TY - JOUR A1 - Hartl, Maximilian J. A1 - Bodem, Jochen A1 - Jochheim, Fabian A1 - Rethwilm, Axel A1 - Rösch, Paul A1 - Wöhrl, Birgitta M. T1 - Regulation of foamy virus protease activity by viral RNA JF - Retrovirology N2 - No abstract available. KW - Virologie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142248 VL - 8 IS - Suppl. 1 ER - TY - JOUR A1 - Kasang, Christa A1 - Kalluvya, Samuel A1 - Majinge, Charles A1 - Stich, August A1 - Bodem, Jochen A1 - Kongola, Gilbert A1 - Jacobs, Graeme B. A1 - Mllewa, Mathias A1 - Mildner, Miriam A1 - Hensel, Irina A1 - Horn, Anne A1 - Preiser, Wolfgang A1 - van Zyl, Gert A1 - Klinker, Hartwig A1 - Koutsilieri, Eleni A1 - Rethwilm, Axel A1 - Scheller, Carsten A1 - Weissbrich, Benedikt T1 - HIV drug resistance (HIVDR) in antiretroviral therapy-naive patients in Tanzania not eligible for WHO threshold HIVDR survey is dramatically high N2 - Background: The World Health Organization (WHO) has recommended guidelines for a HIV drug resistance (HIVDR) survey for resource-limited countries. Eligibility criteria for patients include age below 25 years in order to focus on the prevalence of transmitted HIVDR (tHIVDR) in newly-infected individuals. Most of the participating sites across Africa have so far reported tHIVDR prevalences of below 5%. In this study we investigated whether the rate of HIVDR in patients ,25 years is representative for HIVDR in the rest of the therapy-naive population. Methods and Findings: HIVDR was determined in 88 sequentially enrolled ART-naive patients from Mwanza, Tanzania (mean age 35.4 years). Twenty patients were aged, 25 years and 68 patients were aged 25–63 years. The frequency of HIVDR in the study population was 14.8% (95%; CI 0.072–0.223) and independent of NVP-resistance induced by prevention of mother-to-child transmission programs. Patients .25 years had a significantly higher HIVDR frequency than younger patients (19.1%; 95% CI 0.095–0.28) versus 0%, P = 0.0344). In 2 out of the 16 patients with HIVDR we found traces of antiretrovirals (ARVs) in plasma. Conclusions: ART-naive patients aged over 25 years exhibited significantly higher HIVDR than younger patients. Detection of traces of ARVs in individuals with HIVDR suggests that besides transmission, undisclosed misuse of ARVs may constitute a significant factor in the generation of the observed high HIVDR rate. The current WHO tHIVDR survey that is solely focused on the transmission of HIVDR and that excludes patients over 25 years of age may therefore result in substantial underestimation of the prevalence of HIVDR in the therapy-naive population. Similar studies should be performed also in other areas to test whether the so far reported optimistic picture of low HIVDR prevalence in young individuals is really representative for the rest of the ART-naive HIV-infected population. KW - Tansania KW - HIV Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69024 ER - TY - JOUR A1 - Berkhout, Ben A1 - Bodem, Jochen A1 - Erlwein, Otto A1 - Herchenröder, Ottmar A1 - Khan, Arifa S. A1 - Lever, Andrew M. L. A1 - Lindemann, Dirk A1 - Linial, Maxine L. A1 - Löchelt, Martin A1 - McClure, Myra O. A1 - Scheller, Carsten A1 - Weiss, Robin A. T1 - Obituary: Axel Rethwilm (1959–2014) JF - Retrovirology N2 - No abstract available Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120781 VL - 11 IS - 85 ER - TY - JOUR A1 - Kasang, Christa A1 - Kalluvya, Samuel A1 - Majinge, Charles A1 - Stich, August A1 - Bodem, Jochen A1 - Kongola, Gilbert A1 - Jacobs, Graeme B. A1 - Mlewa, Mathias A1 - Mildner, Miriam A1 - Hensel, Irina A1 - Horn, Anne A1 - Preiser, Wolfgang A1 - van Zyl, Gert A1 - Klinker, Hartwig A1 - Koutsilieri, Eleni A1 - Rethwilm, Axel A1 - Scheller, Carsten A1 - Weissbrich, Benedikt T1 - HIV Drug Resistance (HIVDR) in Antiretroviral Therapy-Naïve Patients in Tanzania Not Eligible for WHO Threshold HIVDR Survey Is Dramatically High JF - PLoS One N2 - Background The World Health Organization (WHO) has recommended guidelines for a HIV drug resistance (HIVDR) survey for resource-limited countries. Eligibility criteria for patients include age below 25 years in order to focus on