TY - INPR A1 - Wang, Sunewang Rixin A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Dewhurst, Rian A1 - Paprocki, Valerie A1 - Winner, Lena T1 - CuOTf-mediated intramolecular diborene hydroarylation T2 - Chemical Communications N2 - Upon complexation to CuOTf, a PMe\(_3\)-stabilized bis(9-anthryl) diborene slowly undergoes an intramolecular hydroarylation reaction at room temperature. Subsequent triflation of the B–H bond with CuOTf, followed by a PMe\(_3\) transfer, finally yields a cyclic sp\(^2\)-sp\(^3\) boryl-substituted boronium triflate salt. KW - boron KW - C-H activation KW - transition metals Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154055 N1 - This is the pre-peer reviewed version of the following article: Chemical Communications, 2017, 11945-11947 which has been published at DOI: 10.1039/C7CC07371B. ER - TY - INPR A1 - Wang, Sunewang Rixin A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Dewhurst, Rian A1 - Dömling, Michael A1 - Mattock, James A1 - Pranckevicius, Conor A1 - Vargas, Alfredo T1 - Monomeric 16-Electron π-Diborene Complexes of Zn(II) and Cd(II) T2 - Journal of the American Chemical Society N2 - Despite the prevalence of stable π-complexes of most d\(^{10}\) metals, such as Cu(I) and Ni(0), with ethylene and other olefins, complexation of d\(^{10}\) Zn(II) to simple olefins is too weak to form isolable complexes due to the metal ion's limited capacity for π-backdonation. By employing more strongly donating π- ligands, namely neutral diborenes with a high-lying π(B=B) or- bital, monomeric 16-electron M(II)-diborene (M = Zn, Cd) π- complexes were synthesized in good yields. Metal–B2 π- interactions in both the solid and solution state were confirmed by single-crystal X-ray analyses and their solution NMR and UV-vis absorption spectroscopy, respectively. The M(II) centers adopt a trigonal planar geometry and interact almost symmetrically with both boron atoms. The MB2 planes significantly twist out of the MX\(_2\) planes about the M-centroid(B–B) vector, with angles rang- ing from 47.0° to 85.5°, depending on the steric interactions be- tween the diborene ligand and the MX\(_2\) fragment. KW - boron KW - transition metal complex KW - diborene Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153058 N1 - This is the pre-peer reviewed version of the following article: Journal of the American Chemical Society, 2017, 139 (31), pp 10661–10664, which has been published in final form at doi:10.1021/jacs.7b06644. ER - TY - INPR A1 - Wang, Sunewang R. A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Dewhurst, Rian D. A1 - Kelch, Hauke A1 - Krummenacher, Ivo A1 - Mattock, James D. A1 - Müssig, Jonas H. A1 - Thiess, Torsten A1 - Vargas, Alfredo A1 - Zhang, Jiji T1 - Engineering a Small HOMO-LUMO Gap and Intramolecular B–B Hydroarylation by Diborene/Anthracene Orbital Intercalation T2 - Angewandte Chemie, International Edition N2 - The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B–B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV–vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B–B and C\(^1\)–H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9. KW - boron KW - small HOMO-LUMO gap KW - diborenes KW - borylation KW - hydroarylation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148126 N1 - This is the pre-peer reviewed version of the following article: S. R. Wang, M. Arrowsmith, J. Böhnke, H. Braunschweig, T. Dellermann, R. D. Dewhurst, H. Kelch, I. Krummenacher, J. D. Mattock, J. H. Müssig, T. Thiess, A. Vargas, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8009., which has been published in final form at DOI: 10.1002/anie.201704063. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 56 IS - 27 ER - TY - INPR A1 - Stoy, Andreas A1 - Böhnke, Julian A1 - Jiménez-Halla, J. Oscar C. A1 - Dewhurst, Rian D. A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - CO\(_2\) Binding and Splitting by Boron–Boron Multiple Bonds T2 - Angewandte Chemie, International Edition N2 - CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction. KW - carbon dioxide KW - CO2 fixation KW - diborenes KW - diborynes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164265 N1 - This is the pre-peer reviewed version of the following article: A. Stoy, J. Böhnke, J. O. C. Jiménez‐Halla, R. D. Dewhurst, T. Thiess, H. Braunschweig, Angew. Chem. Int.Ed. 2018, 57,5947 –5951, which has been published in final form at DOI: 10.1002/anie.201802117. