TY - JOUR A1 - Bonte, Dries A1 - Travis, Justin M. J. A1 - De Clercq, Nele A1 - Zwertvaegher, Ingrid A1 - Lens, Luc T1 - Thermal conditions during juvenile development affect adult dispersal in a spider N2 - Abstract: Understanding the causes and consequences of dispersal is a prerequisite for the effective management of natural populations. Rather than treating dispersal as a fixed trait, it should be considered a plastic process that responds to both genetic and environmental conditions. Here, we consider how the ambient temperature experienced by juvenile Erigone atra, a spider inhabiting crop habitat, influences adult dispersal. This species exhibits 2 distinct forms of dispersal, ballooning (long distance) and rappelling (short distance). Using a half-sib design we raised individuals under 4 different temperature regimes and quantified the spiders' propensity to balloon and to rappel. Additionally, as an indicator of investment in settlement, we determined the size of the webs build by the spiders following dispersal. The optimal temperature regimes for reproduction and overall dispersal investment were 20 °C and 25 °C. Propensity to perform short-distance movements was lowest at 15 °C, whereas for long-distance dispersal it was lowest at 30 °C. Plasticity in dispersal was in the direction predicted on the basis of the risks associated with seasonal changes in habitat availability; long-distance ballooning occurred more frequently under cooler, spring-like conditions and short-distance rappelling under warmer, summer-like conditions. Based on these findings, we conclude that thermal conditions during development provide juvenile spiders with information about the environmental conditions they are likely to encounter as adults and that this information influences the spider's dispersal strategy. Climate change may result in suboptimal adult dispersal behavior, with potentially deleterious population level consequences. KW - Erigone atra KW - emigration KW - dispersal distance KW - immigration KW - behavior KW - plasticity KW - silk KW - body condition KW - seasonality Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48691 ER - TY - JOUR A1 - Bonte, Dries A1 - Maes, Dirk T1 - Trampling affects the distribution of specialised coastal dune arthropods N2 - Abstract: From a conservation point of view, species- tolerances towards disturbance are often generalised and lack reference to spatial scales and underlying processes. In order to investigate how average typical species react to habitat fragmentation and disturbance, we adopted a multi-species approach to address occupancy patterns of five specialised dune arthropods (butterflies Hipparchia semele, Issoria lathonia; grasshopper Oedipoda caerulescens; spiders Alopecosa fabrilis, Xysticus sabulosus) in recently fragmented coastal dune habitats which are subjected to varying levels and modes of local disturbance, i.e. trampling by cattle or people. Occupancy patterns were assessed during two successive years in 133 grey dune fragments of the Flemish coastal dunes (Belgium, France). By treating species as a random factor in our models, emphasis was placed on generalisations rather than documenting species-specific patterns. Our study demonstrates that deteriorating effects of local disturbance on arthropod incidence cannot be interpreted independent of its landscape context, and appear to be more severe when patch area and connectivity decrease. When controlled for patch area and trampling intensity, the probability of species occupancy in poorly connected patches is higher under cattle trampling than under recreation. Incidences additionally decrease with increasing intensity of cattle trampling, but increases with trampling by tourists. This study provides evidence of mode- and landscape-dependent effects of local disturbance on species occupancy patterns. Most importantly, it demonstrates that trampling of sensitive dune fragments will lead to local and metapopulation extinction in landscapes where trampling occurs in a spatially autocorrelated way, but that the outcome (spatial patterns) varies in relation to disturbance mode, indicating that effects of disturbance cannot be generalised. KW - Araneae KW - grazing KW - grey dunes KW - Lepidoptera KW - multispecies metapopulation KW - Orthoptera KW - recreation KW - trampling Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48274 ER - TY - JOUR A1 - Bonte, Dries A1 - Clercq, Nele De A1 - Zwertvaegher, Ingrid A1 - Lens, Luc T1 - Repeatability of dispersal behaviour in a common dwarf spider: evidence for different mechanisms behind short- and long-distance dispersal N2 - Abstract: 1. The response of dispersal towards evolution largely depends on its heritability for which upper limits are determined by the trait's repeatability. 