TY - JOUR A1 - El-Keredy, Amira A1 - Schleyer, Michael A1 - König, Christian A1 - Ekim, Aslihan A1 - Gerber, Bertram T1 - Behavioural Analyses of Quinine Processing in Choice, Feeding and Learning of Larval Drosophila JF - PLoS One N2 - Gustatory stimuli can support both immediate reflexive behaviour, such as choice and feeding, and can drive internal reinforcement in associative learning. For larval Drosophila, we here provide a first systematic behavioural analysis of these functions with respect to quinine as a study case of a substance which humans report as "tasting bitter". We describe the dose-effect functions for these different kinds of behaviour and find that a half-maximal effect of quinine to suppress feeding needs substantially higher quinine concentrations (2.0 mM) than is the case for internal reinforcement (0.6 mM). Interestingly, in previous studies (Niewalda et al. 2008, Schipanski et al 2008) we had found the reverse for sodium chloride and fructose/sucrose, such that dose-effect functions for those tastants were shifted towards lower concentrations for feeding as compared to reinforcement, arguing that the differences in dose-effect function between these behaviours do not reflect artefacts of the types of assay used. The current results regarding quinine thus provide a starting point to investigate how the gustatory system is organized on the cellular and/or molecular level to result in different behavioural tuning curves towards a bitter tastant. KW - honeybees KW - chemosensory system KW - bitter taste KW - melanogaster KW - receptor KW - reward KW - brain KW - organization KW - architecture KW - perception Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130811 VL - 7 IS - 7 ER - TY - JOUR A1 - Weiße, Sebastian A1 - Heddergott, Niko A1 - Heydt, Matthias A1 - Pflästerer, Daniel A1 - Maier, Timo A1 - Haraszti, Tamas A1 - Grunze, Michael A1 - Engstler, Markus A1 - Rosenhahn, Axel T1 - A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy JF - PLoS One N2 - We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming. KW - african trypanosomes KW - actin cortex KW - flagellum KW - tracking KW - surface KW - models Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130666 VL - 7 IS - 5 ER - TY - JOUR A1 - Buga, Ana-Maria A1 - Scholz, Claus Jürgen A1 - Kumar, Senthil A1 - Herndon, James G. A1 - Alexandru, Dragos A1 - Cojocaru, Gabriel Radu A1 - Dandekar, Thomas A1 - Popa-Wagner, Aurel T1 - Identification of New Therapeutic Targets by Genome-Wide Analysis of Gene Expression in the Ipsilateral Cortex of Aged Rats after Stroke JF - PLoS One N2 - Background: Because most human stroke victims are elderly, studies of experimental stroke in the aged rather than the young rat model may be optimal for identifying clinically relevant cellular responses, as well for pinpointing beneficial interventions. Methodology/Principal Findings: We employed the Affymetrix platform to analyze the whole-gene transcriptome following temporary ligation of the middle cerebral artery in aged and young rats. The correspondence, heat map, and dendrogram analyses independently suggest a differential, age-group-specific behaviour of major gene clusters after stroke. Overall, the pattern of gene expression strongly suggests that the response of the aged rat brain is qualitatively rather than quantitatively different from the young, i.e. the total number of regulated genes is comparable in the two age groups, but the aged rats had great difficulty in mounting a timely response to stroke. Our study indicates that four genes related to neuropathic syndrome, stress, anxiety disorders and depression (Acvr1c, Cort, Htr2b and Pnoc) may have impaired response to stroke in aged rats. New therapeutic options in aged rats may also include Calcrl, Cyp11b1, Prcp, Cebpa, Cfd, Gpnmb, Fcgr2b, Fcgr3a, Tnfrsf26, Adam 17 and Mmp14. An unexpected target is the enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 in aged rats, a key enzyme in the cholesterol synthesis pathway. Post-stroke