TY - THES A1 - Dehmer, Markus T1 - A novel USP11-TCEAL1-mediated mechanism protects transcriptional elongation by RNA Polymerase II T1 - Ein neuer USP11-TCEAL1 vermittelter Mechanismus schützt die transkriptionelle Elongation der RNA Polymerase II N2 - Deregulated expression of MYC oncoproteins is a driving event in many human cancers. Therefore, understanding and targeting MYC protein-driven mechanisms in tumor biology remain a major challenge. Oncogenic transcription in MYCN-amplified neuroblastoma leads to the formation of the MYCN-BRCA1-USP11 complex that terminates transcription by evicting stalling RNAPII from chromatin. This reduces cellular stress and allows reinitiation of new rounds of transcription. Basically, tumors with amplified MYC genes have a high demand on well orchestration of transcriptional processes-dependent and independent from MYC proteins functions in gene regulation. To date, the cooperation between promoter-proximal termination and transcriptional elongation in cancer cells remains still incomplete in its understanding. In this study the putative role of the dubiquitinase Ubiquitin Specific Protease 11 (USP11) in transcription regulation was further investigated. First, several USP11 interaction partners involved in transcriptional regulation in neuroblastoma cancer cells were identified. In particular, the transcription elongation factor A like 1 (TCEAL1) protein, which assists USP11 to engage protein-protein interactions in a MYCN-dependent manner, was characterized. The data clearly show that TCEAL1 acts as a pro-transcriptional factor for RNA polymerase II (RNAPII)-medi- ated transcription. In detail, TCEAL1 controls the transcription factor S-II (TFIIS), a factor that assists RNAPII to escape from paused sites. The findings claim that TCEAL1 outcompetes the transcription elongation factor TFIIS in a non-catalytic manner on chromatin of highly expressed genes. This is reasoned by the need regulating TFIIS function in transcription. TCEAL1 equili- brates excessive backtracking and premature termination of transcription caused by TFIIS. Collectively, the work shed light on the stoichiometric control of TFIIS demand in transcriptional regulation via the USP11-TCEAL1-USP7 complex. This complex protects RNAPII from TFIIS-mediated termination helping to regulate productive transcription of highly active genes in neuroblastoma. N2 - Die deregulierte Expression von MYC Onkoproteinen ist ein zentrales Event in vielen huma-nen Krebsarten. Aus diesem Grund sind das Verständnis und die gezielte Bekämpfung MYC-getriebener Mechanismen in der Tumorbiologie nach wie vor eine große Herausforderung. In MYCN-amplifizierten Neuroblastomen führt eine übermäßig hohe Transkriptionsrate zur stress-bedingten Rekrutierung des MYCN-BRCA1-USP11-Komplexes. Dieser Komplex be-endet vorzeitig die Transkription, indem er RNAPII Moleküle vom Chromatin wirft. Durch diesen Mechanismus wird zellulärer Stress reduziert und ermöglicht dadurch einen erneuten Start der Transkription. Grundsätzlich stellen Tumoren mit einer Amplifikation von einem der MYC Proteine hohe Anforderungen an eine feine Abstimmung der einzelnen Schritte in der Transkription. Dies ist sowohl abhängig als auch unabhängig von den bereits beschriebe-nen Funktionen der MYC-Proteine in der Genregulation. Bis heute ist das Zusammenspiel zwischen promoter-proximaler Termination und transkriptioneller Elongation noch nicht vollständig aufgeklärt. In dieser Studie wurde eine potenzielle Rolle von USP11 in der Regulation der Transkription weitergehend untersucht. Zunächst wurden mehrere Interaktionspartner von USP11, die an der Regulation der Transkription in Neuroblastom Krebszellen beteiligt sind, identifiziert. Es wurde insbesondere das Transcription Elongation Factor A Like 1 (TCEAL1) Protein charak-terisiert. Dieses Protein unterstützt USP11 dabei, Protein-Protein-Interaktionen MYCN-vermittelt einzugehen. Die Daten zeigen, dass TCEAL1 als pro-transkriptioneller Faktor für die RNA-Polymerase II (RNAPII) -vermittelte Transkription fungiert. Genauer, TCEAL1 kontrolliert den Transkriptionsfaktor S-II (TFIIS), einen Faktor, der der RNAPII dabei hilft, die Transkription nach einem kurzen Pausieren („pausing“) fortzusetzen. Die Ergebnisse zei-gen, dass TCEAL1 den Elongationsfaktor TFIIS auf nicht-katalytische Weise von dem Chromatin von hochexprimierten Genen verdrängt. Dies ist darin begründet, dass die Funkti-on von TFIIS bei der Transkription reguliert werden muss. TCEAL1 gleicht übermäßiges Zurückwandern der RNAPII und die vorzeitige Beendigung der Transkription, das durch TFIIS vermittelt wird, aus. Diese Arbeit gibt Aufschluss über die stöchiometrische Kontrolle des TFIIS-Bedarfs bei der Transkriptionsregulation durch den USP11-TCEAL1-USP7-Komplex. Dieser Komplex schützt die RNAPII vor der TFIIS-vermittelter Termination der Transkription und trägt zur Regulierung einer produktiven Transkription hochaktiver Gene im Neuroblastom bei. KW - Transkription KW - N-Myc KW - Transcription Regulation KW - Pause Release KW - Ubiquitin Specific Protease 11 KW - transcription elongation factor A (SII)-like 1 (TCEAL1) KW - RNA Polymerase II (RNAPII) KW - Transcriptional Stress Response Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-360544 ER - TY - THES A1 - Haack, Stephanie T1 - A novel mouse model for systemic cytokine release upon treatment with a superagonistic anti-CD28 antibody T1 - Ein neues Mausmodell zur Untersuchung der Zytokinfreisetzung nach Behandlung mit einem superagonistischen anti-CD28 Antikörper N2 - The adaptive immune system is known to provide highly specific and effective immunity against a broad variety of pathogens due to different effector cells. The most prominent are CD4+ T-cells which differentiate after activation into distinct subsets of effector and memory cells, amongst others T helper 1 (Th1) cells. We have recently shown that mouse as well as human Th1 cells depend on T cell receptor (TCR) signals concomitant with CD28 costimulation in order to secrete interferon  (IFN) which is considered as their main effector function. Moreover, there is a class of anti-CD28 monoclonal antibodies that is able to induce T cell (re-)activation without concomitant TCR ligation. These so-called CD28-superagonists (CD28-SA) have been shown to preferentially activate and expand CD4+ Foxp3+ regulatory T (Treg) cells and thereby efficaciously conferring protection e.g. against autoimmune responses in rodents and non-human primates. Considering this beneficial effect, CD28-SA were thought to be of great impact for immunotherapeutic approaches and a humanized CD28-SA was subjected to clinical testing starting with a first-in-man trial in London in 2006. Unexpectedly, the volunteers experienced life-threatening side effects due to a cytokine release syndrome (CRS) that was unpredicted by the preclinical studies prior to the trial. Retrospectively, CD4+ memory T cells within the tissues were identified as source of pro-inflammatory cytokines released upon CD28-SA administration. This was not predicted by the preclinical testing indicating a need for more reliable and predictive animal models. Whether mouse CD4+ T cells are generally irresponsive to CD28-SA stimulation or rather the lack of a bona fide memory T cell compartment in cleanly housed specific-pathogen-free (SPF) mice is the reason why the rodent models failed to predict the risk for a CRS remained unclear. To provide SPF mice with a true pool of memory/effector T cells, we transferred in vitro differentiated TCR-transgenic OT-II Th1 cells into untreated recipient mice. Given that Treg cells suppress T cell activation after CD28- SA injection in vivo, recipients were either Treg-competent or Treg-deficient, wild type or DEREG mice, respectively. Subsequent CD28-SA administration resulted in induction of systemic pro-inflammatory cytokine release, dominated by IFN, that was observed to be much more pronounced and robust in Treg-deficient recipients. Employing a newly established in vitro system mirroring the in vivo responses to CD28-SA stimulation of Th1 cells revealed that antigen-presenting cells (APCs) amplify CD28-SAinduced IFN release by Th1 cells due to CD40/CD40L-interactions. Thus, these data are the first to show that mouse Th1 cells are indeed sensitive to CD28-SA stimulation in vivo and in vitro responding with strong IFN release accompanied by secretion of further pro-inflammatory cytokines, which is compatible with a CRS. In conclusion, this study will facilitate preclinical testing of immunomodulatory agents providing a mouse model constituting more “human-like” conditions allowing a higher degree of reliability and translationability. N2 - Das adaptive Immunsystem ermöglicht mittels hocheffektiver, antigen-spezifischer Mechanismen und unterschiedlicher Effektorzellen den Schutz vor einer nahezu unbegrenzten Vielfalt von Pathogenen. Die Hauptakteure stellen hierbei CD4+ T-Zellen dar, welche nach Aktivierung distinkte Effektorpopulationen, unter anderem Th1 Zellen, bilden. Wir zeigten kürzlich, dass sowohl für Maus- als auch humane Th1-Zellen CD28-Kostimulation mit zeitgleicher T-Zellrezeptor (TZR)-Aktivierung essentiell für die Sekretion von Interferon  (IFN), deren Haupteffektorfunktion, ist. Allerdings sind monoklonale anti-CD28 Anti-körper bekannt, die auch ohne TZR-Signal T-Zellen aktivieren können. Diese sogenannten CD28 Supera-gonisten (CD28-SA) aktivieren und expandieren vorrangig CD4+ Foxp3+ regulatorische T-Zellen (Treg) und vermitteln wirksamen Schutz vor z.B. Autoimmunreaktionen in Nagern und Primaten. Um diesen erfolgversprechenden Effekt für immuntherapeutische Ansätze nutzen zu können, wurde 2006 in Lon-don eine erste klinische Erprobung eines humanisierten CD28-SA begonnen. Unerwarteterweise zeigten sich bei den Probanden lebensbedrohliche Nebenwirkungen, die Ausdruck eines Zytokin-Ausschüttungs-Syndroms (Cytokine Release Syndrome, CRS) waren, welches durch die vorangegangenen präklinischen Studien nicht vorhersagbar war. Rückblickend konnte die Sekretion pro-inflammatorischer Zytokine auf CD4+ Gedächtnis-T-Zellen im Gewebe zurückgeführt werden, die so auf die Gabe des CD28-SA reagier-ten. Die unvorhersehbare Reaktion im Menschen zeigt deutlich, dass verlässlichere und prädiktivere Tiermodelle unverzichtbar sind. Ob Maus CD4+-T-Zellen möglicherweise nicht durch CD28-SA stimulier-bar sind oder dieser fehlgeleiteten Einschätzung über das mögliche Risiko eines CRS eher das Fehlen eines echten CD4+ Gedächtnis-T-Zellen-Kompartiments in sauber gehaltenen spezifischen-Pathogen-freien (SPF) Mäusen zugrunde liegt, ist bisher ungeklärt. Um in SPF-Mäusen ein Gedächtnis-T-Zell-Kompartiment zu etablieren, wurden in vitro-differenzierte Th1 Zellen, die TZR-transgenen OT-II-Mäusen entstammen, in unbehandelte Empfängermäuse transferiert. Da bekannt ist, dass Treg-Zellen die Aktivierung von T-Zellen nach Anwendung von CD28-SA in vivo supprimieren, wurden Treg-kompetente (wildtypische) oder -defiziente (DEREG) Empfänger verwendet. Die anschließend erfolgte Injektion von CD28-SA löste die systemische Sekretion pro-inflammatorischer Zytokine aus, wobei eine stark erhöhter IFN-Konzentration im Serum zu beobachten war, welche deutlich ausgeprägter und robuster bei den Treg-defizienten Empfängern ausfiel. Ein neu etabliertes in vitro-System, welches die in vivo Antwort der Th1-Zellen auf CD28-SA-Stimulation widerspiegelt, identifizierte Antigen-präsentierende Zellen (APZs) als essentiellen Faktor für die erhöhte IFN-Sekretion der Th1-Zellen nach CD28-SA-Stimulation in Abhängigkeit von CD40/CD40L-Interaktionen. Zusammenfassend zeigt diese Thesis zum ersten Mal, dass Maus Th1 Zellen sowohl in vivo als auch in vitro durch CD28 SA stimulierbar sind, wodurch eine starke IFN-Sekretion induziert wird, die von der gesteigerten Ausschüttung anderer pro-inflammatorischer Zytokine begleitet wird und in Abwesenheit von Treg einem CRS gleicht. Folglich kann diese Erkenntnis die präklinische Forschung bei der Erprobung neuer immuntherapeutischer Ansät-ze durch ein neues Mausmodell voranbringen, das dem menschlichen erfahreneren Immunsystem mehr als bisherige Modelle entspricht und somit verlässlichere Vorhersagen erlaubt und eine verbesserte Übertragbarkeit von Maus zu Mensch ermöglicht. KW - CD28 KW - CD28-SA KW - cytokine release syndrome Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237757 ER - TY - THES A1 - Schwedhelm, Ivo Peter T1 - A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors T1 - Entwicklung und Etablierung einer Mikroskopieplattform zur zerstörungsfreien Messung der Aggregierung von hiPSCs in kleinmaßstäbigen Bioreaktor-Suspensionskulturen N2 - The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry. N2 - Die Vermehrung von humanen induzierten pluripotenten Stammzellen (hiPSCs) im Indus- triemaßstab wird durch skalierbare Bioprozesse in aktiv durchmischten Rührkessel-Bioreaktoren (CSTRs) ermöglicht. Hierbei zeichnet sich das Wachstum von hiPSCs durch die charakteristische Bildung von sphäroidischen Zellaggregaten aus, deren Durchmesser sich im Laufe der Kultivierung vergrößert. Die Agglomeration von hiPSCs ist sowohl abhängig vom Grad der Durchmischung als auch vom jeweiligen Kulturgefäß, und stellt somit einen wichtigen Prozessparameter dar, welcher während der Prozessskalierung berücksichtigt werden muss. Weiterhin weisen hiPSCs in Aggregaten, welche eine kritische Größe überschreiten, eine erhöhte Wahrscheinlichkeit auf, ihre Pluripotenz zu verlieren oder hinsichtlich ihrer Viabilität beeinträchtigt zu werden. Auf Grundlage dessen wurde im Rahmen dieser Arbeit eine Plattform für die Durchführung von hiPSCs-Suspensionskulturen en- twickelt, welche die zerstörungsfreie Überwachung des hiPSC-Aggregatwachstums in Echtzeit durch den Einsatz von in situ-Mikroskopie ermöglicht. Neben den eigens entworfenen Bioreaktoren, welche zum Großteil aus 3D-gedruckten Komponenten bestehen, wurde eine Peripherie in Form eines Inkubator-Prototyps entwickelt und konstruiert, welcher die Unterbringung der Bioreaktoren, der Systemkomponenten zur Erzeugung von Zellkulturbedingungen sowie einer in situ-Mikroskop- Spezialanfertigung gewährleistet. Als Ausgangspunkt der Entwicklung des CSTR Systems diente ein Strömungssimulationsmodell, welches dazu verwendet wurde, prozesstechnische Kennzahlen zu er- mitteln um das CSTR System hinsichtlich des spezifischen Leistungseintrags, der Mischzeit und der Scherbelastung zu charakterisieren. Das erstellte Simulationsmodell wurde zudem erfolgreich an- hand eines Messdatenabgleichs der Mischzeit hinsichtlich seiner Aussagekraft validiert. Des Weit- eren wurde die Funktionsfähigkeit des gesamten Systems durch Langzeitversuche belegt. Hierbei wurden hiPSCs in den entwickelten Bioreaktoren über einen Zeitraum von vier Passagen expandiert und das Aggregatwachstum mittels in situ-Mikroskopie in Kombination mit einer automatisierten Bildauswertung beschrieben. Überdies hinaus wurde die Qualität der kultivierten hiPSCs hinsichtlich ihrer Differenzierungskapazität durch den Nachweis von Pluripotenzmarkern auf RNA (qRT-PCR und PluriTest) sowie Proteinebene (Durchflusszytometrie) untersucht. KW - Induzierte pluripotente Stammzelle KW - Mikroskopie KW - Suspensionskultur KW - Aggregation KW - in situ microscopy KW - bioreactor KW - hiPSC aggregation KW - Bioreaktor KW - iPSC Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192989 ER - TY - THES A1 - Godbole, Amod Anand T1 - A new paradigm in GPCR signaling at the trans-Golgi network of thyroid cells T1 - Ein neues Model der GPCR Signaltransduktion am trans-Golgi-Netzwerk von Schilddrüsenzellen N2 - Whereas G-protein coupled receptors (GPCRs) have been long believed to signal through cyclic AMP exclusively at cell surface, our group has previously shown that GPCRs not only signal at the cell surface but can also continue doing so once internalized together with their ligands, leading to persistent cAMP production. This phenomenon, which we originally described for the thyroid stimulating hormone receptor (TSHR) in thyroid cells, has been observed also for other GPCRs. However, the intracellular compartment(s) responsible for such persistent signaling and its consequences on downstream effectors were insufficiently characterized. The aim of this study was to follow by live-cell imaging the trafficking of internalized TSHRs and other involved signaling proteins as well as to understand the consequences of signaling by internalized TSHRs on the downstream activation of protein kinase A (PKA). cAMP and PKA activity was measured in real-time in living thyroid cells using FRET-based sensors Epac1-camp and AKAR2 respectively. The results suggest that TSH co-internalizes with its receptor and that the internalized TSH/TSHR complexes traffic retrogradely to the trans-Golgi network (TGN). This study also provides evidence that these internalized TSH/TSHR complexes meet an intracellular pool of Gs proteins in sorting endosomes and in TGN and activate it there, as visualized in real-time using a conformational biosensor nanobody, Nb37. Acute Brefeldin A-induced Golgi collapse hinders the retrograde trafficking of TSH/TSHR complexes, leading to reduced cAMP production and PKA signaling. BFA pretreatment was also able to attenuate CREB phosphorylation suggesting that an intact Golgi/TGN organisation is essential for an efficient cAMP/PKA signaling by internalized