TY - INPR A1 - Arrowsmith, Merle A1 - Mattock, James D. A1 - Böhnke, Julian A1 - Krummenacher, Ivo A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Direct access to a cAAC-supported dihydrodiborene and its dianion T2 - Chemical Communications N2 - The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2−}\) causes a decrease in the B–B bond order whereas the B–C bond orders increase. KW - carbenes KW - diborenes KW - boron KW - main-group chemistry KW - diborynes Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164276 N1 - This is the pre-peer reviewed version of the following article: Chemical Communications, 2018, 54, 4669-4672 which has been published at DOI: 10.1039/C8CC01580E ER - TY - INPR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Claes, Christina A1 - Ewing, William A1 - Krummenacher, Ivo A1 - Lubitz, Katharina A1 - Schneider, Christoph T1 - Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition N2 - Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron–boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+. KW - Aromaticity KW - Biradicals KW - Boron KW - Cycloaddition KW - Multiple bonds KW - Diborane KW - Cycloaddition Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142500 ER - TY - INPR A1 - Wang, Sunewang R. A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Dewhurst, Rian D. A1 - Kelch, Hauke A1 - Krummenacher, Ivo A1 - Mattock, James D. A1 - Müssig, Jonas H. A1 - Thiess, Torsten A1 - Vargas, Alfredo A1 - Zhang, Jiji T1 - Engineering a Small HOMO-LUMO Gap and Intramolecular B–B Hydroarylation by Diborene/Anthracene Orbital Intercalation T2 - Angewandte Chemie, International Edition N2 - The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B–B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV–vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B–B and C\(^1\)–H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9. KW - boron KW - small HOMO-LUMO gap KW - diborenes KW - borylation KW - hydroarylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148126 N1 - This is the pre-peer reviewed version of the following article: S. R. Wang, M. Arrowsmith, J. Böhnke, H. Braunschweig, T. Dellermann, R. D. Dewhurst, H. Kelch, I. Krummenacher, J. D. Mattock, J. H. Müssig, T. Thiess, A. Vargas, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8009., which has been published in final form at DOI: 10.1002/anie.201704063. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 56 IS - 27 ER - TY - JOUR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Claes, Christina A1 - Ewing, William A1 - Krummenacher, Ivo A1 - Lubitz, Katharina A1 - Schneider, Christoph T1 - Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition JF - Angewandte Chemie, International Edition N2 - Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron–boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic dibora- benzene compound, a 2  π-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2  π-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C\(_6\)H\(_6\) and C\(_4\)H\(_4\)\(^{2+}\), and homoaromatic C\(_4\)H\(_5\)\(^+\). KW - Aromaticity KW - Biradicals KW - Boron KW - Cycloaddition KW - Multiple bonds Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138226 N1 - This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2016, 55, 11271–11275, which has been published in final form at 10.1002/anie.201602384. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 55 ER - TY - JOUR A1 - Hermann, Alexander A1 - Fantuzzi, Felipe A1 - Arrowsmith, Merle A1 - Zorn, Theresa A1 - Krummenacher, Ivo A1 - Ritschel, Benedikt A1 - Radacki, Krzysztof A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Oxidation, Coordination, and Nickel-Mediated Deconstruction of a Highly Electron-Rich Diboron Analogue of 1,3,5-Hexatriene JF - Angewandte Chemie, International Edition N2 - The reductive coupling of an N-heterocyclic carbene (NHC) stabilized (dibromo)vinylborane yields a 1,2-divinyl- diborene, which, although isoelectronic to a 1,3,5-triene, displays no extended p conjugation because of twisting of the C\(_2\)B\(_2\)C\(_2\) chain. While this divinyldiborene coordinates to copper(I) and platinum(0) in an η\(^2\)-B\(_2\) and η\(^4\)-C\(_2\)B\(_2\) fashion, respectively, it undergoes a complex rearrangement to an η\(^4\)-1,3-diborete upon complexation with nickel(0). KW - boron KW - diborenes KW - carbenes KW - conjugation KW - density-functional calculations KW - rearrangements KW - structure elucidation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240652 VL - 59 IS - 36 ER -