the prevalence of transmitted HIVDR (tHIVDR) in newly-infected individuals. Most of the participating sites across Africa have so far reported tHIVDR prevalences of below 5%. In this study we investigated whether the rate of HIVDR in patients <25 years is representative for HIVDR in the rest of the therapy-naïve population. Methods and Findings HIVDR was determined in 88 sequentially enrolled ART-naïve patients from Mwanza, Tanzania (mean age 35.4 years). Twenty patients were aged <25 years and 68 patients were aged 25–63 years. The frequency of HIVDR in the study population was 14.8% (95%; CI 0.072–0.223) and independent of NVP-resistance induced by prevention of mother-to-child transmission programs. Patients >25 years had a significantly higher HIVDR frequency than younger patients (19.1%; 95% CI 0.095–0.28) versus 0%, P = 0.0344). In 2 out of the 16 patients with HIVDR we found traces of antiretrovirals (ARVs) in plasma. Conclusions ART-naïve patients aged over 25 years exhibited significantly higher HIVDR than younger patients. Detection of traces of ARVs in individuals with HIVDR suggests that besides transmission, undisclosed misuse of ARVs may constitute a significant factor in the generation of the observed high HIVDR rate. The current WHO tHIVDR survey that is solely focused on the transmission of HIVDR and that excludes patients over 25 years of age may therefore result in substantial underestimation of the prevalence of HIVDR in the therapy-naïve population. Similar studies should be performed also in other areas to test whether the so far reported optimistic picture of low HIVDR prevalence in young individuals is really representative for the rest of the ART-naïve HIV-infected population. KW - Tanzania KW - antimicrobial resistance KW - antiretroviral therapy KW - HIV KW - sequence databases KW - mutation databases KW - antiretrovirals KW - HIV diagnosis and management Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137988 VL - 6 IS - 8 ER - TY - JOUR A1 - Bodem, Jochen A1 - Rethwilm, Axel T1 - Evolution of Foamy Viruses: The Most Ancient of All Retroviruses JF - Viruses N2 - Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed. KW - foamy viruses KW - retroviruses KW - hepadnaviruses KW - evolution KW - genetic conservation KW - recombination Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97312 ER - TY - JOUR A1 - Jacobs, Graeme A1 - Bock, Stefanie A1 - Schuch, Anita A1 - Moschall, Rebecca A1 - Schrom, Eva-Maria A1 - Zahn, Juliane A1 - Reuter, Christian A1 - Preiser, Wolfgang A1 - Rethwilm, Axel A1 - Engelbrecht, Susan A1 - Krekau, Thomas A1 - Bodem, Jochen T1 - Construction of a high titer Infectious HIV-1 subtype C proviral clone from South Africa N2 - The Human Immunodeficiency Virus type 1 (HIV-1) subtype C is currently the predominant subtype worldwide. Cell culture studies of Sub-Saharan African subtype C proviral plasmids are hampered by the low replication capacity of the resulting viruses, although viral loads in subtype C infected patients are as high as those from patients with subtype B. Here, we describe the sequencing and construction of a new HIV-1 subtype C proviral clone (pZAC), replicating more than one order of magnitude better than the previous subtype C plasmids. We identify the env-region for being the determinant for the higher viral titers and the pZAC Env to be M-tropic. This higher replication capacity does not lead to a higher cytotoxicity compared to previously described subtype C viruses. In addition, the pZAC Vpu is also shown to be able to down-regulate CD4, but fails to fully counteract CD317. KW - HIV KW - HIV-1; subtype C; proviral plasmid; viral replication; resistance assays; Vpu; CD317; CD4 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76340 ER - TY - BOOK A1 - Bock, Stefanie A1 - Gauch, Fabian A1 - Giernat, Yannik A1 - Hillebrand, Frank A1 - Kozlova, Darja A1 - Linck, Lisa A1 - Moschall, Rebecca A1 - Sauer, Markus A1 - Schenk, Christian A1 - Ulrich, Kristina A1 - Bodem, Jochen T1 - HIV-1 : Lehrbuch von Studenten für Studenten T1 - HIV-1 : a textbook for students written by students N2 - Dies ist ein Lehrbuch über die HIV-1 