axonal growth was compromised in both age groups. Conclusion/Significance: We suggest that a multi-stage, multimodal treatment in aged animals may be more likely to produce positive results. Such a therapeutic approach should be focused on tissue restoration but should also address other aspects of patient post-stroke therapy such as neuropathic syndrome, stress, anxiety disorders, depression, neurotransmission and blood pressure. KW - gamma KW - corticotropin-releasing hormone KW - colony-stimulating factor KW - cerebral ischemia KW - receptor KW - brain KW - protein KW - inhibitor KW - mouse KW - differentiation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130657 VL - 7 IS - 12 ER - TY - JOUR A1 - Aso, Yoshinori A1 - Herb, Andrea A1 - Ogueta, Maite A1 - Siwanowicz, Igor A1 - Templier, Thomas A1 - Friedrich, Anja B. A1 - Ito, Kei A1 - Scholz, Henrike A1 - Tanimoto, Hiromu T1 - Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability JF - PLoS Genetics N2 - Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory. KW - dynamics KW - serotonin KW - expression KW - melanogaster KW - neurons form KW - olfactory memory KW - long-term-memory KW - drosophila mushroom body KW - sensitization KW - localization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130631 VL - 8 IS - 7 ER - TY - JOUR A1 - Huser, Annina A1 - Rohwedder, Astrid A1 - Apostolopoulou, Anthi A. A1 - Widmann, Annekathrin A1 - Pfitzenmaier, Johanna E. A1 - Maiolo, Elena M. A1 - Selcho, Mareike A1 - Pauls, Dennis A1 - von Essen, Alina A1 - Gupta, Tript A1 - Sprecher, Simon G. A1 - Birman, Serge A1 - Riemensperger, Thomas A1 - Stocker, Reinhard F. A1 - Thum, Andreas S. T1 - The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function JF - PLoS One N2 - The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naive odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed. KW - term memory KW - light avoidance KW - decision making KW - olfactory memory KW - immunoreactive neurons KW - containing neurons KW - moth manduca sexta KW - head involution KW - mushroom bodies KW - biogenic amines Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130437 VL - 7 IS - 10 ER - TY - JOUR A1 - Jahn, Daniel A1 - Schramm, Sabine A1 - Schnölzer, Martina A1 - Heilmann, Clemens J. A1 - de Koster, Chris G. A1 - Schütz, Wolfgang A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - A truncated lamin A in the Lmna\(^{−/−}\) mouse line: Implications for the understanding of laminopathies JF - Nucleus N2 - During recent years a number of severe clinical syndromes, collectively termed laminopathies, turned out to be caused by various, distinct mutations in the human LMNA gene. Arising from this, remarkable progress has been made to unravel the molecular pathophysiology underlying these disorders. A great benefit in this context was the generation of an A-type lamin deficient mouse line (Lmna\(^{−/−}\)) by Sullivan and others,1 which has become one of the most frequently used models in the field and provided profound insights to many different aspects of A-type lamin function. Here, we report the unexpected finding that these mice express a truncated Lmna gene product on both transcriptional and protein level. Combining different approaches including mass spectrometry, we precisely define this product as a C-terminally truncated lamin A mutant that lacks domains important for protein interactions and post-translational processing. Based on our findings we discuss implications for the interpretation of previous studies using Lmna\(^{−/−}\) mice and the concept of human laminopathies. KW - nuclear organization KW - A-type lamins KW - LMNA mutations KW - laminopathies KW - nuclear envelope KW - nuclear lamina Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127281 VL - 3 IS - 5 ER - TY - JOUR A1 - Stejskal, Kerstin A1 - Streinzer, Martin A1 - Dyer, Adrian A1 - Paulus, Hannes F. A1 - Spaethe, Johannes T1 - Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects JF - PLoS One N2 - Mimicking female insects