2. In the Linyphiid spider E. atra, we were able to separate long- and short-distance dispersal behaviours (respectively ballooning and rappelling) under laboratory conditions. By performing repeated behavioural trials for females, we show that average dispersal trait values decrease with increasing testing days. By comparing mated and unmated individuals during two periods (before and after mating for the mated group, and the same two periods for the unmated group), we show that mating has no effect on the mean displayed dispersal behaviour or its within-individual variation. Repeatabilities were high and consistent for ballooning motivation, but not for rappelling. 3. Ballooning motivation can be regarded as highly individual-specific behaviour, while general pre-dispersal and rappelling behaviours showed more individual variation. Such difference in repeatability between long-and short-distance dispersal suggests that short-and long-distance dispersal events are triggered by different ecological and evolutionary mechanisms. Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48242 ER - TY - JOUR A1 - Bonte, Dries A1 - Lanckacker, Kjell A1 - Wiersma, Elisabeth A1 - Lens, Luc T1 - Web building flexibility of an orb-web spider in a heterogeneous agricultural landscape N2 - Abstract: Intensification of land-use in agricultural landscapes is responsible for a decline of biodiversity which provide important ecosystem services like pest-control. Changes in landscape composition may also induce behavioural changes of predators in response to variation in the biotic or abiotic environment. By controlling for environmentally confounding factors, we here demonstrate that the orb web spider Araneus diadematus alters its web building behaviour in response to changes in the composition of agricultural landscapes. Thereby, the species increases its foraging efficiency (i.e. investments in silk and web asymmetry) with an increase of agricultural land-use at intermediate spatial scales. This intensification is also related to a decrease in the abundance of larger prey. A negative effect of landscape properties at similar spatial scales on spider fitness was recorded when controlling for relative investments in capture thread length. This study consequently documents the web building flexibility in response to changes in landscape composition, possibly due to changes in prey availability. KW - Araneus diadematus KW - Araneidae KW - behavioural flexibility KW - orb web geometry KW - landscape KW - model selection KW - semi-natural habitats Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48262 ER - TY - JOUR A1 - Lambeets, Kevin A1 - Vandegehuchte, Martijn L. A1 - Maelfait, Jean-Pierre A1 - Bonte, Dries T1 - Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning N2 - River banks are naturally disturbed habitats, in which local flood events and the landscape structure are expected to govern riparian species assemblages. Not solely effects of flooding per se, but also related changes in vegetation structure will affect species’ distribution. By elucidating the relationships between species’ occurrence and multivariate habitat conditions on a restricted spatial scale, insight into conservation strategies to preserve riparian species is gained. Ordination and grouping methods revealed important environmental and functional trait constraints on species composition of predatory riparian arthropod assemblages. Mainly flooding disturbance appeared to affect spider and carabid beetle species composition. Habitat affinity and dispersal ability were retained as important traits explaining similarity between arthropod assemblages. River banks similar in species composition differed in absolute and functional group species richness. Furthermore, Poisson regressions demonstrated the importance of variation in discharge regime, sediment composition and vegetation structure for the preservation of rare riparian arthropods. Whereas hygrophilic species benefited from increased vegetation cover, xerothermophilic specialists were favoured by increased flooding disturbance. In contrast to flight-active riparian carabids occurring throughout the river system, especially cursorial spiders are expected to go extinct under increased anthropogenic alterations of discharge regimes. We show the importance of a dynamic and evidence-based approach of river management on a local scale to preserve vulnerable riparian arthropods. In general, river restoration should generate the required heterogeneity in environmental conditions (e.g. dynamic processes) at the river bank level, thereby increasing the sustainability of riverine landscapes. More-over, we argue that the understanding of functional responses towards environmental factors results in general and widely applicable guiding concepts for species conservation. KW - Laufkäfer KW - Flussufer KW - carabid beetles KW - flooding disturbance KW - multi-species approach KW - lowland river banks KW - river restoration KW - spiders Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-50148 ER - TY - JOUR A1 - Lambeets, Kevin A1 - Vandegehuchte, Martijn L. A1 - Maelfait, Jean-Pierre A1 - Bonte, Dries T1 - Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks N2 - 1. Species assemblages of naturally disturbed habitats are governed by the prevailing disturbance regime. Consequently, stochastic flood events affect river banks and the inhabiting biota. Predatory arthropods occupy predominantly river banks in relation to specific habitat conditions. Therefore, species sorting and stochastic processes as induced by flooding are supposed to play important roles in structuring riparian arthropod assemblages in relation to their habitat preference and dispersal ability. 