TSH/TSHR complexes. Taken together this data provides evidence that internalized TSH/TSHR complexes meet and activate Gs proteins in sorting endosomes and at the TGN, leading to a local activation of PKA and consequently increased CREB activation. These findings suggest unexpected functions for receptor internalization, with major pathophysiological and pharmacological implications. N2 - G-Protein-gekoppelte Rezeptoren sind nur in Eukaryonten vorhandeln und bilden die größte und diverseste Familie von Zellmembranrezeptoren. Sie reagieren auf eine vielfältige Gruppe von Stimuli die verschiedene Effektoren aktivieren und damit nachgelagerte Signalkaskaden auslösen, die letztlich entscheidend für die Zellphysiologie sind. Die Regelung der Ligand-vermittelten Signaltransduktion wird hauptsächlich durch die Desensibilisierung des GPCR mittels Dephosphorylierung (katalysiert durch GRK) und zusätzlich durch Internalisierung des GPCR gesteuert. Die Annahme, dass GPCRs für cAMP nur an der Zellmembran signalisieren und nicht mehr sobald sie in die Zelle internalisiert wurden, konnte durch wegweisende unabhängige Forschung an GPCRs im Besonderen an TSHR und PTHR geändert werden. So konnte gezeigt werden, dass sie für cAMP nicht nur an der Zellmembran signalisieren, sondern auch, wenn sie in intrazelluläre Zellkompartimente internalisiert wurde. Dieses Phänomen („sustained signaling“ hier „anhaltende Signalisierung“) wurde seitdem für andere GPCRs (z.B. 2-AR, V2R und LHR) beschrieben. Aber die Zellkompartimente wurden für nachhaltige intrazelluläre Signale nicht ausreichend charakterisiert. Das Ziel dieser Arbeit war es die Bewegung und die dynamische Natur der möglichen signalisierenden Kompartimente mittels „real-time TIRF“-Mikroskopie und die Signalisierung unter Verwendung von „real-time FRET“ in primären Maus Schilddrüsenzellen zu untersuchen. Die vorliegende Arbeit berichtet, dass TSH/TSHR Komplexe internalisieren und ein signifikanter Teil, welcher vom Retromer Komplex angeführt wird, gelangt über den retrograden (rückwärts gerichteten) Transport in das trans-Golgi-Netzwerk (TGN). Diese TSH/TSHR-Komplexe treffen nicht in den frühen Endosomen auf die Gs-Proteine, sondern in den „Sortierer Endosomen“ und in dem TGN. Ein direkter Beweis für Gs Protein Aktivierung und Signaltransduktion am TGN und in Sortierer Endosomen konnte mittels des nanobody Nb37, einem spezifischen Biosensor für das aktive Gs Protein, erbracht werden. Es konnte gezeigt werden, dass die Sequestrierung von Nb37 an diesen Kompartimenten ein szintillierendes Verhalten in Zeit und Raum zeigt. Die vorliegende Arbeit zeigt, dass die katalytische Untereinheit der PKA am Golgi/TGN angereichert ist. Die Behandlung mit Brefeldin A führt zum Verlust dieser PKA Lokalisation am Golgi. Die Beschädigung und Reorganisation des TGN durch Brefeldin A führt zu a) einer abgeschwächten cAMP Reaktion b) einer dreiphasigen PKA Reaktion charakterisiert durch eine schnelle erste Phase, eine langsame (deutlich abgeschwächte) zweite Phase und eine verzögerte dritte Phase und schließlich c) einer abgeschwächte CREB Phosphorylierung. Es gibt Anzeichen dafür, dass die Reorganisation des TGN Kompartimente betrifft, die verantwortlich für intrazelluläre cAMP- und PKA-Signalisierung sind. Zusammenfassend lässt sich sagen, dass das TGN eines der Kompartimente ist, das für die anhaltende TSHR-Signalisierung verantwortlich ist. KW - G-Protein gekoppelte Rezeptoren KW - GPCR KW - thyroid stimulating hormone receptor KW - trans-Golgi network KW - Signaltransduktion KW - Golgi-Apparat KW - Schilddrüse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147159 ER - TY - THES A1 - Sasi, Manju T1 - A mouse model for genetic deletion of presynaptic BDNF from adult hippocampal mossy fiber terminals T1 - Mausmodell für genetische Deletion von präsynaptischem BDNF aus adulten hippokampalen Moosfaserterminalen N2 - Brain-derived neurotrophic factor (BDNF) is a modulator and mediator of structural and functional plasticity at synapses in the central nervous system. Despite our profound knowledge about the synaptic function of BDNF at synapses, it is still controversially discussed whether synaptic BDNF acts primarily from pre- or postsynaptic sites. In the central nervous system, several studies show that mossy fiber (MF) projections formed by hippocampal granule neurons store the highest amount of BDNF. However, immunofluorescence and RNA labelling studies suggest that MF BDNF is primarily produced by granule neurons. Multiple other studies prefer the view that BDNF is primarily produced by postsynaptic neurons such as CA3 pyramidal neurons. Here, we question whether the BDNF, which is stored in the mossy fiber synapse, is primarily produced by granule neurons or whether by other cells in the MF-CA3 microcircuit. After standardization of immunolabelling of BDNF, confocal imaging confirmed the localization of BDNF in presynaptic MF terminals. This anterograde location of synaptic BDNF was also found in distinct regions of the fear and anxiety circuit, namely in the oval nucleus of the bed nucleus stria terminals (ovBNST) and in the central amygdala. To find out whether the presynaptic BDNF location is due to protein translation in the corresponding presynaptic dentate gyrus (DG) granule neuron, we developed and characterized a mouse model that exhibits BDNF deletion specifically from adult DG granule neurons. In this mouse model, loss of presynaptic BDNF immunoreactivity correlated with the specific Creactivity in granule neurons, thus confirming that MF BDNF is principally released by granule neurons. After BDNF deletion from granule neurons, we observed more immature neurons with widely arborized dendritic trees. This indicated that local BDNF deletion also affects the local adult neurogenesis, albeit Cre-mediated BDNF deletion only occur in adult granule neurons. Since BDNF is a master regulator of structural synaptic plasticity, it was questioned whether it is possible to visualize presynaptic, synapse-specific, structural plasticity in mossy fiber synapses. It was established that a combination of Cre-techniques together with targeting of GFP to membranes with the help of palmitoylation / myristoylation anchors was able to distinctly outline the synaptic structure of the BDNF-containing MF synapse. In summary, the mouse model characterized in here is suited to investigate the synaptic signalling function of presynaptic BDNF at the mossy fiber terminal, a model synapse to investigate microcircuit information processing from molecule to behaviour. N2 - Der neurotrophe Wachstumsfaktor BDNF (brain-derived neurotrophic factor) ist ein Regulator und Vermittler von struktureller und funktionaler Plastizität in Synapsen des zentralen Nervensystems. Trotz des umfassenden Wissens über die synaptische Funktion von BDNF an Synapsen wird immer noch kontrovers diskutiert, ob synaptisches BDNF vorrangig von der prä- oder von der postsynaptischen Seite her agiert. Zahlreiche Studien zeigen, dass die größten BDNF Mengen des Zentralnervensystems in den Projektionen der hippocampalen Körnerzellen, den sogenannten Moosfasern (MF), enthalten sind. Während manche Studien basierend auf der Markierung von RNA und Immunofloureszenz nahelegen, dass MF BDNF in erster Linie von Körnerzellen produziert wird, bevorzugen zahlreiche andere Studien wiederum die Sicht, dass BDNF primär von postsynaptischen Neuronen wie beispielsweise den CA3 Pyramidenneuronen gebildet wird. In dieser Arbeit wurde die Fragestellung untersucht, ob das BDNF, welches in den Moosfasersynapsen enthalten ist, in erster Linie von Körnerzellen hergestellt wird, oder ob es hauptsächlich von anderen Zellen aus dem MF-CA3 Mikronetzwerk gebildet wird. Nachdem eine Standardisierung der Immunfluoreszenzmarkierung von BDNF etabliert wurde, konnte anhand von konfokaler Bildgebung die Lokalisierung von BDNF in den präsynaptischen MF Terminalen bestätiget werden. Diese anterograde Lokalisierung synaptischen BDNFs konnte außerdem in zwei weiteren Regionen des Furcht- und Angstnetzwerkes, genauer gesagt im ovalen Kern des bed nucleus stria terminalis (ovBNST) und in der zentralen Amygdala, nachgewiesen werden. Um Herauszufinden, ob die präsynaptische Lokalisation von BDNF von der Proteintranslation in den zugehörigen präsynaptischen Körnerzellen des Gyrus Dentatus abhängig ist, entwickelten und charakterisierten wir ein Mausmodel , welches die spezifische Deletion von BDNF aus den ausgereiften Körnerzellen des Gyrus Dentatus ermöglicht. In diesem Mausmodell korrelierte der Verlust präsynaptischer BDNF Immunreaktivität mit der spezifischen Cre-Aktivität in Körnerzellen, was bestätigt, dass MF BDNF hauptsächlich von den