Replikation, Pathogenese und Therapie. Es richtet sich an Studenten der Biologie und der Medizin, die etwas mehr über HIV erfahren wollen und stellt neben virologischen Themen auch die zellulären Grundlagen dar. Es umfasst den Viruseintritt, die reverse Transkription, Genom-Integration, Transkriptionsregualtion, die Kotrolle des Spleißens, der Polyadenylierung und des RNA-Exportes. Die Darstellung wird abgerundet mit Kapiteln zum intrazellulärem Transport, zu Nef und zum Virusassembly. In zwei weiteren Kapitel wird die HIV-1 Pathogenese und die Therapie besprochen. Zur Lernkontrolle sind den Kapiteln Fragen und auch Klausurfragen angefügt. KW - HIV KW - Retroviren KW - Lehrbuch KW - Viren KW - Virologie KW - Transkription KW - RNS KW - Therapie KW - Pathogenese KW - Epidemiologie KW - RNA-Export KW - Polyadenylierung KW - Reverse Transkription KW - Transkription Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78980 SN - 978-3-923959-90-7 ER - TY - JOUR A1 - Bodem, Jochen A1 - Schrom, Eva-Maria A1 - Moschall, Rebecca A1 - Hartl, Maximilian J. A1 - Weitner, Helena A1 - Fecher, David A1 - Langemeier, Jörg A1 - Wöhrl, Brigitta M. T1 - U1snRNP-mediated suppression of polyadenylation in conjunction with the RNA structure controls poly (A) site selection in foamy viruses JF - Retrovirology N2 - Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation sites. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the 3′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the U1 small nuclear ribonucleoprotein (U1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the 3′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks U1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that U1snRNP is able to suppress the usage of intronic cryptic polyadenylation sites in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5’end of their RNA. At the 3’end, Foamy viruses use a secondary structure to presumably block access of U1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of U1snRNP to cellular polyadenylation site selection and to the regulation of gene expression. KW - Polyadenylation KW - foamy virus KW - RNA structure KW - Major splice donor KW - Polyadenylierung KW - RNS Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96085 UR - http://www.retrovirology.com/content/10/1/55 ER - TY - JOUR A1 - Spannaus, Ralf A1 - Hartl, Maximilian J. A1 - Wöhrl, Birgitta M. A1 - Rethwilm, Axel A1 - Bodem, Jochen T1 - The prototype foamy virus protease is active independently of the integrase domain N2 - Background: Recently, contradictory results on foamy virus protease activity were published. While our own results indicated that protease activity is regulated by the viral RNA, others suggested that the integrase is involved in the regulation of the protease. Results: To solve this discrepancy we performed additional experiments showing that the protease-reverse transcriptase (PR-RT) exhibits protease activity in vitro and in vivo, which is independent of the integrase domain. In contrast, Pol incorporation, and therefore PR activity in the viral context, is dependent on the integrase domain. To further analyse the regulation of the protease, we incorporated Pol in viruses by expressing a GagPol fusion protein, which supported near wild-type like infectivity. A GagPR-RT fusion, lacking the integrase domain, also resulted in wild-type like Gag processing, indicating that the integrase is dispensable for viral Gag maturation. Furthermore, we demonstrate with a trans-complementation assays that the PR in the context of the PR-RT protein supports in trans both, viral maturation and infectivity. Conclusion: We provide evidence that the FV integrase is required for Pol encapsidation and that the FV PR activity is integrase independent. We show that an active PR can be encapsidated in trans as a GagPR-RT fusion protein. KW - Medizin KW - Foamy virus KW - Regulation of protease activity KW - PARM KW - Integrase KW - GagPol fusion protein Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75370 ER - TY - JOUR A1 - Cyran, Laura A1 - Serfling, Julia A1 - Kirschner, Luisa A1 - Raifer, Hartmann A1 - Lohoff, Michael A1 - Hermanns, Heike M. A1 - Kerstan, Andreas A1 - Bodem, Jochen A1 - Lutz, Manfred B. T1 - Flt3L, LIF, and IL‐10 combination promotes the selective in vitro development of ESAM\(^{low}\) cDC2B from murine bone marrow JF - European Journal of Immunology N2 - The development of two conventional dendritic cells (DC) subsets (cDC1 and cDC2) and the plasmacytoid DC (pDC) in vivo and in cultures of bone marrow (BM) cells is mediated by the growth factor Flt3L. However, little is known about the factors that direct the development of the individual DC subsets. Here, we describe the selective in vitro generation of murine ESAM\(^{low}\) CD103\(^{-}\) XCR1\(^{-}\) CD172a\(^{+}\) CD11b\(^{+}\) cDC2 from BM by treatment with a combination of Flt3L, LIF, and IL‐10 (collectively named as FL10). FL10 promotes common dendritic cell progenitors (CDP) proliferation in the cultures, similar to Flt3L and CDP sorted and cultured in FL10 generate exclusively cDC2. These cDC2 express the transcription factors Irf4, Klf4, and Notch2, and their growth is reduced using BM from Irf4\(^{-/-}\) mice, but the expression of Batf3 and Tcf4 is low. Functionally they respond to TLR3, TLR4, and TLR9 signals by upregulation of the surface maturation markers MHC II, CD80, CD86, and CD40, while they poorly secrete proinflammatory cytokines. Peptide presentation to TCR transgenic OT‐II cells induced proliferation and IFN‐γ production that was similar to GM‐CSF‐generated BM‐DC and higher than Flt3L‐generated DC. Together, our data support that FL10 culture of BM cells selectively promotes CDP‐derived ESAM\(^{low}\) cDC2 (cDC2B) development and survival in vitro. KW - dendritic cells KW - cDC2 subset KW - Flt3L KW - LIF KW - IL‐10 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312448 VL - 52 IS - 12 SP - 1946 EP - 1960 ER - TY - JOUR A1 - Batool, Farwa A1 - Saeed, Muhammad A1 - Saleem, Hafiza Nosheen A1 - Kirschner, Luisa A1 - Bodem, Jochen T1 - Facile synthesis and in vitro activity of N-substituted 1,2-benzisothiazol-3(2H)-ones against dengue virus NS2BNS3 protease JF - Pathogens N2 - Several new N-substituted 1,2-benzisothiazol-3(2H)-ones (BITs) were synthesised through a facile synthetic route for testing their anti-dengue protease inhibition. Contrary to the conventional multistep synthesis, we achieved structurally diverse BITs with excellent yields using a two-step, one-pot reaction strategy. All the synthesised compounds were prescreened for drug-like properties using the online Swiss Absorption, Distribution, Metabolism and Elimination (SwissADME) model, indicating their favourable pharmaceutical properties. Thus, the synthesised BITs were tested for inhibitory activity against the recombinant dengue virus serotype-2 (DENV-2) NS2BNS3 protease. Dose–response experiments and computational docking analyses revealed that several BITs bind to the protease in the vicinity of the catalytic triad with IC\(_{50}\) values in the micromolar range. The DENV2 infection assay showed that two BITs, 2-(2-chlorophenyl)benzo[d]isothiazol-3(2H)-one and 2-(2,6-dichlorophenyl)benzo[d]isothiazol-3(2H)-one, could suppress DENV replication and virus infectivity. These results indicate the potential of BITs for developing new anti-dengue therapeutics. KW - dengue virus KW - direct-acting antivirals KW - 1,2-benzisothiazolinone KW - drug discovery KW - infectivity assays Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236605 SN - 2076-0817 VL - 10 IS - 4 ER - TY - JOUR A1 - Schneider, Anna A1 - Corona, Angela A1 - Spöring, Imke A1 - Jordan, Mareike A1 - Buchholz, Bernd A1 - Maccioni, Elias A1 - Di Santo, Roberto A1 - Bodem, Jochen A1 - Tramontano, Enzo A1 - Wöhrl, Birgitta M. T1 - Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors JF - Nucleic Acids Research N2 - We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs. KW - ribonuclease H KW - HIV-1 subtype AG KW - azidothymidine KW - reverse transcriptase KW - multi-drug resistance Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166423 VL - 44 IS - 5 ER - TY - JOUR A1 - Liu, Fengming A1 - Han, Kun A1 - Blair, Robert A1 - Kenst, Kornelia A1 - Qin, Zhongnan A1 - Upcin, Berin A1 - Wörsdörfer, Philipp