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Vollert, Ivonne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene T2 - Angewandte Chemie, International Edition N2 - Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene. KW - boron KW - borylene KW - multiple bonds KW - rearrangement KW - DFT calculations Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160258 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, I. Vollert, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 4098., which has been published in final form at DOI: 10.1002/anie.201800671. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 57 ER - TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Pentecost, Leanne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Chelated Diborenes and their Inverse-Electron-Demand Diels- Alder Reactions with Dienes T2 - Angewandte Chemie, International Edition N2 - A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product. KW - boron KW - cycloaddition KW - DFT calculations KW - chelates KW - low-valent compounds Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178268 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, L. Pentecost, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 15276., which has been published in final form at https://doi.org/10.1002/anie.201809217. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Stennett, Tom E. A1 - Jayaraman, Arumugam A1 - Brückner, Tobias A1 - Schneider, Lea A1 - Braunschweig, Holger T1 - Hydrophosphination of boron–boron multiple bonds JF - Chemical Science N2 - Five compounds containing boron–boron multiple bonds are shown to undergo hydrophosphination reactions with diphenylphosphine in the absence of a catalyst. With diborenes, the products obtained are highly dependent on the substitution pattern at the boron atoms, with both 1,1- and 1,2- hydrophosphinations observed. With a symmetrical diboryne, 1,2-hydrophosphination yields a hydro(phosphino)diborene. The different mechanistic pathways for the hydrophosphination of diborenes are rationalised with the aid of density functional theory calculations. KW - boron KW - diborenes KW - diborynes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240681 VL - 11 ER - TY - INPR A1 - Stennett, Tom E. A1 - Bissinger, Philipp A1 - Griesbeck, Stefanie A1 - Ullrich, Stefan A1 - Krummenacher, Ivo A1 - Auth, Michael A1 - Sperlich, Andreas A1 - Stolte, Matthias A1 - Radacki, Krzysztof A1 - Yao, Chang-Jiang A1 - Würthner, Frank A1 - Steffen, Andreas A1 - Marder, Todd B. A1 - Braunschweig, Holger T1 - Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units T2 - Angewandte Chemie, International Edition N2 - In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts. KW - boron KW - near-IR chromophores KW - conjugation KW - low-valent compounds KW - synthesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180391 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, P. Bissinger, S. Griesbeck, S. Ullrich, I. Krummenacher, M. Auth, A. Sperlich, M. Stolte, K. Radacki, C.-J. Yao, F. Wuerthner, A. Steffen, T. B. Marder, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 6449. , which has been published in final form at https://doi.org/10.1002/anie.201900889. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Stennett, Tom A1 - Bertermann, Rüdiger A1 - Braunschweig, Holger T1 - Construction of Linear and Branched Tetraboranes via 1,1- and 1,2-Diboration of Diborenes T2 - Angewandte Chemie, International Edition N2 - Sterically unencumbered diborenes based on a benzylphosphine chelate undergo diboration reactions with bis(catecholato)diboron in the absence of a catalyst to yield tetraboranes. The symmetrical diborenes studied undergo 1,2- diborations, whereas an unsymmetrical derivative was found to yield a triborylborane-phosphine adduct as the result of a formal 1,1-diboration. A related borylborylene compound also underwent a 1,2-diboration to produce a borylene-borane adduct. KW - boron KW - diboration KW - chain structures KW - low-valent compounds KW - isomers Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178276 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, R. Bertermann, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 15896., which has been published in final form at https://doi.org/10.1002/anie.201809976. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Schorr, Fabian A1 - Schopper, Nils A1 - Riensch, Nicolas A1 - Fantuzzi, Felipe A1 - Neder, Marco A1 - Dewhurst, Rian D. A1 - Thiess, Thorsten A1 - Brückner, Tobias A1 - Hammond, Kai A1 - Helten, Holger A1 - Finze, Maik A1 - Braunschweig, Holger T1 - Controlled Synthesis of Oligomers Containing Main-Chain B(sp\(^{2}\))-B(sp\(^{2}\)) Bonds JF - Chemistry—A European Journal N2 - A number of novel alkynyl-functionalized diarylbis(dimethylamino)diboranes(4) are prepared by salt metathesis, and the appended alkynyl groups are subjected to hydroboration. Their reactions with monohydroboranes lead to discrete boryl-appended diborane(4) species, while dihydroboranes induce their catenation to oligomeric species, the first known examples of well-characterized macromolecular species with B−B bonds. The oligomeric species were found to comprise up to ten repeat units and are soluble in common organic solvents. Some of the oligomeric species have good air stability and all were characterized by NMR and vibrational spectroscopy and size-exclusion chromatography techniques. KW - oligomerization KW - boron KW - catenation KW - diborane KW - hydroboration Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257274 VL - 27 IS - 64 ER - TY - JOUR A1 - Schmidt, Paul A1 - Fantuzzi, Felipe A1 - Klopf, Jonas A1 - Schröder, Niklas B. A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger A1 - Engel, Volker A1 - Engels, Bernd T1 - Twisting versus delocalization in CAAC- and NHC-stabilized boron-based biradicals: the roles of sterics and electronics JF - Chemistry - A European Journal N2 - Twisted boron-based biradicals featuring unsaturated C\(_2\)R\(_2\) (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C\(_2\)R\(_2\)-bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals. KW - chemistry KW - radicals KW - ab initio calculations KW - boron KW - carbene ligands KW - density functional calculations Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256636 VL - 27 IS - 16 ER - TY - JOUR A1 - Saalfrank, Christian A1 - Fantuzzi, Felipe A1 - Kupfer, Thomas A1 - Ritschel, Benedikt A1 - Hammond, Kai A1 - Krummenacher, Ivo A1 - Bertermann, Rüdiger A1 - Wirthensohn, Raphael A1 - Finze, Maik A1 - Schmid, Paul A1 - Engel, Volker A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - cAAC‐Stabilized 9,10‐diboraanthracenes—Acenes with Open‐Shell Singlet Biradical Ground States JF - Angewandte Chemie International Edition N2 - Narrow HOMO–LUMO gaps and high charge‐carrier mobilities make larger acenes potentially high‐efficient materials for organic electronic applications. The performance of such molecules was shown to significantly increase with increasing number of fused benzene rings. Bulk quantities, however, can only be obtained reliably for acenes up to heptacene. Theoretically, (oligo)acenes and (poly)acenes are predicted to have open‐shell singlet biradical and polyradical ground states, respectively, for which experimental evidence is still scarce. We have now been able to dramatically lower the HOMO–LUMO gap of acenes without the necessity of unfavorable elongation of their conjugated π system, by incorporating two boron atoms into the anthracene skeleton. Stabilizing the boron centers with cyclic (alkyl)(amino)carbenes gives neutral 9,10‐diboraanthracenes, which are shown to feature disjointed, open‐shell singlet biradical ground states. KW - acenes KW - biradicals KW - bond Activation KW - boron KW - heterocycles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217795 VL - 59 IS - 43 SP - 19338 EP - 19343 ER - TY - JOUR A1 - Rauch, Florian A1 - Fuchs, Sonja A1 - Friedrich, Alexandra A1 - Sieh, Daniel A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Finze, Maik A1 - Marder, Todd B. T1 - Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9‐Borafluorenes JF - Chemistry – A European Journal N2 - Three different perfluoroalkylated borafluorenes (\(^{F}\)Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo‐aryl moieties. They differ with regard to the para substituents on their exo‐aryl moieties, being a proton \(^{F}\)Xyl\(^{F}\)Bf, \(^{F}\)Xyl: 2,6‐bis(trifluoromethyl)phenyl), a trifluoromethyl group (\(^{F}\)Mes\(^{F}\)Bf, \(^{F}\)Mes: 2,4,6‐tris(trifluoromethyl)phenyl) or a dimethylamino group (p‐NMe\(_{2}\)‐\(^{F}\)Xyl\(^{F}\)Bf, p‐NMe\(_{2}\)‐\(^{F}\)Xyl: 4‐(dimethylamino)‐2,6‐bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron‐deficient derivative \(^{F}\)Mes\(^{F}\)Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 μs; however, the underlying mechanisms responsible for this differ. The donor‐substituted derivative p‐NMe\(_{2}\)‐\(^{F}\)Xyl\(^{F}\)Bf exhibits thermally activated delayed fluorescence (TADF) from a charge‐transfer (CT) state, whereas the \(^{F}\)Mes\(^{F}\)Bf and FXylFBf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition‐dipole moments. KW - borafluorenes KW - boron KW - EPR spectroscopy KW - fluorescence KW - heterocycles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218390 VL - 26 IS - 56 SP - 12794 EP - 12808 ER - TY - INPR A1 - Muessig, Jonas H. A1 - Thaler, Melanie A1 - Dewhurst, Rian D. A1 - Paprocki, Valerie A1 - Seufert, Jens A1 - Mattock, James D. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Phosphine-Stabilized Diiododiborenes: Isolable Diborenes with Six Labile Bonds T2 - Angewandte Chemie, International Edition N2 - The lability of B=B, B-P and B-halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes demonstrate cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange. KW - boron KW - low-valent main-group species KW - iodine KW - multiple bonding KW - 1,2-additions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178608 N1 - This is the pre-peer reviewed version of the following article: J. H. Muessig, M. Thaler, R. D. Dewhurst, V. Paprocki, J. Seufert, J. D. Mattock, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 4405, which has been published in final form at https://doi.org/10.1002/anie.201814230. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Muessig, Jonas H. A1 - Lisinetskaya, Polina A1 - Dewhurst, Rian D. A1 - Bertermann, Rüdiger A1 - Thaler, Melanie A1 - Mitric, Roland A1 - Braunschweig, Holger T1 - Tetraiododiborane(4) (B\(_2\)I\(_4\)) is a Polymer based on sp\(^3\) Boron in the Solid State JF - Angewandte Chemie International Edition N2 - Herein we present the first solid‐state structures of tetraiododiborane(4) (B\(_2\)I\(_4\)), which was long believed to exist in all phases as discrete molecules with planar, tricoordinate boron atoms, like the lighter tetrahalodiboranes(4) B\(_2\)F\(_4\), B\(_2\)Cl\(_4\), and B\(_2\)Br\(_4\). Single‐crystal X‐ray diffraction, solid‐state NMR, and IR measurements indicate that B\(_2\)I\(_4\) in fact exists as two different polymeric forms in the solid state, both of which feature boron atoms in tetrahedral environments. DFT calculations are used to simulate the IR spectra of the solution and solid‐state structures, and these are compared with the experimental spectra. KW - boron tetraiodide KW - boron KW - density functional theory KW - diborane KW - halides KW - solid-state sturcture Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209428 VL - 59 ER - TY - INPR A1 - Légaré, Marc-André A1 - Pranckevicius, Conor A1 - Braunschweig, Holger T1 - Metallomimetic Chemistry of Boron T2 - Chemical Reviews N2 - The study of main-group molecules that behave and react similarly to transition-metal (TM) complexes has attracted significant interest in recent decades. Most notably, the attractive idea of replacing the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of TM complexes that arises from combinations of empty and filled d orbitals and that seem ideally suited to bind and activate many substrates. In this review, we look at boron, an element that despite its nonmetal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in interelement cooperative systems, diboron molecules, and hypovalent complexes the fifth element can acquire a truly metallomimetic character. As we discuss, this character is powerfully demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2. KW - boron KW - small-molecule activation KW - catalysis KW - low-valent main group chemistry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186317 N1 - This document is the unedited Author’sv ersion of a Submitted Work that was subsequently accepted for publication in Chemical Reviews,copyright ©American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.chemrev.8b00561. ER - TY - JOUR