Körnerzellen ausgeschüttet wird. Nach BDNF Deletion aus den Körnerzellen konnten mehr unreife Neurone mit sich weit verzweigenden, dendritischen Strukturen beobachtet werden. Dies weist darauf hin, dass die lokale Deletion von BDNF auch die lokale adulte Neurogenese beeinflusst, obwohl die Crevermittelte BDNF Deletion nur in adulten Körnerzellen stattfindet. Da BDNF ein Hauptregulator von struktureller synaptischer Plastizität ist, kam die Frage auf, ob es möglich ist, diese präsynaptische, synapsenspezifische strukturelle Plastizität in Moosfasersynapsen zu visualisieren. Es wurde festgestellt, dass eine Kombination aus der Cre- Technik zusammen mit der gezielten Verankerung von GFP in der Zellmembran durch Palmitoylierungs-/Myristoylierungsmotive in der Lage ist, die synaptische Struktur von BDNF enthaltenden MF Synapsen darzustellen. Zusammenfassend konnte gezeigt werden, dass das hier entwickelte und charakterisierte Mausmodell dafür geeignet ist, die synaptische Signalfunktion präsynaptischen BDNFs in der Moosfaserterminale, einer Modellsynapse für die Erforschung der Informationsverarbeitung in Mikronetzwerken vom Molekül bis hin zum Verhalten, zu untersuchen. KW - Wachstumsfaktor KW - Brain derived neurotorphic factor KW - Hippokampus KW - Moosfaserterminalen KW - hippocampus KW - mossy fiber terminal Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186250 ER - TY - JOUR A1 - Bäuerlein, Carina A. A1 - Riedel, Simone S. A1 - Baker, Jeanette A1 - Brede, Christian A1 - Jordán Garrote, Ana-Laura A1 - Chopra, Martin A1 - Ritz, Miriam A1 - Beilhack, Georg F. A1 - Schulz, Stephan A1 - Zeiser, Robert A1 - Schlegel, Paul G. A1 - Einsele, Hermann A1 - Negrin, Robert S. A1 - Beilhack, Andreas T1 - A diagnostic window for the treatment of acute graft-versus-host disease prior to visible clinical symptoms in a murine model JF - BMC Medicine N2 - Background Acute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention. Methods Murine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles. Results We identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4β7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD. Conclusions Based on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention. KW - Allogeneic stem cell transplantation KW - Graft-versus-host disease KW - Minor histocompatibility antigen mismatch transplantation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96797 UR - http://www.biomedcentral.com/1741-7015/11/134 ER - TY - THES A1 - Beer, Katharina T1 - A Comparison of the circadian clock of highly social bees (\(Apis\) \(mellifera\)) and solitary bees (\(Osmia\) \(spec.\)): Circadian clock development, behavioral rhythms and neuroanatomical characterization of two central clock components (PER and PDF) T1 - Ein Vergleich der Inneren Uhr von sozialen Bienen (\(Apis\) \(mellifera\)) und solitären Bienen (\(Osmia\) \(spec.\)): Entwicklung der circadianen Uhr, Verhaltensrhythmen und neuroanatomische Beschreibung von zwei zentralen Uhr Komponenten (PER und PDF) N2 - Summary Bees, like many other organisms, evolved an endogenous circadian clock, which enables them to foresee daily environmental changes and exactly time foraging flights to periods of floral resource availability. The social lifestyle of a honey bee colony has been shown to influence circadian behavior in nurse bees, which do not exhibit rhythmic behavior when they are nursing. On the other hand, forager bees display strong circadian rhythms. Solitary bees, like the mason bee, do not nurse their offspring and do not live in hive communities, but face the same daily environmental changes as honey bees. Besides their lifestyle mason and honey bees differ in their development and life history, because mason bees overwinter after eclosion as adults in their cocoons until they emerge in spring. Honey bees do not undergo diapause and have a relatively short development of a few weeks until they emerge. In my thesis, I present a comparison of the circadian clock of social honey bees (Apis mellifera) and solitary mason bees (Osmia bicornis and Osmia cornuta) on the neuroanatomical level and behavioral output level. I firstly characterized in detail the localization of the circadian clock in the bee brain via the expression pattern of two clock components, namely the clock protein PERIOD (PER) and the neuropeptide Pigment Dispersing Factor (PDF), in the brain of honey bee and mason bee. PER is localized in lateral neuron clusters (which we called lateral neurons 1 and 2: LN1 and LN2) and dorsal neuron clusters (we called dorsal lateral neurons and dorsal neurons: DLN, DN), many glia cells and photoreceptor cells. This expression pattern is similar to the one in other insect species and indicates a common ground plan of clock cells among insects. In the LN2 neuron cluster with cell bodies located in the lateral brain, PER is co-expressed with PDF. These cells build a complex arborization network throughout the brain and provide the perfect structure to convey time information to brain centers, where complex behavior, e.g. sun-compass orientation and time memory, is controlled. The PDF arborizations centralize in a dense network (we named it anterio-lobular PDF hub: ALO) which is located in front of the lobula. In other insects, this fiber center is associated with the medulla (accessory medulla: AME). Few PDF cells build the ALO already in very early larval development and the cell number and complexity of the network grows throughout honey bee development. Thereby, dorsal regions are innervated first by PDF fibers and, in late larval development, the fibers grow laterally to the optic lobe and central brain. The overall expression pattern of PER and PDF are similar in adult social and solitary bees, but I found a few differences in the PDF network density in the posterior protocerebrum and the lamina, which may be associated with evolution of sociality in bees. Secondly, I monitored activity rhythms, for which I developed and established a device to monitor locomotor activity rhythms of individual honey bees with contact to a mini colony in the laboratory. This revealed new aspects of social synchronization and survival of young bees with indirect social contact to the mini colony (no trophalaxis was possible). For mason bees, I established a method to monitor emergence and locomotor activity rhythms and I could show that circadian emergence rhythms are entrainable by daily temperature cycles. Furthermore, I present the first locomotor activity rhythms of solitary bees, which show strong circadian rhythms in their behavior right after emergence. Honey bees needed several days to develop circadian locomotor rhythms in my experiments. I hypothesized that honey bees do not emerge with a fully matured circadian system in the hive, while solitary bees, without the protection of a colony, would need a fully matured circadian clock right away after emergence. Several indices in published work and preliminary studies support my hypothesis and future studies on PDF expression in different developmental stages in solitary bees may provide hard evidence. N2 - Zusammenfassung Bienen, sowie viele andere Organismen, evolvierten eine innere circadiane Uhr, die es ihnen ermöglicht, tägliche Umweltveränderungen voraus zu sehen und ihre Foragierflüge zu Tageszeiten durchzuführen, wenn sie möglichst viele Blüten besuchen können. Es zeigte sich, dass der soziale Lebensstil der Honigbiene Einfluss auf das rhythmische Verhalten der Ammenbienen hat, die während der Brutpflege keinen täglichen Rhythmus im Verhalten aufweisen. Sammlerbienen auf der anderen Seite zeigen ein stark rhythmisches Verhalten. Solitäre Bienen, wie die Mauerbiene, betreiben keine Brutpflege und leben nicht in einer Staatengemeinschaft, aber sind den gleichen Umweltveränderungen ausgesetzt. Nicht nur Lebensstil, sondern auch Entwicklung und Lebenszyklus unterscheiden sich zwischen Honig- und Mauerbienen. Mauerbienen überwintern als adulte Insekten in einem Kokon bis sie im Frühjahr schlüpfen. Honigbienen durchleben keine Diapause und schlüpfen nach wenigen Wochen der Entwicklung im Bienenstock. In meiner Dissertation vergleiche ich die circadiane Uhr von sozialen Honigbienen (Apis mellifera) und solitären Mauerbienen (Osmia bicornis und Osmia cornuta) auf Ebene der Neuroanatomie und das durch die innere Uhr verursachte rhythmische Verhalten. Erstens charakterisierte ich detailliert die Lage der circadianen Uhr im Gehirn von Honig- und Mauerbiene anhand des Expressionsmusters von zwei Uhrkomponenten. Diese sind das Uhrprotein PERIOD (PER) und das Neuropeptid Pigment Dispersing Factor (PDF). PER wird exprimiert in lateralen Neuronen-Gruppen (die wir laterale