A1 - Midkiff, Cecily C. A1 - Mudd, Joseph A1 - Belyaeva, Elizaveta A1 - Milligan, Nicholas S. A1 - Rorison, Tyler D. A1 - Wagner, Nicole A1 - Bodem, Jochen A1 - Dölken, Lars A1 - Aktas, Bertal H. A1 - Vander Heide, Richard S. A1 - Yin, Xiao-Ming A1 - Kolls, Jay K. A1 - Roy, Chad J. A1 - Rappaport, Jay A1 - Ergün, Süleyman A1 - Qin, Xuebin T1 - SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro JF - Frontiers in Cellular and Infection Microbiology N2 - SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure. KW - endothelial cell infection KW - animal models KW - SARS-CoV-2 KW - aorta ring KW - hACE2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241948 SN - 2235-2988 VL - 11 ER - TY - JOUR A1 - Moschall, Rebecca A1 - Denk, Sarah A1 - Erkelenz, Steffen A1 - Schenk, Christian A1 - Schaal, Heiner A1 - Bodem, Jochen T1 - A purine-rich element in foamy virus pol regulates env splicing and gag/pol expression JF - Retrovirology N2 - Background: The foamy viral genome encodes four central purine-rich elements localized in the integrase-coding region of pol. Previously, we have shown that the first two of these RNA elements (A and B) are required for protease dimerization and activation. The D element functions as internal polypurine tract during reverse transcription. Peters et al., described the third element (C) as essential for gag expression suggesting that it might serve as an RNA export element for the unspliced genomic transcript. Results: Here, we analysed env splicing and demonstrate that the described C element composed of three GAA repeats known to bind SR proteins regulates env splicing, thus balancing the amount of gag/pol mRNAs. Deletion of the C element effectively promotes a splice site switch from a newly identified env splice acceptor to the intrinsically strong downstream localised env 3′ splice acceptor permitting complete splicing of almost all LTR derived transcripts. We provide evidence that repression of this env splice acceptor is a prerequisite for gag expression. This repression is achieved by the C element, resulting in impaired branch point recognition and SF1/mBBP binding. Separating the branch point from the overlapping purine-rich C element, by insertion of only 20 nucleotides, liberated repression and fully restored splicing to the intrinsically strong env 3′ splice site. This indicated that the cis-acting element might repress splicing by blocking the recognition of essential splice site signals. Conclusions: The foamy viral purine-rich C element regulates splicing by suppressing the branch point recognition of the strongest env splice acceptor. It is essential for the formation of unspliced gag and singly spliced pol transcripts. KW - splice regulation KW - foamy viruses KW - branch point KW - purine-rich element KW - RNA export Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157614 VL - 14 IS - 10 ER - TY - JOUR A1 - Sivarajan, Rinu A1 - Oberwinkler, Heike A1 - Roll, Valeria A1 - König, Eva-Maria A1 - Steinke, Maria A1 - Bodem, Jochen T1 - A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses JF - BMC Complementary Medicine and Therapies N2 - Background Anthocyanin-containing plant extracts and carotenoids, such as astaxanthin, have been well-known for their antiviral and anti-inflammatory activity, respectively. We hypothesised that a mixture of Ribes nigrum L. (Grossulariaceae) (common name black currant (BC)) and Vaccinium myrtillus L. (Ericaceae) (common name bilberry (BL)) extracts (BC/BL) with standardised anthocyanin content as well as single plant extracts interfered with the replication of Measles virus and Herpesviruses in vitro. Methods We treated cell cultures with BC/BL or defined single plant extracts, purified anthocyanins and astaxanthin in different concentrations and subsequently infected the cultures with the Measles virus (wild-type or vaccine strain Edmonston), Herpesvirus 1 or 8, or murine Cytomegalovirus. Then, we analysed the number of infected cells and viral infectivity and compared the data to non-treated controls. Results The BC/BL extract inhibited wild-type Measles virus replication, syncytia formation and