TY - THES A1 - Bertho, Sylvain T1 - Biochemical and molecular characterization of an original master sex determining gene in Salmonids T1 - Biochemische und molekulare Charakterisierung des Mastergens bei der Sex-bestimmung in Salmoniden N2 - Sexual development is a fundamental and versatile process that shapes animal morphology, physiology and behavior. The underlying developmental process is composed of the sex determination and the sex differentiation. Sex determination mechanisms are extremely labile among taxa. The initial triggers of the sex determination process are often genetics called sex determining genes. These genes are expressed in the bipotential gonad and tilt the balance to a developmental program allowing the differentiation of either a testis or an ovary. Fish represent a large and fascinating vertebrate group to study both sex determination and sex differentiation mechanisms. To date, among the known sex determining genes, three gene families namely sox, dmrt and TGF-β factors govern this developmental program. As exception to this rule, sdY “sexually dimorphic on the Y” does not belong to one of these families as it comes from the duplication / evolution of an ancestor gene related to immunity, i.e., the interferon related factor 9, irf9. sdY is the master sex determining gene in salmonids, a group of fishes that include species such as rainbow trout and Atlantic salmon. The present study was aimed to firstly characterize the features of SdY protein. Results indicate that SdY is predominantly localized in the cytoplasm tested in various fish and mammalian cell lines and confirmed by different methods. Predictive in silico analysis revealed that SdY is composed of a β-sandwich core surrounded by three α-helices as well specific characteristics conferring a putative protein-protein interaction site. Secondly, the study was aimed to understand how SdY could trigger testicular differentiation. SdY is a truncated divergent version of Irf9 that has a conserved protein-protein domain but lost the DNA interaction domain of its ancestor gene. It was then hypothesized that SdY could initiate testicular differentiation by protein-protein interactions. To evaluate this we first conducted a yeast-two-hybrid screen that revealed a high proportion of transcription factors including fox proteins. Using various biochemical and cellular methods we confirm an interaction between SdY and Foxl2, a major transcription factor involved in ovarian differentiation and identity maintenance. Interestingly, the interaction of SdY with Foxl2 leads to nuclear translocation of SdY from the cytoplasm. Furthermore, this SdY translocation mechanism was found to be specific to fish Foxl2 and to a lesser extend Foxl3 and not other Fox proteins or mammalian FoxL2. In addition, we found that this interaction allows the stabilization of SdY and prevents its degradation. Finally, to better decipher SdY action we used as a model a mutated version of SdY that was identified in XY females of Chinook salmon natural population. Results show that this mutation induces a local conformation defect obviously leading to a misfolded protein and a quick degradation. Moreover, the mutated version compromised the interaction with Foxl2 defining a minimal threshold to induce testicular differentiation. Altogether results from my thesis propose that SdY would trigger testicular differentiation in salmonids by preventing Foxl2 to promote ovarian differentiation. Further research should be now carried out on how this interaction of SdY and Foxl2 acts in-vivo. N2 - Le développement du sexe est un processus fondamental et versatile qui forme la morphologie, la physiologie et le comportement des animaux. Le processus de développement sous-jacent est composé de la détermination et de la différentiation du sexe. Les mécanismes de détermination du sexe sont extrêment labile parmi les taxons. Les signaux initiaux du processus de détermination du sexe sont souvent génétiques et nommés gènes de détermination du sexe. Ces gènes sont exprimés dans la gonade bipotente et font pencher l’équilibre vers un programme de développement permettant la formation soit d’un testicule soit d’un ovaire. Les poissons représentent un large et fascinant groupe de vertébrés pour étudier les processus de détermination et de différentiation du sexe. A l’heure actuelle, parmi les gènes de détermination connus, trois familles de gènes nommément sox, dmrt and les facteurs TGF-β gouvernent ce processus de développement. Comme exception à cette règle, sdY « sexually dimorphic on the Y » n’appartient à aucune de ces familles puisqu’il provient d’une duplication/évolution d’un gène ancestral de l’immunité, c’est-à-dire d’un facteur lié à l’interféron, irf9. sdY est le gène maître de la détermination du sexe chez les salmonidés, un groupe de poissons incluant des espèces tel que la truite arc-en-ciel et le saumon Altantique. L’étude présentée avait pour but de premièrement caractériser les propriétés de la protéine SdY. Les résultats indiquent que SdY est localisée de façon prédominante dans le cytoplasme testés dans diverses cellules de poissons et de mammifères et confirmé par des différentes méthodes. Une analyse in silico prédictive a révélé que SdY est composé d’un core β-sandwich entouré par trois hélices-α ainsi que des caractéristiques lui conférant un site d’interaction protéine-protéine. Deuxièment, l’étude avait pour but de comprendre comment SdY pouvait entraîner la différentiation testiculaire. SdY est une version tronquée divergente de Irf9 qui a conservé le domaine protéine-protéine mais a perdu le domaine d’interaction à l’ADN présent dans le gène ancestral. Il a été proposé que SdY entraîne la différentiation testiculaire par interaction(s) protéine-protéine. Afin