Neurone 1 und 2 nannten: LN1 und LN2) und dorsalen Neuronen-Gruppen (benannt dorsal laterale Neurone und dorsale Neurone: DLN und DN), sowie in vielen Gliazellen und Fotorezeptorzellen. Dieses Expressionsmuster liegt ähnlich in anderen Insektengruppen vor und deutet auf einen Grundbauplan der Inneren Uhr im Gehirn von Insekten hin. In der LN2 Neuronen-Gruppe, deren Zellkörper im lateralen Gehirn liegen, sind PER und PDF in den gleichen Zellen co-lokalisiert. Diese Zellen bilden ein komplexes Netzwerk aus Verzweigungen durch das gesamte Gehirn und liefern damit die perfekte Infrastruktur, um Zeitinformation an Gehirnregionen weiterzuleiten, die komplexe Verhaltensweisen, wie Sonnenkompass-Orientierung und Zeitgedächtnis, steuern. Alle PDF Neuriten laufen in einer anterior zur Lobula liegenden Region zusammen (sie wurde ALO, anterio-lobular PDF Knotenpunkt, genannt). Dieser Knotenpunkt ist in anderen Insekten mit der Medulla assoziiert und wird akzessorische Medulla (AME) genannt. Wenige PDF Zellen bilden bereits im frühen Larvalstadium diesen ALO und die Zellzahl sowie die Komplexität des Netzwerks wächst die gesamte Entwicklung der Honigbiene hindurch. Dabei werden zuerst die dorsalen Gehirnregionen von PDF Neuronen innerviert und in der späteren Larvalentwicklung wachsen die Neurite lateral in Richtung der optischen Loben und des Zentralgehirns. Das generelle Expressionsmuster von PER und PDF in adulten sozialen und solitären Bienen ähnelt sich stark, aber ich identifizierte kleine Unterschiede in der PDF Netzwerkdichte im posterioren Protocerebrum und in der Lamina. Diese könnten mit der Evolution von sozialen Bienen assoziiert sein. Zweitens entwickelte und etablierte ich eine Methode, Lokomotionsrhythmen von individuellen Bienen im Labor aufzunehmen, die in Kontakt mit einem Miniaturvolk standen. Diese Methode enthüllte neue Aspekte der sozialen Synchronisation unter Honigbienen und des Überlebens von jungen Bienen, die indirekten sozialen Kontakt zu dem Miniaturvolk hatten (Trophalaxis war nicht möglich). Für Mauerbienen etablierte ich eine Methode Schlupf- und lokomotorische Aktivitätsrhythmik aufzuzeichnen und konnte damit zeigen, dass tägliche Rhythmen im Schlupf durch Synchronisation der circadianen Uhr in Mauerbienen durch Tagestemperatur-Zyklen erzielt werden kann. Des Weiteren präsentiere ich die ersten lokomotorischen Aktivitätsrhythmen von solitären Bienen, die sofort nach ihrem Schlupf einen starken circadianen Rhythmus im Verhalten aufwiesen. Honigbienen brauchten in meinen Experimenten mehrere Tage, um circadiane Rhythmen in Lokomotion zu entwickeln. Ich erstellte die Hypothese, dass Honigbienen zum Zeitpunkt des Schlupfes im Bienenvolk ein noch nicht vollständig ausgereiftes circadianes System besitzen, während solitäre Bienen, die ohne den Schutz eines Volkes sind, direkt nach dem Schlupf eine vollständig ausgereifte Uhr brauchen. Mehrere Hinweise in Publikationen und Vorversuchen unterstützen meine Hypothese. Zukünftige Studien der Entwicklung des PDF Neuronen-Netzwerkes in solitären Bienen unterschiedlicher Entwicklungsstufen könnten dies nachweisen. KW - Chronobiologie KW - circadian rhythms KW - honeybee KW - Mauerbiene KW - Neuroanatomie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159765 ER - TY - THES A1 - Karimi, Sohail Mehmood T1 - A Comparative Study on Guard Cell Function of the Glycophyte \(Arabidopsis\) \(thaliana\) and the Halophyte \(Thellungiella\) \(salsuginea\) Under Saline Growth Conditions T1 - Eine vergleichende Studie zur Schließzellfunktion des Glycophyten \(Arabidopsis\) \(thaliana\) und des Halophyten \(Thellungiella\) \(salsuginea\) unter salinen Wachstumsbedingungen N2 - The greatest problems faced during the 21st century is climate change which is a big threat to food security due to increasing number of people. The increase in extreme weather events, such as drought and heat, makes it difficult to cultivate conventional crops that are not stress tolerant. As a result, increasing irrigation of arable land leads to additional salinization of soils with plant-toxic sodium and chloride ions. Knowledge about the adaptation strategies of salt-tolerant plants to salt stress as well as detailed knowledge about the control of transpiration water loss of these plants are therefore important to guarantee productive agriculture in the future. In the present study, I have characterized salt sensitive and salt tolerant plant species at physiological, phenotypic and transcriptomic level under short (1x salt) and long-time (3x) saline growth conditions. Two approaches used for long-time saline growth conditions (i.e increasing saline conditions (3x salt) and constant high saline conditions (3x 200 mM salt) were successfully developed in the natural plant growth medium i.e soil. Salt sensitive plants, A. thaliana, were able to survive and successfully set seeds at the toxic concentrations on the increasing saline growth mediums, with minor changes in the phenotype. However, under constant high saline conditions they could not survive. This was due to keeping low potassium, and high salt ions (sodium and chloride) in the photosynthetic tissue i.e leaf. Similarly, high potassium and low salt ions in salt tolerant T. salsuginea on both saline environments were the key for survival of this plant species. Being salt tolerant, T. salsuginea always kept high potassium levels and low sodium (during 1x) and chloride levels (during both 1x and 3x) in the leaf tissue. A strict control over transpirational water loss via stomata (formed by pair of guard cells) is important to maintain plant water balance. Aperture size of the stomata is regulated by the turgidity of the guard cells. More turgid the guard cells, bigger the apertures are and hence more transpiration. Under osmotic stress, the water loss is reduced which was evident in the salt sensitive A. thaliana plants under both short and long-time saline growth conditions. As the osmotic stress was only increased during long time saline growth conditions in T. salsuginea therefore, water loss was also decreased only under these saline conditions. Environmental CO2 assimilation also takes place via stomata in plants which then is used for photosynthesis. Stomatal apertures also influence CO2 assimilation. As the light absorbing photosynthetic pigments were more affected in A. thaliana, therefore photosynthetic activity of the whole plant was also reduced. Similarly, both short and long-time saline growth conditions also reduced the effective quantum yield of A. thaliana guard cells. Growth of the plant is dependent on energy which comes from photosynthesis. Reduced environmental CO2 assimilation would affect photosynthesis and hence growth, which was clearly observed in A. thaliana guard cells under long-time saline growth conditions. Major differences in both guard cells types were observed in their chloride and potassium levels. Energy Dispersive X-Ray Analysis (EDXA) suggested strict control of chloride accumulation in T. salsuginea guard cells as the levels remain unchanged under all conditions. Similarly, use of sodium in place of potassium for osmotic adjustments seems to be dependent on Na+/K+ rations in both guard cell types. Increased salt ions and reduced potassium levels in A. thaliana guard cells posed negative effect on photochemistry which in turn increased ROS metabolism and reduced energy related pathways at transcriptomic level in this plant species. Moreover, photosynthesis was strongly affected in A. thaliana guard cells both at transcriptomic and physiological levels. Similarly, global phytohormones induced changes were more evident in A. thaliana guard cells especially on 3x salt medium. Among all phytohormones, genes under the control of auxin were more differentially expressed in A. thaliana guard cells which suggests wide changes in growth and development in this plant species under salinity. Phytohormone, ABA is vital for closing the stomata under abiotic stress conditions. Increased levels of ABA during saline conditions led to efflux of potassium and counter anions (chloride, malate, nitrate) from the guard cells which caused the outward flow of water and hence reduction in turgor pressure. Reduced turgor pressure led to reduced water loss and CO2 assimilation especially in A. thaliana. Guard cells of both plant species synthesized ABA during saline conditions which was reflected from transcriptomic data and ABA quantification in the guard cells. ABA induced signaling in both plant species varied at the ABA receptor (PYL/PYR) levels where totally contrasting responses were observed. PYL2, PYL8 and PYL9 were specific to A. thaliana, furthermore, PYL2 was found to be