TY - JOUR A1 - Bodem, Jochen A1 - Rethwilm, Axel T1 - Evolution of Foamy Viruses: The Most Ancient of All Retroviruses JF - Viruses N2 - Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed. KW - foamy viruses KW - retroviruses KW - hepadnaviruses KW - evolution KW - genetic conservation KW - recombination Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97312 ER - TY - JOUR A1 - Lutz, Manfred B. A1 - Heuer, Marion A1 - Behlich, Anna-Sophie A1 - Lee, Ji-Sook A1 - Ribechini, Eliana A1 - Jo, Eun-Kyeong T1 - The 30-kDa and 38-kDa antigens from Mycobacterium tuberculosis induce partial maturation of human dendritic cells shifting CD4+ T cell responses towards IL-4 production JF - BMC Immunology N2 - Background Mycobacterium tuberculosis (Mtb) infections are still a major cause of death among all infectious diseases. Although 99% of individuals infected with Mtb develop a CD4+ Th1 and CD8+ T cell mediated immunity as measured by tuberculin skin test, this results only in partial protection and Mtb vaccines are not effective. Deviation of immune responses by pathogens towards a Th2 profile is a common mechanism of immune evasion, typically leading to the persistence of the microbes. Results Here we tested the stimulatory capacity of selective Mtb antigens on human monocyte-derived dendritic cell (DC) maturation and cytokine production. DC maturation markers CD80, CD86 and CD83 were readily upregulated by H37Ra- and H37Rv-associated antigens, the 30-kDa (from Ag85 B complex) and 38-KDa Mtb antigens only partially induced these markers. All Mtb antigens induced variable levels of IL-6 and low levels of IL-10, there was no release of IL-12p70 detectable. Substantial IL-12p40 production was restricted to LPS or H37Ra and H37Rv preparations. Although the proliferation levels of primary T cell responses were comparable using all the differentially stimulated DC, the 30-kDa and 38-kDa antigens showed a bias towards IL-4 secretion of polarized CD4+ T cells after secondary stimulation as compared to H37Ra and H37Rv preparations. Conclusion Together our data indicate that 30-kDa and 38-kDa Mtb antigens induced only partial DC maturation shifting immune responses towards a Th2 profile. KW - Dendritic cells KW - Mycobacterium tuberculosis KW - T helper cell responses Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96871 UR - http://www.biomedcentral.com/1471-2172/14/48 ER - TY - JOUR A1 - Schneider-Schaulies, Jürgen A1 - Bieringer, Maria A1 - Han, Jung Woo A1 - Kendl, Sabine A1 - Khosravi, Mojtaba A1 - Plattet, Philippe T1 - Experimental Adaptation of Wild-Type Canine Distemper Virus (CDV) to the Human Entry Receptor CD150 JF - PLoS ONE N2 - Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17red adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (102 pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (105 pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs. KW - antibodies KW - canine distemper virus KW - measles virus KW - microbial mutation KW - protein sequencing KW - recombinant proteins KW - ultraviolet radiation KW - vero cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96537 ER - TY - JOUR A1 - Bodem, Jochen A1 - Schrom, Eva-Maria A1 - Moschall, Rebecca A1 - Hartl, Maximilian J. A1 - Weitner, Helena A1 - Fecher, David A1 - Langemeier, Jörg A1 - Wöhrl, Brigitta M. T1 - U1snRNP-mediated suppression of polyadenylation in conjunction with the RNA structure controls poly (A) site selection in foamy viruses JF - Retrovirology N2 - Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation sites. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the 3′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the U1 small nuclear ribonucleoprotein (U1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the 3′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks U1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that U1snRNP is able to suppress the usage of intronic cryptic polyadenylation sites in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5’end of their RNA. At the 3’end, Foamy viruses use a secondary structure to presumably block access of U1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of U1snRNP to cellular polyadenylation site selection and to the regulation of gene expression. KW - Polyadenylation KW - foamy virus KW - RNA structure KW - Major splice donor KW - Polyadenylierung KW - RNS Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96085 UR - http://www.retrovirology.com/content/10/1/55 ER -