TY - JOUR A1 - Neubauer, Henning A1 - Wirth, Clemens A1 - Ruf, Katharina A1 - Hebestreit, Helge A1 - Beer, Meinrad T1 - Acute Muscle Trauma due to Overexercise in an Otherwise Healthy Patient with Cystic Fibrosis JF - Case Reports in Pediatrics N2 - Cystic fibrosis (CF) is one of the most common inherited diseases and is caused by mutations in the CFTR gene. Although the pulmonary and gastrointestinal manifestations of the disease remain in the focus of treatment, recent studies have shown expression of the CFTR gene product in skeletal muscle cells and observed altered intramuscular \(Ca^{2+}\) release dynamics in CFTR-deficient animal models. Physical exercise is beneficial for maintaining fitness and well-being in CF patients and constitutes one aspect of modern multimodal treatment, which has considerably increased life span and reduced morbidity. We report on a case of acute muscle trauma resulting from excessive dumbbell exercise in a young adult with cystic fibrosis and describe clinical, laboratory and imaging characteristics of acute exercise-induced muscle injury. KW - Cystic fibrosis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123967 VL - 2012 IS - 527989 ER - TY - JOUR A1 - Ruf, Katharina A1 - Beer, Meinrad A1 - Köstler, Herbert A1 - Weng, Andreas Max A1 - Neubauer, Henning A1 - Klein, Alexander A1 - Platek, Kathleen A1 - Roth, Kristina A1 - Beneke, Ralph A1 - Hebestreit, Helge T1 - Size-adjusted muscle power and muscle metabolism in patients with cystic fibrosis are equal to healthy controls – a case control study JF - BMC Pulmonary Medicine N2 - Background Skeletal muscle function dysfunction has been reported in patients with cystic fibrosis (CF). Studies so far showed inconclusive data whether reduced exercise capacity is related to intrinsic muscle dysfunction in CF. Methods Twenty patients with CF and 23 age-matched controls completed an incremental cardiopulmonary cycling test. Further, a Wingate anaerobic test to assess muscle power was performed. In addition, all participants completed an incremental knee-extension test with 31P magnetic resonance spectroscopy to assess muscle metabolism (inorganic phosphate (Pi) and phosphocreatinine (PCr) as well as intracellular pH). In the MRI, muscle cross-sectional area of the M. quadriceps (qCSA) was also measured. A subgroup of 15 participants (5 CF, 10 control) additionally completed a continuous high-intensity, high-frequency knee-extension exercise task during 31P magnetic resonance spectroscopy to assess muscle metabolism. Results Patients with CF showed a reduced exercise capacity in the incremental cardiopulmonary cycling test (VO2peak: CF 77.8 ± 16.2%predicted (36.5 ± 7.4 ml/qCSA/min), control 100.6 ± 18.8%predicted (49.1 ± 11.4 ml/qCSA/min); p < 0.001), and deficits in anaerobic capacity reflected by the Wingate test (peak power: CF 537 ± 180 W, control 727 ± 186 W; mean power: CF 378 ± 127 W, control 486 ± 126 W; power drop CF 12 ± 5 W, control 8 ± 4 W. all: p < 0.001). In the knee-extension task, patients with CF achieved a significantly lower workload (p < 0.05). However, in a linear model analysing maximal work load of the incremental knee-extension task and results of the Wingate test, respectively, only muscle size and height, but not disease status (CF or not) contributed to explaining variance. In line with this finding, no differences were found in muscle metabolism reflected by intracellular pH and the ratio of Pi/PCr at submaximal stages and peak exercise measured through MRI spectroscopy. Conclusions The lower absolute muscle power in patients with CF compared to controls is exclusively explained by the reduced muscle size in this study. No evidence was found for an intrinsic skeletal muscle dysfunction due to primary alterations of muscle metabolism. KW - Cystic fibrosis KW - Exercise capacity KW - MRI spectroscopy KW - Muscle power KW - Phosphorylation KW - Lung disease, KW - Muscle function Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200981 VL - 19 ER -