differentially expressed only under 3x salt growth conditions thus suggesting its role during long term salt stress in this plant species. Protein phosphatases, which negatively regulate ABA signaling on one hand and act as ABA sensor on the other hand were found to be more differentially expressed in A. thaliana than T. salsuginea guard cells, which suggests their diverse role in both plant species under saline conditions. Differential expression of more ABA signaling players in long time saline conditions was prominent which could be because of darkness, as it is well known that rapid closure of stomata under dark conditions require ABA signaling. Moreover, representation of these components in dark also suggests that plants become more sensitive to dark under saline conditions which is also evident from the transpiration rates. Altogether, increased salt ions in A. thaliana guard cells and leaves led to pigment degradation and ABA induced reduction in transpiration which in turn influenced its growth. In contrast, T. salsuginea is the salt excluder and therefore keeps low levels of salt ions especially the chloride both in leaves and guard cells which mildly affects its growth. Guard cells of A. thaliana encounter severe energy problems at physiological and transcriptomic level. Main differences in the ABA signalling between both plant species were observed at the ABA receptor level. N2 - Das größte Problem des 21. Jahrhunderts ist der Klimawandel, der aufgrund der wachsenden Zahl von Menschen eine große Bedrohung für die Ernährungssicherheit darstellt. Die Zunahme extremer Wetterereignisse wie Dürre und Hitze erschwert den Anbau konventioneller, nicht stressresistenter Pflanzen. Eine zunehmende Bewässerung von Ackerland führt daher zu einer zusätzlichen Versalzung der Böden mit pflanzentoxischen Natrium- und Chloridionen. Kenntnisse über die Anpassungsstrategien salztoleranter Pflanzen an Salzstress sowie detaillierte Kenntnisse über die Kontrolle des Wasserverlusts durch Transpiration dieser Pflanzen sind daher wichtig, um eine produktive Landwirtschaft auch in Zukunft zu gewährleisten. In der vorliegenden Studie habe ich salzempfindliche und salztolerante Pflanzenarten auf physiologischer, phänotypischer und transkriptioneller Ebene unter kurzen (1x Salz) und langen (3x) Salzwachstumsbedingungen charakterisiert. In dem natürlichen Pflanzenwachstumsmedium, dh. dem Boden, wurden zwei Ansätze erfolgreich entwickelt, die für lang anhaltende Salzwachstumsbedingungen (dh zunehmende Salzbedingungen (3x Salz) und konstant hohe Salzbedingungen (3x 200 mM Salz) verwendet wurden. Die Pflanzen waren in der Lage, Samen bei den toxischen Konzentrationen auf den ansteigenden Salzwachstumsmedien zu überleben und erfolgreich zu setzen, wobei geringfügige Änderungen des Phänotyps auftraten. Unter konstant hohen Salzbedingungen konnten sie jedoch nicht überleben. Dies lag daran, dass wenig Kalium und hohe Salzionen vorhanden waren (Natrium und Chlorid) im photosynthetischen Gewebe, dh im Blatt. Ebenso stellten hohe Kalium- und niedrige Salzionen in salztoleranten T. salsuginea in beiden salzhaltigen Umgebungen den Schlüssel zum Überleben dieser Pflanzenart dar. Da T. salsuginea salztolerant war, blieb der Kaliumspiegel stets hoch und der Natrium- (während 1x) und Chloridspiegel (während 1x und 3x) im Blattgewebe niedrig. Eine strikte Kontrolle des transpirationelen Wasserverlusts über Stomata (gebildet von zwei Schließzellen) ist wichtig, um den Wasserhaushalt der Pflanzen aufrechtzuerhalten. Die Öffnungsgröße der Stomata wird durch den Turgor der Schutzzellen reguliert. Je praller die Schließzellen, desto größer die Öffnungen und damit die Transpiration. Unter osmotischem Stress wird der Wasserverlust verringert, was bei den salzempfindlichen A. thaliana-Pflanzen sowohl unter kurz- als auch langfristigen Salzwachstumsbedingungen offensichtlich war. Da der osmotische Stress in T. salsuginea nur über einen langen Zeitraum unter Salzwachstumsbedingungen anstieg, verringerte sich auch der Wasserverlust nur unter diesen Salzbedingungen. Die Aufnahme von CO2 in die Umwelt erfolgt auch über die Stomata und wird dann für die Photosynthese verwendet. Stomata beeinflussen daher auch die CO2-Assimilation. Da die lichtabsorbierenden photosynthetischen Pigmente in A. thaliana stärker betroffen waren, war auch die photosynthetische Aktivität der gesamten Pflanze verringert. In ähnlicher Weise verringerten sowohl kurz- als auch langzeitige Salzwachstumsbedingungen auch die effektive Quantenausbeute von A. thaliana-Schließzellen. Das Wachstum der Pflanze hängt von der Energie ab, die aus der Photosynthese stammt. Eine verringerte CO2-Assimilation aus der Umwelt würde die Photosynthese und damit das Wachstum beeinträchtigen, was bei A. thaliana-Schließzellenn unter lang andauerenden Salzwachstumsbedingungen deutlich zu beobachten war. Wesentliche Unterschiede bei beiden Schließzelltypen wurden in ihren Chlorid- und Kaliumspiegeln beobachtet. Die energiedispersive Röntgenanalyse (EDXA) ergab eine strikte Kontrolle der Chloridakkumulation in T. salsuginea Schließzellen, da die Chloridkonzentrationen unter allen Bedingungen unverändert bleiben. In ähnlicher Weise scheint die Verwendung von Natrium anstelle von Kalium für osmotische Anpassungen von Na + / K + -Verhältnissen in beiden Schließzelltypen abhängig zu sein. Erhöhte Salzionen und verringerte Kaliumspiegel in A. thaliana-Schließzellen wirkten sich negativ auf die Photochemie aus, was wiederum den ROS-Metabolismus erhöhte und die energiebezogenen Wege auf transkriptomischem Niveau bei dieser Pflanzenart verringerte. Darüber hinaus war die Photosynthese in A. thaliana-Schließzellen sowohl auf transkriptioneller als auch auf physiologischer Ebene stark beeinträchtigt. In ähnlicher Weise waren globale Phytohormon-induzierte Veränderungen in A. thaliana-Schließzellen, insbesondere auf 3 × Salzmedium, deutlicher. Unter allen Phytohormonen wurden Gene unter der Kontrolle von Auxin in A. thaliana-Schließzellen differenzierter exprimiert, was auf weitreichende Veränderungen im Wachstum und in der Entwicklung dieser Pflanzenart unter Salzgehalt hindeutet. Das Phytohormon ABA ist für das Schließen der Stomata unter abiotischen Stressbedingungen von entscheidender Bedeutung. Erhöhte ABA-Spiegel unter Salzbedingungen führten zum Austritt von Kalium und Gegenanionen (Chlorid, Malat, Nitrat) aus den Schließzellen, was den Wasserfluss nach außen und damit eine Verringerung des Turgordrucks bewirkte. Reduzierter Turgordruck führte insbesondere bei A. thaliana zu einem geringeren Wasserverlust und einer geringeren CO2-Aufnahme. Die Schließzellen beider Pflanzenarten synthetisierten ABA unter Salzbedingungen, was sich aus den Transkriptomdaten und der ABA-Quantifizierung in den Schließzellen widerspiegelte. Die ABA-induzierte Signalübertragung in beiden Pflanzenarten variierte bei den ABA-Rezeptor- (PYL / PYR-) Spiegeln, bei denen völlig unterschiedliche Reaktionen beobachtet wurden. PYL2, PYL8 und PYL9 waren spezifisch für A. thaliana. Darüber hinaus wurde festgestellt, dass PYL2 nur unter dreifachen Salzwachstumsbedingungen unterschiedlich exprimiert wird, was auf seine Rolle bei langfristigem Salzstress bei dieser Pflanzenart hindeutet. Es wurde gefunden, dass Proteinphosphatasen, die einerseits die ABA-Signalübertragung negativ regulieren und andererseits als ABA-Sensor wirken, in A. thaliana differenzierter exprimiert werden als in T. salsuginea-Schließzellen, was auf ihre vielfältige Rolle in beiden Pflanzenarten unter Salzbedingungen hindeutet. Eine differenzierte Expression von mehr ABA-Signalgebern unter Bedingungen mit langer Salzwasserbewässerung war auffällig, was auf Dunkelheit zurückzuführen sein könnte, da bekanntlich ein schnelles Schließen der Stomata unter dunklen Bedingungen eine ABA-Signalgebung erfordert. Darüber hinaus deutet die Darstellung dieser Komponenten im Dunkeln auch darauf hin, dass Pflanzen unter salzhaltigen Bedingungen empfindlicher gegenüber Dunkelheit werden, was auch aus den Transpirationsraten hervorgeht. Insgesamt führten erhöhte Salzionen in A. thaliana-Schließzzellen und Blättern zu einem Pigmentabbau und einer durch ABA verursachten Reduktion der Transpiration, was deren Wachstum beeinflusste. Im Gegensatz dazu ist T. salsuginea in der Lage Salz auszuschließen und hält daher geringe Mengen an Salzionen, insbesondere das Chlorid sowohl in Blättern als auch in Schließzellen, dass sein Wachstum geringfügig beeinflusst. Schließzellen von A. thaliana stoßen auf physiologischer und transkriptomischer Ebene auf schwerwiegende Energieprobleme. Hauptunterschiede in der ABA-Signalgebung zwischen beiden Pflanzenarten wurden auf der