to attract male pollinators is an important strategy in sexually deceptive orchids of the genus Ophrys, and some species possess flowers with conspicuous labellum patterns. The function of the variation of the patterns remains unresolved, with suggestions that these enhance pollinator communication. We investigated the possible function of the labellum pattern in Ophrys heldreichii, an orchid species in which the conspicuous and complex labellum pattern contrasts with a dark background. The orchid is pollinated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants. Field observations showed that the males approach at a great speed and directly land on flowers, but after an unsuccessful copulation attempt, bees hover close and visually scan the labellum pattern for up to a minute. Learning experiments conducted with honeybees as an accessible model of bee vision demonstrated that labellum patterns of different plants can be reliably learnt; in contrast, patterns of flowers from the same inflorescence could not be discriminated. These results support the hypothesis that variable labellum patterns in O. heldreichii are involved in flower-pollinator communication which would likely help these plants to avoid geitonogamy. KW - nectar KW - color discrimination KW - bees KW - vision KW - evolution KW - pollination KW - guides KW - honeybee KW - apis mellifera KW - insects KW - signals KW - recognize images Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137582 VL - 10 IS - 11 ER - TY - JOUR A1 - Basset, Yves A1 - Cizek, Lukas A1 - Cuénoud, Philippe A1 - Didham, Raphael K. A1 - Novotny, Vojtech A1 - Ødegaard, Frode A1 - Roslin, Tomas A1 - Tishechkin, Alexey K. A1 - Schmidl, Jürgen A1 - Winchester, Neville N. A1 - Roubik, David W. A1 - Aberlenc, Henri-Pierre A1 - Bail, Johannes A1 - Barrios, Hector A1 - Bridle, Jonathan R. A1 - Castaño-Meneses, Gabriela A1 - Corbara, Bruno A1 - Curletti, Gianfranco A1 - da Rocha, Wesley Duarte A1 - De Bakker, Domir A1 - Delabie, Jacques H. C. A1 - Dejean, Alain A1 - Fagan, Laura L. A1 - Floren, Andreas A1 - Kitching, Roger L. A1 - Medianero, Enrique A1 - de Oliveira, Evandro Gama A1 - Orivel, Jerome A1 - Pollet, Marc A1 - Rapp, Mathieu A1 - Ribeiro, Servio P. A1 - Roisin, Yves A1 - Schmidt, Jesper B. A1 - Sørensen, Line A1 - Lewinsohn, Thomas M. A1 - Leponce, Maurice T1 - Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle JF - PLoS ONE N2 - Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. KW - trees KW - species richness KW - beta-diveristy KW - strategy KW - turnover KW - similarity KW - biodiversity KW - specialization KW - herbivorous insects KW - assemblages Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136393 VL - 10 IS - 12 ER - TY - JOUR A1 - Biju, Joseph A1 - Schwarz, Roland A1 - Linke, Burkhard A1 - Blom, Jochen A1 - Becker, Anke A1 - Claus, Heike A1 - Goesmann, Alexander A1 - Frosch, Matthias A1 - Müller, Tobias A1 - Vogel, Ulrich A1 - Schoen, Christoph T1 - Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome JF - PLoS One N2 - Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence. KW - population genetics KW - DNA recombination KW - meningococcal disease KW - recombinant proteins KW - genomic databases KW - comparative genomics KW - neisseria meningitidis KW - homologous recombination Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137960 VL - 6 IS - 4 ER - TY - JOUR A1 - Partho, Halder A1 - Chen, Yi-chun A1 - Brauckhoff, Janine A1 - Hofbauer, Alois A1 - Dabauvalle, Marie-Christine A1 - Lewandrowski, Urs A1 - Winkler, Christiane A1 - Sickmann, Albert A1 - Buchner, Erich T1 - Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain JF - PLoS One N2 - The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies. KW - neuropil KW - immunohistochemistry techniques KW - gel electrophoresis KW - immunoprecipitation KW - silver staining KW - drosophila melanogaster KW - antigen processing and recognition KW - hybridomas Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137957 VL - 6 IS - 12 ER -