A1 - Lenczyk, Carsten A1 - Roy, Dipak Kumar A1 - Oberdorf, Kai A1 - Nitsch, Jörn A1 - Dewhurst, Rian D. A1 - Radacki, Krzysztof A1 - Halet, Jean-François A1 - Marder, Todd B. A1 - Bickelhaupt, Matthias A1 - Braunschweig, Holger T1 - Toward Transition‐Metal‐Templated Construction of Arylated B\(_{4}\) Chains by Dihydroborane Dehydrocoupling JF - Chemistry - A European Journal N2 - The reactivity of a diruthenium tetrahydride complex towards three selected dihydroboranes was investigated. The use of [DurBH\(_{2}\)] (Dur=2,3,5,6‐Me\(_{4}\)C\(_{6}\)H) and [(Me\(_{3}\)Si)\(_{2}\)NBH\(_{2}\)] led to the formation of bridging borylene complexes of the form [(Cp\(^{*}\)RuH)\(_{2}\)BR] (Cp\(^{*}\)=C\(_{5}\)Me\(_{5}\); 1 a: R=Dur; 1 b: R=N(SiMe\(_{3}\))\(_{2}\)) through oxidative addition of the B−H bonds with concomitant hydrogen liberation. Employing the more electron‐deficient dihydroborane [3,5‐(CF\(_{3}\))\(_{2}\)‐C\(_{6}\)H\(_{3}\)BH\(_{2}\)] led to the formation of an anionic complex bearing a tetraarylated chain of four boron atoms, namely Li(THF)\(_{4}\)[(Cp\(^{*}\)Ru)\(_{2}\)B\(_{4}\)H\(_{5}\)(3,5‐(CF\(_{3}\))\(_{2}\)C\(_{6}\)H\(_{3}\))\(_{4}\)] (4), through an unusual, incomplete threefold dehydrocoupling process. A comparative theoretical investigation of the bonding in a simplified model of 4 and the analogous complex nido‐[1,2(Cp\(^{*}\)Ru)\(_{2}\)(μ‐H)B\(_{4}\)H\(_{9}\)] (I) indicates that there appear to be no classical σ‐bonds between the boron atoms in complex I, whereas in the case of 4 the B\(_{4}\) chain better resembles a network of three B−B σ bonds, the central bond being significantly weaker than the other two. KW - transition metal KW - B−H activation KW - boron KW - dehydrocoupling KW - ruthenium Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214324 VL - 25 IS - 72 ER - TY - JOUR A1 - Huang, Zhenguo A1 - Wang, Suning A1 - Dewhurst, Rian D. A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik A1 - Braunschweig, Holger T1 - Boron: Its Role in Energy‐Related Processes and Applications JF - Angewandte Chemie International Edition N2 - Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy‐efficient products has seen boron playing key roles in energy‐related research, such as 1) activating and synthesizing energy‐rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron‐deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability—in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy‐related processes and applications. KW - boron KW - electrolytes KW - hydrogen KW - OLEDs KW - small-molecule activation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218514 VL - 59 IS - 23 SP - 8800 EP - 8816 ER - TY - JOUR A1 - Huang, Mingming A1 - Hu, Jiefeng A1 - Krummenacher, Ivo A1 - Friedrich, Alexandra A1 - Braunschweig, Holger A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Base-Mediated Radical Borylation of Alkyl Sulfones JF - Chemistry—A European Journal N2 - A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B\(_{2}\)neop\(_{2}\)), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates. KW - boron KW - boronate KW - boronic acid KW - metal-free KW - radical Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257281 VL - 28 IS - 3 ER - TY - JOUR A1 - Hermann, Alexander A1 - Fantuzzi, Felipe A1 - Arrowsmith, Merle A1 - Zorn, Theresa A1 - Krummenacher, Ivo A1 - Ritschel, Benedikt A1 - Radacki, Krzysztof A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Oxidation, Coordination, and Nickel-Mediated Deconstruction of a Highly Electron-Rich Diboron Analogue of 1,3,5-Hexatriene JF - Angewandte Chemie, International Edition N2 - The reductive coupling of an N-heterocyclic carbene (NHC) stabilized (dibromo)vinylborane yields a 1,2-divinyl- diborene, which, although isoelectronic to a 1,3,5-triene, displays no extended p conjugation because of twisting of the C\(_2\)B\(_2\)C\(_2\) chain. While this divinyldiborene coordinates to copper(I) and platinum(0) in an η\(^2\)-B\(_2\) and η\(^4\)-C\(_2\)B\(_2\) fashion, respectively, it undergoes a complex rearrangement to an η\(^4\)-1,3-diborete upon complexation with nickel(0). KW - boron KW - diborenes KW - carbenes KW - conjugation KW - density-functional calculations KW - rearrangements KW - structure elucidation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240652 VL - 59 IS - 36 ER -