ABA-Rezeptorebene beobachtet. KW - Glycophyten KW - Halophyten KW - salinen Wachstumsbedingungen KW - Schließzellfunktion KW - Transkriptomik anlyze KW - Halophytes KW - glycophytes KW - salt stress KW - guard cells KW - transcriptomic analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190942 ER - TY - THES A1 - Schulte, Annemarie T1 - \(In\) \(vitro\) reprogramming of glial cells from adult dorsal root ganglia into nociceptor-like neurons T1 - \(In\) \(vitro\) Reprogrammierung von Gliazellen aus adulten Spinalganglien in Nozizeptor-ähnliche Neurone N2 - Plexus injury often occurs after motor vehicle accidents and results in lifelong disability with severe neuropathic pain. Surgical treatment can partially restore motor functions, but sensory loss and neuropathic pain persist. Regenerative medicine concepts, such as cell replacement therapies for restoring dorsal root ganglia (DRG) function, set high expectations. However, up to now, it is unclear which DRG cell types are affected by nerve injury and can be targeted in regenerative medicine approaches. This study followed the hypothesis that satellite glial cells (SGCs) might be a suitable endogenous cell source for regenerative medicine concepts in the DRG. SGCs originate from the same neural crest-derived cell lineage as sensory neurons, making them attractive for neural repair strategies in the peripheral nervous system. Our hypothesis was investigated on three levels of experimentation. First, we asked whether adult SGCs have the potential of sensory neuron precursors and can be reprogrammed into sensory neurons in vitro. We found that adult mouse DRG harbor SGC-like cells that can still dedifferentiate into progenitor-like cells. Surprisingly, expression of the early developmental transcription factors Neurog1 and Neurog2 was sufficient to induce neuronal and glial cell phenotypes. In the presence of nerve growth factor, induced neurons developed a nociceptor-like phenotype expressing functional nociceptor markers, such as the ion channels TrpA1, TrpV1 and NaV1.9. In a second set of experiments, we used a rat model for peripheral nerve injury to look for changes in the DRG cell composition. Using an unbiased deep learning-based approach for cell analysis, we found that cellular plasticity responses after nerve injury activate SGCs in the whole DRG. However, neither injury-induced neuronal death nor gliosis was observed. Finally, we asked whether a severe nerve injury changed the cell composition in the human DRG. For this, a cohort of 13 patients with brachial plexus injury was investigated. Surprisingly, in about half of all patients, the injury-affected DRG showed no characteristic DRG tissue. The complete entity of neurons, satellite cells, and axons was lost and fully replaced by mesodermal/connective tissue. In the other half of the patients, the basic cellular entity of the DRG was well preserved. Objective deep learning-based analysis of large-scale bioimages of the “intact” DRG showed no loss of neurons and no signs of gliosis. This study suggests that concepts for regenerative medicine for restoring DRG function need at least two translational research directions: reafferentation of existing DRG units or full replacement of the entire multicellular DRG structure. For DRG replacement, SGCs of the adult DRG are an attractive endogenous cell source, as the multicellular DRG units could possibly be rebuilt by transdifferentiating neural crest-derived sensory progenitor cells into peripheral sensory neurons and glial cells using Neurog1 and Neurog2. N2 - Plexusläsionen treten häufig nach Verkehrsunfällen auf und führen zu lebenslangen Einschränkungen mit starken neuropathischen Schmerzen. Eine operative Behandlung kann die motorischen Funktionen teilweise wiederherstellen, dennoch bleiben Verlust der Sensorik und neuropathische Schmerzen bestehen. Ansätze der regenerativen Medizin, wie z. B. Zellersatztherapien zur Wiederherstellung der Funktion der Spinalganglien, wecken hohe Erwartungen. Bislang ist jedoch vollkommen unklar, welche Zelltypen der Spinalganglien von der Nervenverletzung betroffen sind und bei Ansätzen der regenerativen Medizin gezielt eingesetzt werden sollten. Hier war die Hypothese, dass Satellitengliazellen (SGCs) eine geeignete endogene Zellquelle für Ansätze der regenerativen Medizin in den Spinalganglien sein könnten. SGCs und sensorische Neurone stammen von denselben Stammzellen der Neuralleiste ab, was SGCs für neurale Reparaturstrategien im peripheren Nervensystem attraktiv macht. Unsere Hypothese wurde auf drei Ebenen experimentell untersucht. Zuerst stellten wir die Frage, ob adulte SGCs das Potenzial haben, neuronale Vorläufermerkmale anzunehmen und in vitro in sensorische Neuronen reprogrammiert werden können. Hierbei zeigte sich, dass Spinalganglien der Maus adulte SGC-ähnliche Zellen beherbergen, die sich in vorläuferähnliche Zellen dedifferenzieren können. Überraschenderweise war die Expression der frühen entwicklungsrelevanten Transkriptions-faktoren Neurog1 und Neurog2 ausreichend, um neuronale und gliale Phänotypen zu induzieren. In Anwesenheit des Neurotrophins NGF (nerve growth factor) entwickelten die induzierten Neurone einen Nozizeptor-ähnlichen Phänotyp, der funktionelle Marker für Nozizeptoren wie die Ionenkanäle TrpA1, TrpV1 und NaV1.9 exprimierte. In einer zweiten Reihe von Experimenten haben wir in einem Rattenmodell für periphere Nervenverletzungen Veränderungen in der Zellzusammensetzung von Spinalganglien untersucht. Mithilfe eines objektiven Deep Learning basierten Ansatzes zur Bildanalyse fanden wir im gesamten DRG SGCs, die auf Nervenverletzungen mit einer hohen zellulären Plastizität reagierten. Es wurde jedoch weder ein verletzungsbedingter neuronaler Verlust noch eine Gliose beobachtet. Schließlich untersuchten wir, ob eine schwere Nervenverletzung die Zellzusammensetzung in menschlichen Spinalganglien verändert. Dazu wurde eine Kohorte von 13 Patienten mit einer Verletzung des Plexus brachialis untersucht. Überraschenderweise zeigte sich in verletzten Spinalganglien bei etwa der Hälfte aller Patienten kein Spinalgangliengewebe mehr. Die gesamte Einheit aus Neuronen, Satellitengliazellen und Axonen war verloren und vollständig durch mesodermales Bindegewebe ersetzt. Bei der anderen Hälfte der Patienten war die grundlegende zelluläre Einheit des Spinalganglions gut erhalten. Eine objektive, auf Deep Learning basierende Analyse von großflächigen Mikroskopiebildern des "intakten" Spinalganglions zeigte keinen Verlust von Neuronen und keine Anzeichen von Gliose. Diese Studie legt nahe, dass zur Wiederherstellung der Funktionen des Spinalganglions mindestens zwei translationale Forschungsrichtungen der regenerativen Medizin erforderlich sind: Reafferenzierung bestehender Spinalganglion-Einheiten oder vollständiger Ersatz der gesamten multizellulären Spinalganglion-Struktur. Für den Ersatz des Spinalganglions sind SGCs des adulten Spinalganglions eine plausible endogene Zellquelle. Die multizellulären Einheiten des Spinalganglions könnten möglicherweise durch eine Neurog1- und Neurog2- induzierte Transdifferenzierung von sensorischen Vorläuferzellen der Neuralleiste in periphere sensorische Neuronen und Gliazellen wiederaufgebaut werden. KW - Spinalganglion KW - Reprogrammming KW - Satellite glial cell KW - Nociceptor KW - Dorsal root ganglion Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303110 ER - TY - THES A1 - Yang, Manli T1 - \(Chlamydia\) \(trachomatis\) metabolism during infection and metatranscriptome analysis in \(Neisseria\) \(gonorrhoeae\) coinfected STD patients T1 - \(Chlamydia\) \(trachomatis\) Metabolismus während der Infektion sowie die Analyse des Metatranskriptoms bei \(Neisseria\) \(gonorrhoeae\) koinfizierten STD-Patienten N2 - Chlamydia trachomatis (Ct) is an obligate intracellular human pathogen. It causes blinding trachoma and sexually transmitted disease such as chlamydia, pelvic inflammatory disease and lymphogranuloma venereum. Ct has a unique biphasic development cycle and replicates in an intracellular vacuole called inclusion. Normally it has two forms: the infectious form, elementary body (EB); and the non-infectious form, reticulate body (RB). Ct is not easily amenable to genetic manipulation. Hence, to understand the infection process, it is crucial to study how the metabolic activity of Ct exactly evolves in the host cell and what roles of EB and RB play differentially in Ct metabolism during infection. In addition, Ct was found regularly coinfected with other pathogens in patients who got sexually transmitted diseases (STDs). A lack of powerful methods to culture Ct outside of the host cell makes the detailed molecular mechanisms