. KW - Biochemie KW - R. sphaeroidesl KW - b/c1 complex KW - gene KW - cloning KW - in vitro expression KW - polycistronic mRNA Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62642 ER - TY - JOUR A1 - Flügge, U. I. A1 - Fischer, K. A1 - Gross, A. A1 - Sebald, Walter A1 - Lottspeich, F. A1 - Eckerskorn, C. T1 - The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts N2 - No abstract available KW - Biochemie Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62559 ER -