cell-to-cell spread. This suppression was dependent on the wild-type virus-receptor-interaction since the Measles vaccine strain was unaffected by BC/BL treatment. Furthermore, the evidence was provided that the delphinidin-3-rutinoside chloride, a component of BC/BL, and purified astaxanthin, were effective anti-Measles virus compounds. Human Herpesvirus 1 and murine Cytomegalovirus replication was inhibited by BC/BL, single bilberry or black currant extracts, and the BC/BL component delphinidin-3-glucoside chloride. Additionally, we observed that BC/BL seemed to act synergistically with aciclovir. Moreover, BC/BL, the single bilberry and black currant extracts, and the BC/BL components delphinidin-3-glucoside chloride, cyanidin-3-glucoside, delphinidin-3-rutinoside chloride, and petunidin-3-galactoside inhibited human Herpesvirus 8 replication. Conclusions Our data indicate that Measles viruses and Herpesviruses are differentially susceptible to a specific BC/BL mixture, single plant extracts, purified anthocyanins and astaxanthin. These compounds might be used in the prevention of viral diseases and in addition to direct-acting antivirals, such as aciclovir. KW - anthocyanin KW - astaxanthin KW - bilberry KW - black currant KW - herpesvirus KW - measels virus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301423 VL - 22 ER - TY - JOUR A1 - Weißbach, Susann A1 - Heredia-Guerrero, Sofia Catalina A1 - Barnsteiner, Stefanie A1 - Großhans, Lukas A1 - Bodem, Jochen A1 - Starz, Hanna A1 - Langer, Christian A1 - Appenzeller, Silke A1 - Knop, Stefan A1 - Steinbrunn, Torsten A1 - Rost, Simone A1 - Einsele, Hermann A1 - Bargou, Ralf Christian A1 - Rosenwald, Andreas A1 - Stühmer, Thorsten A1 - Leich, Ellen T1 - Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines JF - Cancers N2 - Approximately 20% of multiple myeloma (MM) cases harbor a point mutation in KRAS. However, there is still no final consent on whether KRAS-mutations are associated with disease outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRAS\(^{p.G12C}\) entered into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy and autologous stem cell transplantation. Moreover, the functional impact of KRAS\(^{p.G12A}\) and the exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically, KRAS\(^{WT}\), KRAS\(^{p.G12A}\), KRAS\(^{p.A146T}\), and KRAS\(^{p.A146V}\) were overexpressed in HEK293 cells and the KRAS\(^{WT}\) MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells. KW - multiple myeloma KW - KRAS KW - MEK/ERK-signaling KW - AKT-signaling KW - amplicon sequencing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200617 SN - 2072-6694 VL - 12 IS - 2 ER - TY - JOUR A1 - Silva-Vilches, Cinthia A1 - Pletinckx, Katrien A1 - Lohnert, Miriam A1 - Pavlovic, Vladimir A1 - Ashour, Diyaaeldin A1 - John, Vini A1 - Vendelova, Emilia A1 - Kneitz, Susanne A1 - Zhou, Jie A1 - Chen, Rena A1 - Reinheckel, Thomas A1 - Mueller, Thomas D. A1 - Bodem, Jochen A1 - Lutz, Manfred B. T1 - Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion JF - PLoS ONE N2 - Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3\(^{+}\) induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT\(^{hi}\), CT\(^{lo}\)) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT\(^{hi}\) conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT\(^{lo}\)- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3\(^{+}\) iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT\(^{lo}\)- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3\(^{+}\) Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae. KW - small interfering RNAs KW - toxins KW - regulatory T cells KW - T cells KW - cytokines KW - cholera KW - cell differentiation KW - immune evasion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158244 VL - 12 IS - 7 ER - TY - JOUR A1 - Geiger, Nina A1 - König, Eva-Maria A1 - Oberwinkler, Heike A1 - Roll, Valeria A1 - Diesendorf, Viktoria A1 - Fähr, Sofie A1 - Obernolte, Helena A1 - Sewald, Katherina A1 - Wronski, Sabine A1 - Steinke, Maria A1 - Bodem, Jochen T1 - Acetylsalicylic acid and salicylic acid inhibit SARS-CoV-2 replication in precision-cut lung slices