of coinfection difficult to study. In this work, a genome-scale metabolic model with 321 metabolites and 277 reactions was first reconstructed by me to study Ct metabolic adaptation in the host cell during infection. This model was calculated to yield 84 extreme pathways, and metabolic flux strength was then modelled regarding 20hpi, 40hpi and later based on a published proteomics dataset. Activities of key enzymes involved in target pathways were further validated by RT-qPCR in both HeLa229 and HUVEC cell lines. This study suggests that Ct's major active pathways involve glycolysis, gluconeogenesis, glycerolphospholipid biosynthesis and pentose phosphate pathway, while Ct's incomplete tricarboxylic acid cycle and fatty acid biosynthesis are less active. EB is more activated in almost all these carbohydrate pathways than RB. Result suggests the survival of Ct generally requires a lot of acetyl-CoA from the host. Besides, both EB and RB can utilize folate biosynthesis to generate NAD(P)H but may use different pathways depending on the demands of ATP. When more ATP is available from both host cell and Ct itself, RB is more activated by utilizing energy providing chemicals generated by enzymes associated in the nucleic acid metabolism. The forming of folate also suggests large glutamate consumption, which is supposed to be converted from glutamine by the glutamine-fructose-6-phosphate transaminase (glmS) and CTP synthase (pyrG). Then, RNA sequencing (RNA-seq) data analysis was performed by me in a coinfection study. Metatranscriptome from patient RNA-seq data provides a realistic overview. Thirteen patient samples were collected and sequenced by our collaborators. Six male samples were obtained by urethral swab, and seven female samples were collected by cervicovaginal lavage. All the samples were Neisseria gonorrhoeae (GC) positive, and half of them had coinfection with Ct. HISAT2 and Stringtie were used for transcriptomic mapping and assembly respectively, and differential expression analysis by DESeq2, Ballgown and Cuffdiff2 are parallelly processed for comparison. Although the measured transcripts were not sufficient to assemble Ct's transcriptome, the differential expression of genes in both the host and GC were analyzed by comparing Ct positive group (Ct+) against Ct-uninfected group. The results show that in the Ct+ group, the host MHC class II immune response was highly induced. Ct infection is associated with the regulation of DNA methylation, DNA double-strand damage and ubiquitination. The analysis also shows Ct infection enhances host fatty acid beta oxidation, thereby inducing mROS, and the host responds to reduce ceramide production and glycolysis. The coinfection upregulates GC's own ion transporters and amino acid uptake, while it downregulates GC's restriction and modification systems. Meanwhile, GC has the nitrosative and oxidative stress response and also increases the ability for ferric uptake especially in the Ct+ group compared to Ct-uninfected group. In conclusion, methods in bioinformatics were used here in analyzing the metabolism of Ct itself, and the responses of the host and GC respectively in a coinfection study with and without Ct. These methods provide metabolic and metatranscriptomic details to study Ct metabolism during infection and Ct associated coinfection in the human microbiota. N2 - Chlamydia trachomatis (Ct) ist ein obligater intrazellulärer Pathogen des Menschen. Er verursacht Trachoma und sexuell übertragbare Krankheiten, wie Chlamydiose, Unterleibsentzündung und Lymphogranuloma venereum. Ct besitzt einen biphasischen Entwicklungszyklus und vermehrt sich in intrazellulären Vakuolen, sogenannten Einschlusskörperchen. Normalerweise können zwei Formen beobachtete werden: Die infektiöse Form, Elementarkörperchen (EK); und die nicht-infektiöse Form, Retikularkörperchen (RK). Ct ist nicht einfach genetisch zu manipulieren. Um den Infektionsablauf besser zu verstehen, ist es wichtig, zu untersuchen, wie sich genau die metabolische Aktivität von Ct in der Wirtszelle entwickelt und welche Rolle EK und RK im Metabolismus von Ct während der Infektion spielen. Zusätzlich wurde Ct häufig bei Patienten mit sexuell übertragbaren Krankheiten (STD) in Co-Infektion mit anderen Erregern gefunden. Ein Mangel an leistungsfähigen Methoden zur Kultivierung von Ct außerhalb der Wirtszelle macht es schwierig die genauen molekularen Mechanismen von Co-Infektionen zu untersuchen. In dieser Arbeit wurde erstmals ein genomweites metabolisches Model mit 321 Metaboliten und 277 Reaktionen aufgebaut, um die metabolische Adaption von Ct in der Wirtzelle während der Infektion zu untersuchen. Dieses Model wurde erstellt und umfasst 84 „extreme pathways“ (Grenz-Stoffwechselwege). Darauf aufbauend wurde die metabolische Fluss-Stärke berechnet. Die Zeitpunkte 20 hpi (20 Stunden nach der Infektion), 40 hpi und die anschließende Infektionsphase wurden durch Nutzung von Proteom-Daten modelliert. Die Aktivitäten von Schlüsselenzymen, welche in wichtigen Stoffwechselwegen involviert sind, wurden zusätzlich durch RT-qPCR überprüft. Dabei wurden die Ergebnisse sowohl für HeLA229- als auch HUVEC-Zellen nachgemessen. Diese Untersuchungen zeigten, dass Ct’s wichtigste aktive Stoffwechselwege die Glykolyse, die Gluconeogenese und der Pentosephosphatweg sind, während der unvollständige Zitronensäurezyklus und die Fettsäuresynthese weniger aktiv sind. Gegenüber RK sind bei EK fast alle diese Kohlenhydratwege stärker aktiviert. Im Allgemeinen benötigt Ct eine größere Menge an Acetyl-CoA. Außerdem können sowohl EK, als auch RK die Folsäurebiosynthese nutzen, um NAD(P)H zu generieren. Dabei werden möglicherweise unterschiedliche Pathways genutzt, abhängig vom Bedarf an ATP. Sobald mehr ATP sowohl durch die Wirtszellen als auch von der Ct-Zelle selbst zur Verfügung steht, wird die Nutzung von Energieträgern, produziert durch Enzyme des Nukleinsäurestoffwechsels, in RK stärker aktiviert. Die Bildung von Folsäure lässt den Schluss zu, dass große Mengen von Glutamat umgesetzt werden, welches vermutlich aus der Umwandlung von Glutamin durch die Glutamine-fructose-6-phosphate-transaminase (glmS) und CTP-Syntase (pyrG) stammt. Anschließend wurde eine Analyse von RNA-Sequenzierungsdaten (RNA-seq) aus einer Co-Infektions-Studie (Chlamydien und andere Keime, insbesondere Gonokokken (GC)) durchgeführt. Dafür wurden Proben von dreizehn Patienten gesammelt und von Kollaborationspartnern sequenziert. Sechs Proben männlicher Patienten wurden durch Abstrich der Harnröhre und sieben Proben weiblicher Patientinnen durch cervicovaginale Lavage gewonnen. Alle Proben waren Neisseria gonorrhoeae (GC) positiv, wobei die Hälfte eine Co-Infektion mit Ct aufwies. Die Programme HISAT2 and Stringtie wurden zum Abbilden der transgenomischen Reads beziehungsweise zur Assemblierung des Genoms verwendet, und eine Analyse der differentiellen Expression wurde jeweils mit DESeq2, Ballgown und Cuffdiff2 durchgeführt und die Ergebnisse verglichen. Obwohl nicht ausreichend viele Transkripte von Ct gewonnen werden konnten, um das Transkriptom komplett assemblieren zu können, wurde die differentielle Expression der Gene sowohl von Wirt als auch von GC durch den Vergleich zwischen der Gruppe der Ct-positiven (Ct+) der Gruppe der Ct-unifizierten Patienten analysiert. Die Ergebnisse zeigten, dass in der (Ct+)-Gruppe die auf der MHC-Klasse-II basierte Immunantwort stark induziert war. Die Infektion von Ct ist mit der Regulation der DNA-Methylierung, DNA-Doppel-Strang-Schädigung und Ubiquitinierung verbunden. Die Analyse zeigte zusätzlich, dass die Infektion mit Ct die Fettsäure β-Oxidation des Wirts steigert, dadurch mROS induziert, und sowohl die Ceramid-Produktion als auch die Glycolyse reduziert. Die Co-Infektion reguliert GC’s eigene Eisentransporter und Aminosäureaufnahme hoch, während Restriktions- und Modifikationssysteme herunterreguliert werden. Gleichzeitig zeigt GC sowohl eine stickstoffsensitve Stress Antwort als auch eine oxidative. Dies verstärkt zusätzlich die Fähigkeit für die Aufnahme von Eisen, insbesondere in der (Ct+)-Gruppe. Zusammenfassend wurden Methoden der Bioinformatik genutzt, um den Metabolismus von Ct selbst, und die Antwort des Wirtes respektive GC‘s in einer Co-Infektionsstudie mit und ohne Ct zu analysieren. Diese Methoden lieferten wichtige metabolische und metatranskriptomische Details, um den Metabolismus von Ct während der Infektion, aber auch das Mikrobiom während einer Ct assoziierter Co-Infektion zu untersuchen. KW - chlamydia trachomatis KW - Neisseria gonorrhoeae KW - metabolic modelling KW - metatranscriptome KW - STD patients Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184993 ER -