TY - JOUR A1 - Goeb, Eva A1 - Schmitt, Johannes A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - Mammalian Sperm Head Formation Involves Different Polarization of Two Novel LINC Complexes N2 - Background: LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape. Findings: Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1g, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection / immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes. Conclusions: Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation, which in turn is a critical parameter for male fertility. KW - Sperma KW - LINC complexes Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68449 ER - TY - JOUR A1 - Göb, Eva A1 - Meyer-Natus, Elisabeth A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - Expression of individual mammalian Sun1 isoforms depends on the cell type N2 - Mammalian Sun1 belongs to an evolutionarily conserved family of inner nuclear membrane proteins, which are known as SUN domain proteins. SUN domain proteins interact with KASH domain partners to form bridging complexes, so-called LINC complexes, that physically connect the nuclear interior to the cytoskeleton. LINC complexes are critical for nuclear integrity and play fundamental roles in nuclear positioning, shaping and movement. The mammalian genome codes for at least five different SUN domain proteins used for the formation of a number of different LINC complexes. Recently, we reported on the identification of everal Sun1 isoforms, which tremendously enlarges the alternatives to form functional LINC complexes. We now confirmed that Sun1 actually exists in at least seven distinct splice variants. Besides that, we observed that expression of individual Sun1 isoforms remarkably depends on the cell type, suggesting a cell type-specific adaption of Sun1 dependent LINC complexes to specific cellular and physiological requirements. KW - Biologie KW - Sun1 KW - SUN domain protein KW - LINC complex KW - mouse KW - nuclear envelope KW - isoform Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68750 ER - TY - JOUR A1 - Schramm, Sabine A1 - Fraune, Johanna A1 - Naumann, Ronald A1 - Hernandez-Hernandez, Abrahan A1 - Höög, Christer A1 - Cooke, Howard J. A1 - Alsheimer, Manfred A1 - Benavente, Ricardo T1 - A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility N2 - The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes. KW - Maus KW - Genetik KW - Cytologie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68895 ER - TY - JOUR A1 - Jahn, Daniel A1 - Schramm, Sabine A1 - Schnölzer, Martina A1 - Heilmann, Clemens J. A1 - de Koster, Chris G. A1 - Schütz, Wolfgang A1 - Benavente, Ricardo A1 - Alsheimer, Manfred T1 - A truncated lamin A in the Lmna\(^{−/−}\) mouse line: Implications for the understanding of laminopathies JF - Nucleus N2 - During recent years a number of severe clinical syndromes, collectively termed laminopathies, turned out to be caused by various, distinct mutations in the human LMNA gene. Arising from this, remarkable progress has been made to unravel the molecular pathophysiology underlying these disorders. A great benefit in this context was the generation of an A-type lamin deficient mouse line (Lmna\(^{−/−}\)) by Sullivan and others,1 which has become one of the most frequently used models in the field and provided profound insights to many different aspects of A-type lamin function. Here, we report the unexpected finding that these mice express a truncated Lmna gene product on both transcriptional and protein level. Combining different approaches including mass spectrometry, we precisely define this product as a C-terminally truncated lamin A mutant that lacks domains important for protein interactions and post-translational processing. Based on our findings we discuss implications for the interpretation of previous studies using Lmna\(^{−/−}\) mice and the concept of human laminopathies. KW - nuclear organization KW - A-type lamins KW - LMNA mutations KW - laminopathies KW - nuclear envelope KW - nuclear lamina Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127281 VL - 3 IS - 5 ER - TY - JOUR A1 - Alsheimer, Manfred A1 - Link, Jana A1 - Jahn, Daniel A1 - Schmitt, Johannes A1 - Göb, Eva A1 - Baar, Johannes A1 - Ortega, Sagrario A1 - Benavente, Ricardo T1 - The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse JF - PLoS Genetics N2 - The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level. KW - homologous chromosomes KW - homologous recombination KW - lamins KW - Oocytes KW - spermatocytes KW - synapsis KW - telomeres KW - testes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96285 ER - TY - JOUR A1 - Alsheimer, Manfred A1 - Link, Jana A1 - Leubner, Monika A1 - Schmitt, Johannes A1 - Göb, Eva A1 - Benavente, Ricardo A1 - Jeang, Kuan-Teh A1 - Xu, Rener T1 - Analysis of Meiosis in SUN1 Deficient Mice Reveals a Distinct Role of SUN2 in Mammalian Meiotic LINC Complex Formation and Function N2 - LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne/homology) domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE) attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun12/2 meiocytes attached telomeres retained the capacity to form bouquetlike clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun12/2 mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional. Author summary: Correct genome haploidization during meiosis requires tightly regulated chromosome movements that follow a highly conserved choreography during prophase I. Errors in these movements cause subsequent meiotic defects, which typically lead to infertility. At the beginning of meiotic prophase, chromosome ends are tethered to the nuclear envelope (NE). This attachment of telomeres appears to be mediated by well-conserved membrane spanning protein complexes within the NE (LINC complexes). In mouse meiosis, the two main LINC components SUN1 and SUN2 were independently described to localize at the sites of telomere attachment. While SUN1 has been demonstrated to be critical for meiotic telomere attachment, the precise role of SUN2 in this context, however, has been discussed controversially in the field. Our current study was targeted to determine the factual capacity of SUN2 in telomere attachment and chromosome movements in SUN1 deficient mice. Remarkably, although telomere attachment is impaired in the absence of SUN1, we could find a yet undescribed SUN1-independent telomere attachment, which presumably is mediated by SUN2 and KASH5. This SUN2 mediated telomere attachment is stable throughout prophase I and functional in moving telomeres within the NE. Thus, our results clearly indicate that SUN1 and SUN2, at least partially, fulfill redundant meiotic functions. KW - telomeres KW - spermatocytes KW - Oocytes KW - meiosis KW - protein domains KW - cytoskeleton KW - synapsis KW - homologous chromosomes Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111355 ER -