2. To ascertain whether assemblages of spiders and carabid beetles from disturbed river banks are structured by stochastic or sorting mechanisms, diversity patterns and assemblage-wide trait-displacements were assessed based on pitfall sampling data. We tested if flooding disturbance within a lowland river reach affects diversity patterns and trait distribution in both groups. 3. Whereas the number of riparian spider species decreased considerably with increased flooding, carabid beetle diversity benefited from intermediate degrees of flooding. Moreover, regression analyses revealed trait-displacements, reflecting sorting mechanisms particularly for spiders. Increased flooding disturbance was associated with assemblage-wide increases of niche breadth, shading and hygrophilic preference and ballooning propensity for spider (sub)families. Trait patterns were comparable for Bembidiini carabids, but were less univocal for Pterostichini species. Body size decreased for lycosid spiders and Bembidiini carabids with increased flooding, but increased in linyphiid spiders and Pterostichini carabids. 4. Our results indicate that mainly riparian species are disfavoured by either too high or too low degrees of disturbance, whereas eurytopic species benefit from increased flooding. Anthropogenic alterations of flooding disturbance constrain the distribution of common hygrophilous species and/or species with high dispersal ability, inducing shifts towards less specialized arthropod assemblages. River banks with divergent degrees of flooding impact should be maintained throughout dynamic lowland river reaches in order to preserve typical riparian arthropod assemblages. KW - Flussufer KW - body size KW - dispersal ability KW - niche breadth KW - riparian ecology KW - trait-displacement Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49580 ER - TY - JOUR A1 - Bonte, Dries A1 - Hovestadt, Thomas A1 - Poethke, Hans Joachim T1 - Sex-specific dispersal and evolutionary rescue in metapopulations infected by male killing endosymbionts N2 - Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because the resulting change in sex ratio is expected to affect the evolution of sex-specific dispersal, we investigated under which environmental conditions strong sex-biased dispersal would emerge, and how this would affect host and endosymbiont metapopulation persistence. Results: We simulated host-endosymbiont metapopulation dynamics in an individual-based model, in which dispersal rates are allowed to evolve independently for the two sexes. Prominent male-biased dispersal emerges under conditions of low environmental stochasticity and high dispersal mortality. By applying a reshuffling algorithm, we show that kin-competition is a major driver of this evolutionary pattern because of the high within-population relatedness of males compared to those of females. Moreover, the evolution of sex-specific dispersal rescues metapopulations from extinction by (i) reducing endosymbiont fixation rates and (ii) by enhancing the extinction of endosymbionts within metapopulations that are characterized by low environmental stochasticity. Conclusion: Male killing endosymbionts induce the evolution of sex-specific dispersal, with prominent male-biased dispersal under conditions of low environmental stochasticity and high dispersal mortality. This male-biased dispersal emerges from stronger kin-competition in males compared to females and induces an evolutionary rescue mechanism. KW - Metapopulation KW - Theoretische Ökologie KW - Endosymbiont KW - Wirt KW - Parasit KW - Host-parasite interactions KW - individual-based model Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45351 ER - TY - JOUR A1 - Bonte, Dries A1 - Hovestadt, Thomas A1 - Poethke, Hans-Joachim T1 - Male-killing endosymbionts: influence of environmental conditions on persistance of host metapopulation N2 - Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results: By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion: Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems. KW - Metapopulation KW - Parasit KW - Wirt KW - Endosymbiont KW - Theoretische Ökologie KW - Host-parasite interactions KW - individual-based model Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45344 ER - TY - JOUR A1 - Bonte, Dries A1 - Hovestadt, Thomas A1 - Poethke, Hans-Joachim T1 - Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes N2 - Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short- (SDD) and long-distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual-based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual‘s genome: one allele coding for the probability of global dispersal and one allele coding for the variance of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism. Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47856 ER -