JF - Vaccines N2 - Aspirin, with its active compound acetylsalicylic acid (ASA), shows antiviral activity against rhino- and influenza viruses at high concentrations. We sought to investigate whether ASA and its metabolite salicylic acid (SA) inhibit SARS-CoV-2 since it might use similar pathways to influenza viruses. The compound-treated cells were infected with SARS-CoV-2. Viral replication was analysed by RTqPCR. The compounds suppressed SARS-CoV-2 replication in cell culture cells and a patient-near replication system using human precision-cut lung slices by two orders of magnitude. While the compounds did not interfere with viral entry, it led to lower viral RNA expression after 24 h, indicating that post-entry pathways were inhibited by the compounds. KW - acetylsalicylic acid KW - salicylic acid KW - antiviral activity KW - aspirin KW - SARS-CoV-2 KW - precision-cut lung slices Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289885 SN - 2076-393X VL - 10 IS - 10 ER - TY - JOUR A1 - Avota, Elita A1 - Bodem, Jochen A1 - Chithelen, Janice A1 - Mandasari, Putri A1 - Beyersdorf, Niklas A1 - Schneider-Schaulies, Jürgen T1 - The Manifold Roles of Sphingolipids in Viral Infections JF - Frontiers in Physiology N2 - Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism – as far as they can be tolerated by cells and organisms – may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach. KW - sphingolipid KW - ceramide KW - sphingosine-1-phosphate KW - plasma membrane KW - virus entry KW - virus replication KW - virus budding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246975 SN - 1664-042X VL - 12 ER - TY - JOUR A1 - Zimniak, Melissa A1 - Kirschner, Luisa A1 - Hilpert, Helen A1 - Geiger, Nina A1 - Danov, Olga A1 - Oberwinkler, Heike A1 - Steinke, Maria A1 - Sewald, Katherina A1 - Seibel, Jürgen A1 - Bodem, Jochen T1 - The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue JF - Scientific Reports N2 - To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups. KW - SARS-CoV-2 KW - viral epidemiology KW - viral infection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259820 VL - 11 ER - TY - JOUR A1 - Brenner, Daniela A1 - Geiger, Nina A1 - Schlegel, Jan A1 - Diesendorf, Viktoria A1 - Kersting, Louise A1 - Fink, Julian A1 - Stelz, Linda A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Bodem, Jochen A1 - Seibel, Jürgen T1 - Azido-ceramides, a tool to analyse SARS-CoV-2 replication and inhibition — SARS-CoV-2 is inhibited by ceramides JF - International Journal of Molecular Sciences N2 - Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication. KW - ceramides KW - SARS-CoV-2 KW - azido-ceramides KW - sphingolipids Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313581 SN - 1422-0067 VL - 24 IS - 8 ER - TY - JOUR A1 - Geiger, Nina A1 - Diesendorf, Viktoria A1 - Roll, Valeria A1 - König, Eva-Maria A1 - Obernolte, Helena A1 - Sewald, Katherina A1 - Breidenbach, Julian A1 - Pillaiyar, Thanigaimalai A1 - Gütschow, Michael A1 - Müller, Christa E. A1 - Bodem, Jochen T1 - Cell type-specific anti-viral effects of novel SARS-CoV-2 main protease inhibitors JF - International Journal of Molecular Sciences N2 - Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner. KW - SARS-CoV-2 KW - protease inhibitors KW - cell line specificity pyridyl indole carboxylates KW - azapeptide nitriles KW - peptidomimetics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304034 SN - 1422-0067 VL - 24 IS - 4 ER - TY - JOUR A1 - Geiger, Nina A1 - Kersting, Louise A1 - Schlegel, Jan A1 - Stelz, Linda A1 - Fähr, Sofie A1 - Diesendorf, Viktoria A1 - Roll, Valeria A1 - Sostmann, Marie A1 - König, Eva-Maria A1 - Reinhard, Sebastian A1 - Brenner, Daniela A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Seibel, Jürgen A1 - Bodem, Jochen T1 - The acid ceramidase is a SARS-CoV-2 host factor JF - Cells N2 - SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2–RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor. KW - SARS-CoV-2 KW - ceramides KW - ceramidase KW - fluoxetine KW - acid sphingomyelinase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286105 SN - 2073-4409 VL - 11 IS - 16 ER -