d’évaluer cette hypothèse, un crible double-hybride en système levure a révélé une forte proportion de facteurs de transcription incluant les protéines fox. En utilisant de nombreuses méthodes au niveau cellulaire et biochimique, nous avons confirmé une interaction entre SdY et Foxl2, un facteur majeur impliqué dans la différentiation ovarienne et gardien de son identité. De façon intéressante, l’interaction de SdY avec Foxl2 conduit à une translocation nucléaire de SdY à partir du cytoplasme. De plus, le mécanisme de translocation de SdY est spécifique à la protéine Foxl2 et dans une moindre mesure à Foxl3 parmi les protéines Fox de poissons ou bien des protéines FoxL2 de mammifères. Puis, nous avons montré que cette interaction permet la stabilisation de SdY et empêche sa dégradation. Enfin, pour mieux décrypter l’action de SdY, nous avons utilisé comme modèle une version mutée qui a été identifiée dans une population naturelle de saumon Chinook avec des individus XY femelles. Les résultats montrent que la mutation induit un défaut de conformation local menant à une protéine mal-repliée et à sa dégradation. De plus, la version mutée compromet l’interaction avec Foxl2 définissant un seuil minimal d’induction de la différentiation testiculaire. Les résultats de ma thèse pris dans leur ensemble proposent que SdY pourrait entraîner la différentiation testiculaire chez les salmonidés en empêchant Foxl2 d’induire la différentiation ovarienne. Les recherches doivent se poursuivre dans le but de comprendre comment l’interaction SdY avec Foxl2 fonctionne in vivo. N2 - Sexuelle Entwicklung ist ein grundlegender und vielfältiger Prozess, der die Morphologie, Physiologie und das Verhalten von Tieren gestaltet. Der zugrundeliegende Entwicklungsprozess besteht aus der Geschlechtsbestimmung und der Geschlechtsdifferenzierung. Die Mechanismen der Geschlechtsbestimmung sind sehr instabil zwischen verschiedenen Arten. Die Auslöser des Prozesses der Geschlechtsbestimmung sind oft genetischen Ursprungs wie geschlechtsbestimmende Gene. Diese Gene werden in den bipotentialen Gonaden exprimiert und steuern die Balance eines entwicklungsgemäßen Programms, das die Differenzierung zum Testis oder Ovar erlaubt. Fische repräsentieren eine umfangreiche und faszinierende Gruppe von Vertebraten, um die Mechanismen der Geschlechtsbestimmung und –differenzierung zu untersuchen. Bislang ist bekannt, dass –unter den bekannten geschlechtsbestimmenden Genen- die drei Gen-Familien sox, dmrt und die TGFß-Faktoren dieses Entwicklungsprogramm steuern. Als Ausnahme von dieser Regel ist sdY „sexually dimorphic on the Y“ keiner dieser Familien zugehörig da es von der Duplikation / Evolution eines Vorgänger-Gens, das mit Immunität wie z.B. interferon related factor9, irf9, in Verbindung steht, herrührt. sdY ist das Mastergen der Geschlechtsbestimmung in Salmoniden, die als Gruppe von Fischen Arten wie die Regenbogenforelle und den Atlantischen Lachs umfassen. Das Ziel der vorliegenden Arbeit war es zunächst die Eigenschaften des SdY Proteins zu charakterisieren. Die Ergebnisse zeigen, dass SdY vor allem im Zytoplasma lokalisiert ist. Dies wurde in verschiedenen Fischen und Säugetier Zelllinien untersucht und mit Hilfe verschiedener Methoden bestätigt. Prädiktive in silico Analysen zeigten, dass SdY aus einem ß-sandwich Kern besteht, der von drei α-Helices umgeben ist sowie spezifischen Eigenschaften für eine putative Protein-Protein Interaktion Stelle. Das zweite Ziel der vorliegenden Arbeit war es, zu verstehen, wie SdY die testikuläre Differenzierung auslösen könnte. SdY ist eine verkürzte, divergente Version von Irf9, das eine konservierte Protein-Protein Domäne aufweist, jedoch seine DNA Interaktion Domäne a seines Vorläufer Gens verloren hat. Daher wurde angenommen, dass SdY die testikuläre Differenzierung durch Protein-Protein Interaktion initiieren könnte. Um diese Hypothese zu bestätigen führten wir zuerst einen Yeast Two-Hybrid Screen durch, der einen hohen Anteil an Transkriptionsfaktoren darunter fox Proteine zeigte. Unter Einsatz verschiedener biochemischer und zellulärer Methoden bestätigten wir eine Interaktion zwischen SdY und Foxl2, einem wesentlichen Transkriptionsfaktor, der in die Differenzierung und die Erhaltung der Identität der Ovarien involviert ist. Interessanterweise führt die Interaktion von SdY mit Foxl2 zu einer nukleären Translokation von SdY aus dem Zytoplasma. Außerdem wurde festgestellt, dass dieser SdY Translokations-Mechanismus für das Fisch Foxl2 und in einem geringerem Maße für Foxl3 spezifisch ist aber nicht für andere Fox Proteine oder Säuger FoxL2. Des Weiteren haben wir herausgefunden, dass diese Interaktion die Stabilisierung von SdY ermöglicht und sein Abbau verhindert. Zuletzt haben wir ein Modell einer mutierten Version von SdY benutzt, die in XY Weibchen der natürlichen Population der Königslachse identifiziert wurde, um die Wirkung von SdY besser zu entschlüsseln. Die Ergebnisse zeigen, dass diese Mutation einen lokalen Konformationsdefekt verursacht, der zu fehlgefalteten Proteinen und einem raschen Abbau führt. Darüber hinaus beeinträchtigt die mutierte Version die Interaktion mit FoxL2 und definiert einen minimalen Grenzwert, um die testikuläre Differenzierung zu induzieren. Insgesamt deuten die Ergebnisse meiner Dissertation darauf hin, dass SdY die testikuläre Differenzierung in Salmoniden auslöst, indem es verhindert, dass Foxl2 die Differenzierung der Ovarien fördert. In Zukunft soll erforscht werden, wie sich die Interaktion von SdY und Foxl2 in-vivo auswirkt. KW - Fish Sex determination KW - gonad development KW - SdY KW - salmonids KW - Lachsartige KW - Geschlechtsdifferenzierung KW - Molekulargenetik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139130 ER -