TY - JOUR A1 - Schuhmann, Michael K. A1 - Kraft, Peter A1 - Bieber, Michael A1 - Kollikowski, Alexander M. A1 - Schulze, Harald A1 - Nieswandt, Bernhard A1 - Pham, Mirko A1 - Stegner, David A1 - Stoll, Guido T1 - Targeting platelet GPVI plus rt-PA administration but not α2β1-mediated collagen binding protects against ischemic brain damage in mice JF - International Journal of Molecular Science N2 - Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2\(^{−/−}\) mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke. KW - ischemic stroke KW - integrin α2 KW - glycoprotein VI KW - recombinant tissue-type plasminogen activator KW - intracranial bleeding KW - transient middle cerebral artery occlusion Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201700 SN - 1422-0067 VL - 20 IS - 8 ER - TY - JOUR A1 - Kollikowski, Alexander M. A1 - Schuhmann, Michael K. A1 - Nieswandt, Bernhard A1 - Müllges, Wolfgang A1 - Stoll, Guido A1 - Pham, Mirko T1 - Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke JF - Annals of Neurology N2 - Objective Bridging the gap between experimental stroke and patients by ischemic blood probing during the hyperacute stage of vascular occlusion is crucial to assess the role of inflammation in human stroke and for the development of adjunct treatments beyond recanalization. Methods We prospectively observed 151 consecutive ischemic stroke patients with embolic large vessel occlusion of the anterior circulation who underwent mechanical thrombectomy. In all these patients, we attempted microcatheter aspiration of 3 different arterial blood samples: (1) within the core of the occluded vascular compartment and controlled by (2) carotid and (3) femoral samples obtained under physiological flow conditions. Subsequent laboratory analyses comprised leukocyte counting and differentiation, platelet counting, and the quantification of 13 proinflammatory human chemokines/cytokines. Results Forty patients meeting all clinical, imaging, interventional, and laboratory inclusion criteria could be analyzed, showing that the total number of leukocytes significantly increased under the occlusion condition. This increase was predominantly driven by neutrophils. Significant increases were also apparent for lymphocytes and monocytes, accompanied by locally elevated plasma levels of the T‐cell chemoattractant CXCL‐11. Finally, we found evidence that short‐term clinical outcome (National Institute of Health Stroke Scale at 72 hours) was negatively associated with neutrophil accumulation. Interpretation We provide the first direct human evidence that neutrophils, lymphocytes, and monocytes, accompanied by specific chemokine upregulation, accumulate in the ischemic vasculature during hyperacute stroke and may affect outcome. These findings strongly support experimental evidence that immune cells contribute to acute ischemic brain damage and indicate that ischemic inflammation initiates already during vascular occlusion. Ann Neurol 2020;87:466–479 KW - neurology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212168 VL - 87 IS - 3 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Bieber, Michael A1 - Franke, Maximilian A1 - Kollikowski, Alexander M. A1 - Stegner, David A1 - Heinze, Katrin G. A1 - Nieswandt, Bernhard A1 - Pham, Mirko A1 - Stoll, Guido T1 - Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice JF - Journal of Neuroinflammation N2 - Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{−/−}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization. KW - ischemic penumbra KW - glycoprotein receptor Ib KW - T-cells KW - ischemic stroke KW - thrombo-inflammation KW - middle cerebral artery occlusion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259172 VL - 18 IS - 1 ER -